
59

Chapter 3
ATTRIBUTE GRAMMARS

In Chapter 1 we discussed the hierarchy of formal grammars proposed by
Noam Chomsky. We mentioned that context-sensitive conditions, such
as ensuring the same value for n in a string anbncn, cannot be tested

using a context-free grammar. Although we showed a context-sensitive gram-
mar for this particular problem, these grammars in general are impractical
for specifying the context conditions for a programming language. In this
chapter and the next we investigate two different techniques for augmenting
a context-free grammar in order to verify context-sensitive conditions.

Attribute grammars can perform several useful functions in specifying the
syntax and semantics of a programming language. An attribute grammar
can be used to specify the context-sensitive aspects of the syntax of a lan-
guage, such as checking that an item has been declared and that the use of
the item is consistent with its declaration. As we will see in Chapter 7, at-
tribute grammars can also be used in specifying an operational semantics of
a programming language by defining a translation into lower-level code based
on a specific machine architecture.

Attribute grammars were first developed by Donald Knuth in 1968 as a means
of formalizing the semantics of a context-free language. Since their primary
application has been in compiler writing, they are a tool mostly used by pro-
gramming language implementers. In the first section, we use examples to
introduce attribute grammars. We then provide a formal definition for an
attribute grammar followed by additional examples. Next we develop an at-
tribute grammar for Wren that is sensitive to the context conditions dis-
cussed in Chapter 1 (see Figure 1.11). Finally, as a laboratory activity, we
develop a context-sensitive parser for Wren.

3.1 CONCEPTS AND EXAMPLES

An attribute grammar may be informally defined as a context-free grammar
that has been extended to provide context sensitivity using a set of attributes,
assignment of attribute values, evaluation rules, and conditions. A finite,
possibly empty set of attributes is associated with each distinct symbol in
the grammar. Each attribute has an associated domain of values, such as

60 CHAPTER 3 ATTRIBUTE GRAMMARS

integers, character and string values, or more complex structures. Viewing
the input sentence (or program) as a parse tree, attribute grammars can
pass values from a node to its parent, using a synthesized attribute, or from
the current node to a child, using an inherited attribute. In addition to pass-
ing attribute values up or down the parse tree, the attribute values may be
assigned, modified, and checked at any node in the derivation tree. The fol-
lowing examples should clarify some of these points.

Examples of Attribute Grammars

We will attempt to write a grammar to recognize sentences of the form anbncn.
The sentences aaabbbccc and abc belong to this grammar but the sentences
aaabbbbcc and aabbbcc do not. Consider this first attempt to describe the
language using a context-free grammar:

<letter sequence> ::= <a sequence> <b sequence> <c sequence>

<asequence> ::= a | <a sequence> a

<bsequence> ::= b | <bsequence> b

<csequence> ::= c | <csequence> c

As seen in Figure 3.1, this grammar can generate the string aaabbbccc . It
can also generate the string aaabbbbcc , as seen in Figure 3.2.

<letter sequence>

<a sequence>

<a sequence>

<a sequence>

<b sequence>

<b sequence>

a

<c sequence>

<c sequence>a

a

b

b

b

c

c

c

 <b sequence> <c sequence>

Figure 3.1: Parse Tree for the String aaabbbccc

As has already been noted in Chapter 1, it is impossible to write a context-
free grammar to generate only those sentences of the form anbncn. However,
it is possible to write a context-sensitive grammar for sentences of this form.
Attribute grammars provide another approach for defining context-sensitiv-

613.1 CONCEPTS AND EXAMPLES

ity. If we augment our grammar with an attribute describing the length of
aletter sequence, we can use these values to ensur e that the sequences of
a’s, b’s, and c’s all have the same length.

<letter sequence>

<a sequence>

<a sequence>

<a sequence>

<b sequence>

<b sequence>

<c sequence>

<b sequence>

a

a

a

b

b

b

b

c

c

<b sequence> <c sequence>

Figure 3.2: Parse Tree for the String aaabbbbcc

The first solution involves a synthesized attribute Size that is associated with
the nonterminals <asequence>, <bsequence>, and <csequence>. W e add
the condition that, at the root of the tree, the Size attribute for each of the
letter sequences has the same value. If a character sequence consists of a
single character, Size is set to 1; if it consists of a character sequence fol-
lowed by a single character, Size for the parent character sequence is the
Size of the child character sequence plus one. We have added the necessary
attribute assignments and conditions to the grammar shown below. Notice
that we differentiate a parent sequence from a child sequence by adding
subscripts to the nonterminal symbols.

<lettersequence> ::= <asequence> <bsequence> <csequence>
condition :

Size (<asequence>) = Size (<bsequence>) = Size (<csequence>)

<asequence> ::= a
Size (<asequence>) ← 1

| <asequence> 2 a
Size (<asequence>) ← Size (<asequence> 2) + 1

62 CHAPTER 3 ATTRIBUTE GRAMMARS

<bsequence> ::= b
Size (<bsequence>) ← 1

| <bsequence> 2 b
Size (<bsequence>) ← Size (<bsequence> 2) + 1

<csequence> ::= c
Size (<csequence>) ← 1

| <csequence> 2 c
Size (<csequence>) ←Size (<csequence> 2) + 1

This attribute grammar successfully parses the sequence aaabbbccc since
the sequence obeys the BNF and satisfies all conditions in the attribute gram-
mar. The complete, decorated parse tree is shown in Figure 3.3.

c

c

 condition: true
 Size (<a sequence>) = Size (<b sequence>) = Size (<c sequence>)

<letter sequence>

<a sequence>

<a sequence> <b sequence> <c sequence>

<b sequence> <c sequence>

Size : 3

Size : 2

Size : 1

a

a

a

b

b

b

c

Size : 1Size : 1

Size : 2Size : 2

Size : 3Size : 3
<b sequence> <c sequence>

<a sequence>

Figure 3.3: Parse Tree for aaabbbccc Using Synthesized Attributes

On the other hand, this attribute grammar cannot parse the sequence
aaabbbbcc . Although this sequence satisfies the BNF part of the grammar, it
does not satisfy the condition required of the attribute values, as shown in
Figure 3.4.

When using only synthesized attributes, all of the relevant information is
passed up to the root of the parse tree where the checking takes place. How-
ever, it is often more convenient to pass information up from one part of a
tree, transfer it at some specified node, and then have it inherited down into
other parts of the tree.

63

<letter sequence>

<a sequence> <b sequence> <c sequence>

<b sequence>

<b sequence>

Size : 4

<a sequence>

a

a

a b

b

b

b

c

c
Size : 1

Size : 1

Size : 1

Size : 2

Size : 2

Size : 2 Size : 3

Size : 3

 condition: false
 Size (<a sequence>) = Size (<b sequence>) = Size (<c sequence>)

<a sequence> <b sequence> <c sequence>

Figure 3.4: Parse Tree for aaabbbbcc Using Synthesized Attributes

Reconsider the problem of recognizing sequences of the form anbncn. In this
solution, we use the attribute Size as a synthesized attribute for the sequence
of a’s and InhSize as inherited attributes for the sequences of b’s and c’s. As
we have already seen, we can synthesize the size of the sequence of a’s to the
root of the parse tree. In this solution we set the InhSize attribute for the b
sequence and the c sequence to this value and inherit it down the tree,
decrementing the value by one every time we see another character in the
sequence. When we reach the node where the sequence has a child consist-
ing of a single character, we check if the inherited InhSize attribute equals
one. If so, the size of the sequence must be the same as the size of the se-
quences of a’s; otherwise, the two sizes do not match and the parse is unsuc-
cessful. These ideas are expressed in the following attribute grammar:

<lettersequence> ::= <asequence> <bsequence> <csequence>
InhSize (<bsequence>) ← Size (<asequence>)
InhSize (<csequence>) ← Size (<asequence>)

3.1 CONCEPTS AND EXAMPLES

64 CHAPTER 3 ATTRIBUTE GRAMMARS

<asequence> ::= a
Size (<asequence>) ← 1

| <asequence> 2 a
Size (<asequence>) ← Size (<asequence> 2) + 1

<bsequence> ::= b
condition: InhSize (<bsequence>) = 1

| <bsequence> 2 b
InhSize (<bsequence> 2) ← InhSize (<bsequence>) – 1

<csequence> ::= c
condition: InhSize (<csequence>) = 1

| <csequence> 2 c
InhSize (<csequence> 2) ← InhSize (<csequence>) – 1

For the nonterminal <asequence>, Size is a synthesized attribute, as we can
see from the attribute assignment

Size (<asequence>) ← Size (<asequence> 2) + 1.

Here the value of the child is incremented by one and passed to the parent.
For the nonterminals <bsequence> and <csequence>, InhSize is an inher-
ited attribute that is passed from parent to child. The assignment

InhSize (<bsequence> 2) ← InhSize (<bsequence>) – 1

shows that the value is decremented by one each time it is passed from the
parent sequence to the child sequence. When the sequence is a single char-
acter, we check that the inherited size attribute value is one. Figure 3.5 shows
a decorated attribute parse tree for the sequence aaabbbccc , which satisfies
the attribute grammar since it satisfies the BNF and all attribute conditions
are true. Size is synthesized up the left branch, passed over to the center and
right branches at the root, inherited down the center branch, and inherited
down the right branch as InhSize.

As before, we demonstrate that the attribute grammar cannot parse the se-
quence aaabbbbcc . Although this sequence satisfies the BNF part of the gram-
mar, it does not satisfy all conditions associated with attribute values, as
shown in Figure 3.6. In this case, the parse fails on two conditions. It only
takes one false condition anywhere in the decorated parse tree to make the
parse fail.

65

<letter sequence>

<a sequence> <b sequence> <c sequence>

<a sequence> <b sequence> <c sequence>

Size : 3

Size : 2

Size : 1
condition: true
 InhSize = 1

a

a

a

b

b

b

c

c

c

InhSize : 3InhSize : 3

InhSize : 2InhSize : 2

InhSize : 1InhSize : 1
condition: true
 InhSize = 1

<a sequence> <b sequence> <c sequence>

Figure 3.5: Parse Tree for aaabbbccc Using Inherited Attributes

<a sequence>

<letter sequence>

<a sequence> <b sequence> <c sequence>

<b sequence>

<b sequence>
InhSize : 0

a

a

a

b

b

b

b c

c

InhSize : 3InhSize : 3Size : 3

InhSize: 2InhSize : 2Size : 2

InhSize : 1Size : 1

condition: false
 InhSize = 1

condition: false
 InhSize = 1

<a sequence> <b sequence> <c sequence>

Figure 3.6: Parse Tree for aaabbbbcc Using Inherited Attributes

3.1 CONCEPTS AND EXAMPLES

66 CHAPTER 3 ATTRIBUTE GRAMMARS

In this grammar the sequence of a’s determines the “desired” length against
which the other sequences are checked. Consider the sequence aabbbccc . It
might be argued that the sequence of a’s is “at fault” and not the other two
sequences. However, in a programming language with declarations, we use
the declarations to determine the “desired” types against which the remain-
der of the program is checked. The declaration information is synthesized up
to the root of the tree and passed into the entire program for checking. Using
this approach makes it easier to localize errors that cause the parse to fail.
Also, if both synthesized and inherited attributes are used, an attribute value
may be threaded throughout a tree. We will see this mechanism in Chapter 7
when an attribute grammar is used to help determine label names in the
generation of code. Before developing the complete attribute grammar for
Wren, we provide some formal definitions associated with attribute gram-
mars and examine one more example where attributes are used to determine
the semantics of binary numerals.

Formal Definitions

Although the above examples were introduced in an informal way, attribute
grammars furnish a formal mechanism for specifying a context-sensitive gram-
mar, as indicated by the following definitions.

Definition : An attribute grammar is a context-free grammar augmented
with attributes, semantic rules, and conditions.

Let G = <N,Σ,P,S> be a context-free grammar (see Chapter 1).
Write a production p ∈P in the form:

p: X0 ::= X1 X2 … Xnp

where np ≥ 1, X0 ∈ N and Xk ∈ N ∪ Σ for 1 ≤ k ≤ np.

A derivation tree for a sentence in a context-free language, as defined in
Chapter 1, has the property that each of its leaf nodes is labeled with a
symbol from Σ and each interior node t corresponds to a production p ∈ P
such that t is labeled with X0 and t has np children labeled with X1, X2, …,
Xnp in left-to-right order.

For each syntactic category X ∈ N in the grammar, there are two finite dis-
joint sets I(X) and S(X) of inherited and synthesized attributes . For X = S,
the start symbol, I(X) = ∅.

Let A(X) = I(X) ∪ S(X) be the set of attributes of X. Each attribute Atb ∈ A(X)
takes a value from some semantic domain (such as the integers, strings of
characters, or structures of some type) associated with that attribute. These
values are defined by semantic functions or semantic rules associated
with the productions in P.

Consider again a production p ∈ P of the form X0 ::= X1 X2 … Xnp Each
synthesized attribute Atb ∈ S(X0) has its value defined in terms of the at-

67

tributes in A(X1) ∪ A(X2) ∪ … ∪ A(Xnp
) ∪ I(X0). Each inherited attribute

Atb ∈ I(Xk) for 1 ≤ k ≤ np has its value defined in terms of the attributes in
A(X0) ∪ S(X1) ∪ S(X2) ∪ … ∪ S(Xnp

).

Each production may also have a set of conditions on the values of the at-
tributes in A(X0) ∪ A(X1) ∪ A(X2) ∪ … ∪ A(Xnp

) that further constrain an
application of the production. The derivation (or parse) of a sentence in the
attribute grammar is satisfied if and only if the context-free grammar is sat-
isfied and all conditions are true. The semantics of a nonterminal can be
considered to be a distinguished attribute evaluated at the root node of the
derivation tree of that nonterminal. ❚

Semantics via Attribute Grammars

We illustrate the use of attribute grammars to specify meaning by developing
the semantics of binary numerals. A binary numeral is a sequence of binary
digits followed by a binary point (a period) and another sequence of binary
digits—for example, 100.001 and 0.001101. For simplicity, we require at
least one binary digit, which may be 0, for each sequence of binary digits. It
is possible to relax this assumption—for example 101 or .11—but this flexibility
adds to the complexity of the grammar without altering the semantics of
binary numerals. Therefore we leave this modification as an exercise. We
define the semantics of a binary numeral to be the real number value Val
associated with the numeral, expressed in base-ten notation. For example,
the semantics of the numeral 100.001 is 4.125.

The first version of an attribute grammar defining the meaning of binary
numerals involves only synthesized attributes.

Synthesized Inherited
Nonterminals Attributes Attributes
<binary numeral> Val —
<binary digits> Val, Len —
<bit> Val —

<binary numeral> ::= <binary digits>1 . <binary digits>2

Val (<binary numeral>) ← Val (<binary digits>1) +
Val (<binary digits>2) / 2Len (<binary digits>2)

<binary digits> ::=

 <binary digits>2 <bit>
Val (<binary digits>) ← 2 • Val (<binary digits>2) + Val (<bit>)
Len (<binary digits>) ← Len (<binary digits>2) + 1

| <bit>
Val (<binary digits>) ← Val (<bit>)
Len (<binary digits>) ← 1

3.1 CONCEPTS AND EXAMPLES

68 CHAPTER 3 ATTRIBUTE GRAMMARS

<bit> ::=

 0
Val (<bit>) ← 0

| 1
Val (<bit>) ← 1

The derivation tree in Figure 3.7 illustrates the use of attributes that give the
semantics for the binary numeral 1101.01 to be the real number 13.25.

<binary numeral>
Val: 13 + 1/22 = 13.25

<binary digits>
Val : 13
Len : 4

<binary digits>
Val : 1
Len : 2

<binary digits>
Val : 6
Len : 3

<binary digits>
Val : 3
Len : 2

<binary digits>
Val : 1
Len : 1

<bit>
Val : 1

<binary digits>
Val : 0
Len : 1

<bit>
Val : 1

<bit>
Val : 0

<bit>
Val : 1

<bit>
Val : 1

<bit>
Val : 0

1

1

1 1

0 0

Figure 3.7: Binary Numeral Semantics Using Synthesized Attributes

69

The previous specification for the semantics of binary numerals was not based
on positional information. As a result, the attribute values below the root do
not represent the semantic meaning of the digits at the leaves. We now present
an approach based on positional semantics, illustrated first in base 10,

123.45 = 1•102 + 2•101 + 3•100 + 4•10-1 + 5•10-2

and then in base 2,

110.101 = 1•22 + 1•21 + 0•20 + 1•2-1 + 0•2-2 + 1•2-3

= 6.625 (base 10).

We develop a positional semantics in which an inherited attribute called Pos
is introduced. It is convenient to separate the sequence of binary digits to the
left of the binary point, identified by the nonterminal <binary digits>, from
the fractional binary digits to the right of the binary point, identified by the
nonterminal <fraction digits>.

Synthesized Inherited
Nonterminals Attributes Attributes

<binary numeral> Val —
<binary digits> Val Pos
<fraction digits> Val, Len —
<bit> Val Pos

We write our grammar in left recursive form, which means that the leftmost
binary digit in a sequence of digits is “at the bottom” of the parse tree, as
shown in Figure 3.7. For the binary digits to the left of the binary point, we
initialize the Pos attribute to zero and increment it by one as we go down the
tree structure. This technique provides the correct positional information for
the binary digits in the integer part, but a different approach is needed for
the fractional binary digits since the exponents from left to right are -1, -2,
-3, Notice that this exponent information can be derived from the length
of the binary sequence of digits from the binary point up to, and including,
the digit itself. Therefore we add a length attribute for fractional digits that is
transformed into a positional attribute for the individual bit. Notice that the
Val attribute at any point in the tree contains the absolute value for the
portion of the binary numeral in that subtree. Therefore the value of a parent
node is the sum of the values for the children nodes. These ideas are imple-
mented in the following attribute grammar:

<binary numeral> ::= <binary digits> . <fraction digits>

Val (<binary numeral>) ← Val (<binary digits>)+Val (<fraction digits>)

Pos (<binary digits>) ← 0

3.1 CONCEPTS AND EXAMPLES

70 CHAPTER 3 ATTRIBUTE GRAMMARS

<binary digits> ::=

 <binary digits>2 <bit>

Val (<binary digits>) ← Val (<binary digits>2) + Val (<bit>)

Pos (<binary digits>2) ← Pos (<binary digits>) + 1

Pos (<bit>) ← Pos (<binary digits>)

| <bit>

Val (<binary digits>) ← Val (<bit>)

Pos (<bit>) ← Pos (<binary digits>)

<fraction digits> ::=

 <fraction digits>2 <bit>

Val (<fraction digits>) ← Val (<fraction digits>2) + Val (<bit>)

Len (<fraction digits>) ← Len (<fraction digits>2) + 1

Pos (<bit>) ← - Len (<fraction digits>)

| <bit>

Val (<fraction digits>) ← Val (<bit>)

Len (<fraction digits>) ← 1

Pos (<bit>) ← - 1

<bit> ::=

 0

Val (<bit>) ← 0

| 1

Val (<bit>) ← 2Pos (<bit>)

The parse tree in Figure 3.8 illustrates the use of positional attributes to
generate the semantics of the binary numeral 110.101 to be the real number
6.625.

The two attribute grammars for binary numerals do not involve conditions. If
we limit the size of binary numerals to match a particular machine architec-
ture, conditionals can be introduced to ensure that the binary numerals are
of proper size. Actually, this situation is fairly complex since real number
representations in most computers are based on scientific notation, not the
fractional notation that has been illustrated above. We examine this problem
of checking the size of binary numerals in the exercises.

71

11

<bit>
Val : 2-3 = 0.125
Pos : -3

 <binary numeral>
Val : 6 + 0.625 = 6.625

<binary digits>
Val : 6
Pos : 0

<fraction digits>
Val : 0.625
Len : 3

<fraction digits>
Val : 0.5
Len : 2

<fraction digits>
Val : 0.5
Len : 1

<binary digits>
Val : 6
Pos : 1

<binary digits>
Val : 4
Pos : 2

<bit>
Val : 0
Pos : -2

<bit>
Val : 2-1 = 0.5
Pos : -1

<bit>
Val : 0
Pos : 0

<bit>
Val : 21 = 2
Pos : 1

<bit>
Val : 22 = 4
Pos : 2

0

0

1

1

Figure 3.8: Binary Numeral Semantics Using Positional Attributes

Exercises

1. In old versions of Fortran that did not have the character data type,
character strings were expressed in the following format:

<string literal> ::= <numeral> H <string>

where the <numeral> is a base-ten integer (≥ 1), H is a keyword (named
after Herman Hollerith), and <string> is a sequence of characters. The
semantics of this string literal is correct if the numeric value of the base-
ten numeral matches the length of the string. Write an attribute gram-
mar using only synthesized attributes for the nonterminals in the defi-
nition of <string literal>.

2. Repeat exercise 1, using a synthesized attribute for <numeral> and an
inherited attribute for <string>.

3. Repeat exercise 1, using an inherited attribute for <numeral> and a
synthesized attribute for <string>.

3.1 CONCEPTS AND EXAMPLES

72 CHAPTER 3 ATTRIBUTE GRAMMARS

4. The following BNF specification defines the language of Roman numer-
als less than 1000:

<roman> ::= <hundreds> <tens> <units>

<hundreds> ::= <low hundreds> | CD | D <low hundreds> | CM

<low hundreds> ::= ε | <low hundreds> C

<tens> ::= <low tens> | XL | L <low tens> | XC

<low tens> ::= ε | <low tens> X

<units> ::= <low units> | IV | V <low units> | IX

<low units> ::= ε | <low units> I

Define attributes for this grammar to carry out two tasks:

a) Restrict the number of X’s in <low tens>, the I’s in <low units>, and
the C’s in <low hundreds> to no more than three.

b) Provide an attribute for <roman> that gives the decimal value of the
Roman numeral being defined.

Define any other attributes needed for these tasks, but do not change
the BNF grammar.

5. Expand the binary numeral attribute grammar (either version) to allow
for binary numerals with no binary point (1101), binary fractions with
no fraction part (101.), and binary fractions with no whole number part
(.101).

6. Develop an attribute grammar for integers that allows a leading sign
character (+ or -) and that ensures that the value of the integer does
not exceed the capacity of the machine. Assume a two’s complement
representation; if the word-size is n bits, the values range from -2n-1

to 2n-1-1.

7. Develop an attribute grammar for binary numerals that represents signed
integers using two’s complement. Assume that a word-size attribute is
inherited by the two’s complement binary numeral. The meaning of the
binary numeral should be present at the root of the tree.

8. Assume that we have a 32-bit machine where real numbers are repre-
sented in scientific notation with a 24-bit mantissa and an 8-bit expo-
nent with 2 as the base. Both mantissa and exponent are two’s comple-
ment binary numerals. Using the results from exercise 7, write an at-
tribute grammar for <binary real number> where the meaning of the
binary numeral is at the root of the tree in base-10 notation—for ex-
ample, 0.5•25.

733.1 CONCEPTS AND EXAMPLES

9. Assuming that we allow the left side of a binary fraction to be left recur-
sive and the fractional part to be right recursive, simplify the positional
attribute grammar for binary fractions.

10. Consider a language of expressions with only the variables a, b, and c
and formed using the binary infix operators

+, –, * , /, and ↑ (for exponentiation)

where ↑ has the highest precedence, * and / have the same next lower
precedence, and + and – have the lowest precedence. ↑ is to be right
associative and the other operations are to be left associative. Parenthe-
ses may be used to override these rules. Provide a BNF specification of
this language of expressions. Add attributes to your BNF specification
so that the following (unusual) conditions are satisfied by every valid
expression accepted by the attribute grammar:

a) The maximum depth of parenthesis nesting is three.

b) No valid expression has more than eight applications of operators.

c) If an expression has more divisions than multiplications, then sub-
tractions are forbidden.

11. A binary tree consists of a root containing a value that is an integer, a
(possibly empty) left subtree, and a (possibly empty) right subtree. Such
a binary tree can be represented by a triple (Left subtree, Root, Right
subtree). Let the symbol nil denote an empty tree. Examples of binary
trees include:

(nil,13,nil)
represents a tree with one node labeled with the value 13.

((nil,3,nil),8,nil)
represents a tree with 8 at the root, an empty right subtree, and a
nonempty left subtree with root labeled by 3 and empty subtrees.

The following BNF specification describes this representation of binary
trees.

<binary tree> ::= nil | (<binary tree> <value> <binary tree>)

<value> ::= <digit> | <value> <digit>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Augment this grammar with attributes that carry out the following tasks:

a) A binary tree is balanced if the heights of the subtrees at each interior
node are within one of each other. Accept only balanced binary trees.

b) A binary search tree is a binary tree with the property that all the
values in the left subtree of any node N are less than the value at N,
and all the value in the right subtree of N are greater than or equal to
the value at node N. Accept only binary search trees.

74 CHAPTER 3 ATTRIBUTE GRAMMARS

3.2 AN ATTRIBUTE GRAMMAR FOR WREN

In this section we develop an attribute grammar for Wren that performs con-
text checking that is the same as that done by a compiler. We concentrate on
context-sensitive conditions for programs that obey the BNF of Wren, as sum-
marized in Figure 1.11.

Wren, as we have defined it, is a flat language in the sense that there is only
one block in a program. As a consequence, all declarations belong to a single
declaration sequence at the main program level. In the exercises we extend
Wren and investigate nested blocks, but for the moment we concentrate on
developing an attribute grammar for our current version of Wren. It should
be noted that there is one small exception to our single set of declarations:
The program name itself is not part of the block structure. It is a language
design decision whether an object can have the same name as the program
name; at this point we have elected to require that the program name be
unique and not be used elsewhere in the program.

The Symbol Table

We build our declaration information in an attribute called Symbol-table.
This attribute is synthesized from the declaration sequence and inherited
into the command sequence of a program. The attribute value is transferred
at the block level, at which time the program name is added to the Symbol-
table attribute. Symbol-table contains a set of pairs each associating a name
with a type. All variables are of type integer or boolean, and we introduce a
pseudo-type, called program, for the program name identifier, and a default
value undefined to represent the absence of a type. Since all declarations in
our current version of Wren are global, there is a single Symbol-table that is
passed down to the command sequence. We will develop a number of utility
operations to manipulate the Symbol-table attribute.

Since variable names and types cannot magically appear in the symbol table
attribute at the internal nodes of our parse tree, all of this information must
be synthesized into the tree using attributes such as Name, Type, and Var-
list. Figure 3.9 contains a complete list of the attributes and associated value
types. We have added the pseudo-type value of program to the attribute Type
so that the program name is uniquely identified. A Name value is a string of
one or more letters or digits. A Var-list value is a sequence of Name values.
The Symbol-table attribute consists of a set of pairs containing a name and a
type. The nonterminals and their associated attributes for the grammar are
listed in Figure 3.10. Next we introduce our attribute grammar rules and
associated conditions by first focusing on the declaration portion of a Wren
program.

75

Attribute Value Types

Type { integer, boolean, program, undefined }

Name String of letters or digits

Var-list Sequence of Name values

Symbol-table Set of pairs of the form [Name, Type]

Figure 3.9: Attributes and Values

Synthesized Inherited
Nonterminals Attributes Attributes

<block> — Symbol-table
<declarationsequence> Symbol-table —
<declaration> Symbol-table —
<variable list> Var-list —
<type> Type —
<commandsequence> — Symbol-table
<command> — Symbol-table
<expr> — Symbol-table, Type
<integer expr> — Symbol-table, Type
<term> — Symbol-table, Type
<element> — Symbol-table, Type
<boolean expr> — Symbol-table, Type
<boolean term> — Symbol-table, Type
<boolean element> — Symbol-table, Type
<comparison> — Symbol-table
<variable> Name —
<identifier> Name —
<letter> Name —
<digit> Name —

Figure 3.10: Attributes Associated with Nonterminal Symbols

Consider the short program fragment:

program p is
var x, y : integer;
var a : boolean;

begin
:

end

3.2 AN ATTRIBUTE GRAMMAR FOR WREN

76 CHAPTER 3 ATTRIBUTE GRAMMARS

The Symbol-table attribute value passed to the command sequence will be

[[‘p’, program], [‘x’, integer], [‘y’, integer], [‘a’, boolean]].

We have chosen to use list-like notation for both sets and sequences; how-
ever, we assume no significance for the ordering in the case of sets. The
decorated parse tree for this program fragment appears in Figure 3.11.

<declaration sequence>
Symbol-table: S3
condition: true

begin <command sequence>
Symbol-table: S4

end

<declaration>
Symbol-table: S1

var <variable list>
Var-list: ['x','y']
condition: true

: <type>
Type: integer

;

integer
<variable>
Name: 'x'

<variable list>
Var-list: ['y']

<identifier>
Name: 'x'

,

<variable>
Name: 'y'

<identifier>
Name: 'y'

<letter>
Name: 'y'

y

<letter>
Name: 'x'

x

<declaration>
Symbol-table: S2

<declaration sequence>
Symbol-table: S2
conditon: true

<letter>
Name: 'p'

p

<variable>
Name: 'a'

<identifier>
Name: 'a'

<letter>
Name: 'a'

<block>
Symbol-table: S0
condition: true

<program>

program <identifier>
Name: 'p'

is

. . .

var

a

S0 = [['p', program]]

S1 = [['x', integer], ['y', integer]]

S2 = [['a', boolean]]

S3 = S1 ∪ S2
S4 = S0 ∪ S3

<variable list>
Var-list: ['a']

:

<type>
Type: boolean

;

boolean

<declaration seq>
Symbol-table: ∅

ε

Figure 3.11: Decorated Parse Tree for Wren Program Fragment

77

The attribute Symbol-table is initialized with a pair of values: the Name value
for the program identifier and the pseudo-type program. This Symbol-table
attribute is inherited into <block>.

<program> ::= program <identifier> is <block>

Symbol-table(<block>) ←
add-item((Name(<identifier>), program), empty-table)

For the example in Figure 3.11, the Symbol-table attribute for <block> has
the value [[‘p’, program]]. A single declaration has the form

var <var-list> : <type>;

The attribute grammar must construct a Symbol-table attribute value in which
each variable in the list is entered separately in the table with the associated
type. For example,

var x, y : integer;

results in a symbol table value of [[‘x’, integer], [‘y’, integer]]. In order to ac-
complish this, we need a synthesized attribute Var-list that collects a list of
Name values, [‘x’, ‘y’] in this case, and a utility function “build-symbol-table”
to construct the required symbol table value.

<declaration> ::= var <variable list> : <type>;

Symbol-table(<declaration>) ←
build-symbol-table(Var-list(<variable list>), Type(<type>))

We first look at how the Var-list value is synthesized. Observe that the Lisp-
like function “cons” builds the lists of variables.

<variable list> ::=

 <variable>

Var-list(<variable list>) ←
cons(Name(<variable>), empty-list)

| <variable> , <variable list>2

Var-list(<variable list>) ←
cons(Name(<variable>),Var-list(<variable list>2))

condition:

if Name(<variable>) is not a member of Var-list(<variable list>2)

then error(“”)

else error(“Duplicate variable in declaration list”)

3.2 AN ATTRIBUTE GRAMMAR FOR WREN

78 CHAPTER 3 ATTRIBUTE GRAMMARS

Every time we add a new Name value to the Var-list attribute, we must verify
that it is not already present in the synthesized attribute value for variables
that appear to the right. In the attribute grammars for strings of the form
anbncn, the conditions are either true or false. In this attribute grammar for
Wren, we use a slightly different strategy that provides more precise informa-
tion about any condition check that fails. We assume the existence of an
error routine with a string parameter. Calling the error routine with an empty
string means that the condition is true. Calling the error routine with a
nonempty error message indicates that the condition is false and that the
error message provides specific information about the nature of the error
encountered.

For the nonterminal <type>, Type is a synthesized attribute with the values
integer or boolean, depending on the declared type.

<type> ::= integer

Type(<type>) ← integer

| boolean

Type(<type>) ← boolean

We complete our discussion of <declaration> by looking at the utility func-
tions involved. We have assumed some basic list manipulation functions,
such as head, tail, and cons. These utility functions are described later, at
the end of Figure 3.12, using pattern matching with Prolog-like list struc-
tures. The “build-symbol-table” utility function removes names from the vari-
able listing one at a time and adds the pair [name, type] to the symbol table.
The utility function “add-item” does the actual appending. This process con-
tinues until the entire symbol table is built.

build-symbol-table(var-list, type) =

if empty(var-list)

then empty-table

else add-item(head(var-list), type,

build-symbol-table(tail(var-list),type))

add-item(name, type, table) = cons([name,type], table)

In situations where a declaration sequence is empty, the empty symbol table
value is returned. When the declaration sequence is one declaration followed
by another declaration sequence, the union of the two table values is passed
up to the parent provided that the intersection of the two table values is
empty; otherwise, an error condition occurs and the parse fails.

79

<declarationsequence> ::=

 ε
Symbol-table(<declarationsequence>) ← empty-table

| <declaration> <declarationsequence> 2

Symbol-table(<declarationsequence>) ←
table-union(Symbol-table(<declaration>),

 Symbol-table(<declarationsequence> 2))

 condition:

if table-intersection(Symbol-table(<declaration>),

Symbol-table(<declarationsequence> 2)) = empty

then error(“”)

else error(“Duplicate declaration of an identifier”)

The utility function “table-union” glues the symbol tables together. Compare
it with the Prolog function concat in Appendix A.

table-union(table1, table2) =

if empty(table1)

then table2

else if lookup-type(first-name(table1),table2) = undefined

then cons(head(table1), table-union(tail(table1), table2))

else table-union(tail(table1), table2))

The utility function “table-intersection” does not perform a set intersection,
rather it returns only one of two values, empty or nonempty, as appropriate.
This task is accomplished by removing items from table1, one at a time, and
looking up the type associated with the name in table2. If the type is unde-
fined, then the intersection process continues with the rest of table1. How-
ever, if any other type is returned, the table intersection must be nonempty
and this value is returned immediately without continuing the search.

table-intersection(table1, table2) =

if empty(table1)

then empty

else if lookup-type(first-name(table1),table2) ≠ undefined

then nonempty

else table-intersection(tail(table1), table2)

The utility function “lookup-type” proceeds down a list using recursion, check-
ing the first item as it goes to see if it matches the given name. If it does, the
corresponding type is returned; if it does not, the search continues with the

3.2 AN ATTRIBUTE GRAMMAR FOR WREN

80 CHAPTER 3 ATTRIBUTE GRAMMARS

tail of the table. If the empty table is reached, the value undefined is re-
turned.

lookup-type(name, table) =
if empty(table)

then undefined
else if head(table) = [name, type]

then type

else lookup-type(name, tail(table))

Commands

The grammar rule for <block> is very similar to <declarationsequence> ex-
cept that one of the symbol tables contains the program identifier. The union
of these two tables is passed to <commandsequence> in the rule for <block>,
as shown in Figure 3.12. In the command section, Symbol-table is an inher-
ited attribute that is passed down from <commandsequence> to the various
instances of <command>, except for skip which does not require any decla-
ration or type checking.

<commandsequence> ::=
 <command>

Symbol-table(<command>) ←
Symbol-table(<commandsequence>)

| <command> ; <commandsequence> 2

Symbol-table(<command>) ←
Symbol-table(<commandsequence>)

Symbol-table(<commandsequence> 2) ←
Symbol-table(<commandsequence>)

A read command requires an integer variable. Two context-sensitive errors
are possible: The variable is not declared or the variable is not of type integer.
In the condition check, the function lookup-type retrieves the variable type,
which may be undefined if the variable is not found in Symbol-table; thus the
type either satisfies the condition of being an integer or fails because it is not
declared or not of the proper type.

<command> ::= read <variable>
condition:
case lookup-type(Name(<variable>), Symbol-table(<command>)) is

integer : error(“”)
undefined : error(“Variable not declared”)

boolean, program : error(“Integer variable expected for read”)

81

A write command requires an integer expression. One way of specifying this
is through a BNF production:

<command> ::= write <integer expr>.

However, since <integer expr> is only one alternative for <expr>, we have
elected to show a more relaxed BNF that expands to expression and to pass
an inherited attribute Type to <expr> so that it can check that the expression
is an integer expression. This attribute will be passed to each kind of expres-
sion so that the type consistency of variables is maintained. The symbol
table is also inherited down to the <integer expr> nonterminal. The attribute
grammar for <integer expr> ensures that any variables occurring in the ex-
pression are of type integer.

<command> ::= write <expr>

Symbol-table(<expr>) ← Symbol-table(<command>)

Type(<expr>) ← integer

If the language has other types of expressions, such as character and string
expressions, having output commands pass an inherited attribute Type pro-
vides a way of type checking the expressions.

In an assignment command, the Symbol-table and the type of the target vari-
able are passed to the expression. We also look up the target variable in the
Symbol-table. If the type of the target variable is undefined or program, an
error occurs.

<command> ::= <variable> := <expr>

Symbol-table(<expr>) ← Symbol-table(<command>)

Type(<expr>) ←
 lookup-type(Name(<variable>),Symbol-table(<command>))

condition:

case lookup-type(Name(<variable>),Symbol-table(<command>)) is

integer, boolean : error(“”)

undefined : error(“Target variable not declared”)

program : error(“Target variable same as program name”).

The control commands while and if pass the Symbol-table attribute to the
<boolean expression> and <commandsequence> levels and the expected type
to <boolean expr>. Notice that in this case we have only allowed for <boolean
expr> (and not <expr>) in the BNF since, even if other types are added such
as character or string, the conditional still allows only a Boolean expression.

3.2 AN ATTRIBUTE GRAMMAR FOR WREN

82 CHAPTER 3 ATTRIBUTE GRAMMARS

<command> ::=
while <boolean expr> do <commandsequence> end while

Symbol-table(<boolean expr>) ← Symbol-table(<command>)
Symbol-table(<commandsequence>) ←

Symbol-table(<command>)
Type(<boolean expr>) ← boolean

<command> ::=
 if <boolean expr> then <cmdsequence> end if

Symbol-table(<boolean expr>) ← Symbol-table(<command>)
Symbol-table(<commandsequence>) ←

Symbol-table(<command>)
Type(<boolean expr>) ← boolean

| if <boolean expr> then <commandsequence> 1

else <commandsequence> 2 end if
Symbol-table(<boolean expr>) ← Symbol-table(<command>)
Symbol-table(<commandsequence> 1) ←

Symbol-table(<command>)
Symbol-table(<commandsequence> 2) ←

Symbol-table(<command>)

Type(<boolean expr>) ← boolean

Expressions

The Symbol-table and Type attributes of <expr> are passed to the two kinds
of expressions in Wren. To ensure that the proper alternative for expression
is chosen, a guard (condition) on each rule stops the derivation if the types
are not consistent. Other errors are handled at a lower level in the derivation.
If more sorts of data are available, the sets in the conditions can be ex-
panded.

<expr> ::=
 <integer expr>

Symbol-table(<integer expr>) ← Symbol-table(<expr>)
Type(<integer expr>) ← Type(<expr>)
condition : Type(<expr>) ∉ { boolean }

| <boolean expr>
Symbol-table(<boolean expr>) ← Symbol-table(<expr>)
Type(<boolean expr>) ← Type(<expr>)

condition : Type(<expr>) ∉ { integer }

83

The nonterminals <integer expr> and <term> pass the Symbol-table and Type
attributes down to the children nodes, except for <weak op> and <strong
op>, which require no context checking.

<integer expr> ::=
 <term>

Symbol-table(<term>) ← Symbol-table(<integer expr>)
Type(<term>) ← Type(<integer expr>)

| <integer expr>2 <weak op> <term>
Symbol-table(<integer expr>2) ← Symbol-table(<integer expr>)
Symbol-table(<term>) ← Symbol-table(<integer expr>)
Type(<integer expr>2) ← Type(<integer expr>)
Type(<term>) ← Type(<integer expr>)

<term> ::=
 <element>

Symbol-table(<element>) ← Symbol-table(<term>)
Type(<element>) ← Type(<term>)

| <term>2 <strong op> <element>
Symbol-table(<term>2) ← Symbol-table(<term>)
Symbol-table(<element>) ← Symbol-table(<term>)
Type(<term>2) ← Type(<term>)

Type(<element>) ← Type(<term>)

The nonterminal <element> can expand to <numeral>, which requires no
context checking, a parenthesized or negated expression, which receives Sym-
bol-table and Type, or a variable, which is looked up in the symbol table.
Normally, we expect this variable to be declared (not undefined) and to have
type integer. On the other hand, if the inherited Type attribute is undefined,
we have no expectations for the type of the variable, so no error is reported,
thereby avoiding certain spurious errors.

<element> ::=
 <numeral>
| <variable>

condition:
case lookup-type(Name(<variable>), Symbol-table(<element>)) is

integer : error(“”)
undefined : error(“Variable not declared”)
boolean, program : if Type(<element>)=undefined

then error(“”)
else error(“Integer variable expected”)

3.2 AN ATTRIBUTE GRAMMAR FOR WREN

84 CHAPTER 3 ATTRIBUTE GRAMMARS

| (<expr>)
Symbol-table(<expr>) ← Symbol-table(<element>)
Type(<expr>) ← Type(<element>)

| - <element>2

Symbol-table(<element>2) ← Symbol-table(<element>)

Type(<element>2) ← Type(<element>)

The attribute grammar definitions for <boolean expr>, <boolean term>, and
<boolean element> are similar to their integer counterparts and are shown in
Figure 3.12. A comparison passes the Symbol-table and Type attributes down
to both integer expressions.

<comparison> ::= <integer expr>1 <relation> <integer expr>2

Symbol-table(<integer expr>1) ← Symbol-table(<comparison>)
Symbol-table(<integer expr>2) ← Symbol-table(<comparison>)
Type(<integer expr>1) ← integer

Type(<integer expr>2) ← integer

Note that we have restricted comparisons to integer expressions only. Other
alternatives are presented in the exercises.

This completes the context checking attribute grammar for Wren, except for
the productions for <identifier>, <variable>, <letter>, and <digit>, which ap-
pear in the complete grammar in Figure 3.12.

 <program> ::= program <identifier> is <block>

Symbol-table(<block>) ←
add-item((Name(<identifier>), program), empty-table)

 <block> ::= <declarationsequence> begin <commandsequence> end
Symbol-table(<commandsequence>) ←

table-union(Symbol-table(<block>),
Symbol-table(<declarationsequence>))

condition:
if table-intersection(Symbol-table(<block>),

Symbol-table(<declarationsequence>)) = empty
then error(“”)
else error(“Program name used as a variable”)

 <declaration> ::= var <variable list> : <type>;
Symbol-table(<declaration>) ←

build-symbol-table(Var-list(<variable list>), Type(<type>))

Figure 3.12: Context Checking Attribute Grammar for Wren (Part 1)

85

<declarationsequence> ::=

 ε
Symbol-table(<declarationsequence>) ← empty-table

| <declaration> <declaration sequence>2
Symbol-table(<declarationsequence>) ←

table-union(Symbol-table(<declaration>),

Symbol-table(<declarationsequence> 2))

condition:

if table-intersection(Symbol-table(<declaration>),

Symbol-table(<declarationsequence> 2)) = empty

then error(“”)

else error(“Duplicate declaration of identifier”)

<variable list> ::=
 <variable>

Var-list(<variable list>) ← cons(Name(<variable>), empty-list)
| <variable> , <variable list>2

Var-list(<variable list>) ←
cons(Name(<variable>),Var-list(<variable list>2))

condition:
if Name(<variable>) is not a member of Var-list(<variable list>2)

then error(“”)
else error(“Duplicate variable in declaration list”)

 <type> ::=
 integer

Type(<type>) ← integer
| boolean

Type(<type>) ← boolean

 <commandsequence> ::=
 <command>

Symbol-table(<command>) ← Symbol-table(<commandsequence>)
| <command> ; <command sequence>2

Symbol-table(<command>) ← Symbol-table(<commandsequence>)
Symbol-table(<cmdsequence> 2) ← Symbol-table(<commandsequence>)

 <command> ::=
 skip

| read <variable>
condition:
case lookup-type(Name(<variable>), Symbol-table(<command>)) is

integer : error(“”)
undefined : error(“Variable not declared”)
boolean, program : error(“Integer variable expected for read”)

Figure 3.12: Context Checking Attribute Grammar for Wren (Part 2)

3.2 AN ATTRIBUTE GRAMMAR FOR WREN

86 CHAPTER 3 ATTRIBUTE GRAMMARS

| write <expr>

Symbol-table(<expr>) ← Symbol-table(<command>)

Type(<expr>) ← integer

| <variable> := <expr>
Symbol-table(<expr>) ← Symbol-table(<command>)

Type(<expr>) ←
 lookup-type(Name(<variable>),Symbol-table(<command>))

condition:
case lookup-type(Name(<variable>), Symbol-table(<command>)) is

integer, boolean: error(“”)
undefined : error(“Target variable not declared”)
program : error(“Target variable same as program name”)

| while <boolean expr> do <commandsequence> end while
Symbol-table(<boolean expr>) ← Symbol-table(<command>)
Symbol-table(<commandsequence>) ← Symbol-table(<command>)
Type(<boolean expr>) ← boolean

| if <boolean expr> then <commandsequence> 1
else <commandsequence> 2 end if

Symbol-table(<boolean expr>) ← Symbol-table(<command>)
Symbol-table(<commandsequence> 1) ← Symbol-table(<command>)
Symbol-table(<commandsequence> 2) ← Symbol-table(<command>)
Type(<boolean expr>) ← boolean

| if <boolean expr> then <commandsequence> end if
Symbol-table(<boolean expr>) ← Symbol-table(<command>)
Symbol-table(<commandsequence>) ← Symbol-table(<command>)
Type(<boolean expr>) ← boolean

 <expr> ::=
 <integer expr>

Symbol-table(<integer expr>) ← Symbol-table(<expr>)
Type(<integer expr>) ← Type(<expr>)
condition : Type(<expr>) ∉ { boolean }

| <boolean expr>
Symbol-table(<boolean expr>) ← Symbol-table(<expr>)
Type(<boolean expr>) ← Type(<expr>)
condition : Type(<expr>) ∉ { integer }

 <integer expr> ::=
 <term>

Symbol-table(<term>) ← Symbol-table(<integer expr>)
Type(<term>) ← Type(<integer expr>)

| <integer expr>2 <weak op> <term>
Symbol-table(<integer expr>2) ← Symbol-table(<integer expr>)
Symbol-table(<term>) ← Symbol-table(<integer expr>)
Type(<integer expr>2) ← Type(<integer expr>)
Type(<term>) ← Type(<integer expr>)

 Figure 3.12: Context Checking Attribute Grammar for Wren (Part 3)

87

<term> ::=

 <element>

Symbol-table(<element>) ← Symbol-table(<term>)

Type(<element>) ← Type(<term>)

| <term>2 <strong op> <element>

Symbol-table(<term>2) ← Symbol-table(<term>)

Symbol-table(<element>) ← Symbol-table(<term>)

Type(<term>2) ← Type(<term>)

Type(<element>) ← Type(<term>)

 <weak op> ::= + | –

 <strong op> ::= * | /

 <element> ::=
 <numeral>
| <variable>

condition:
case lookup-type(Name(<variable>), Symbol-table(<element>)) is

integer : error(“”)
undefined : error(“Variable not declared”)
boolean, program : if Type(<element>)=undefined

then error(“”)
else error(“Integer variable expected”)

| (<expr>)
Symbol-table(<expr>) ← Symbol-table(<element>)
Type(<expr>) ← Type(<element>)

| - <element>2
Symbol-table(<element>2) ← Symbol-table(<element>)
Type(<element>2) ← Type(<element>)

<boolean expr> ::=
 <boolean term>

Symbol-table(<boolean term>) ← Symbol-table(<boolean expr>)
Type(<boolean term>) ← Type(<boolean expr>)

| <boolean expr>2 or <boolean term>
Symbol-table(<boolean expr>2) ←Symbol-table(<boolean expr>)
Symbol-table(<boolean term>) ← Symbol-table(<boolean expr>)
Type(<boolean expr>2) ← Type(<boolean expr>)
Type(<boolean term>) ← Type(<boolean expr>)

<boolean term> ::=
 <boolean element>

Symbol-table(<boolean element>) ← Symbol-table(<boolean term>)
Type(<boolean element>) ← Type(<boolean term>)

Figure 3.12: Context Checking Attribute Grammar for Wren (Part 4)

3.2 AN ATTRIBUTE GRAMMAR FOR WREN

88 CHAPTER 3 ATTRIBUTE GRAMMARS

| <boolean term>2 and <boolean element>

Symbol-table(<boolean term>2) ← Symbol-table(<boolean term>)

Symbol-table(<boolean element>) ← Symbol-table(<boolean term>)

Type(<boolean term>2) ← Type(<boolean term>)

Type(<boolean element>) ← Type(<boolean term>)

 <boolean element> ::=
 true
| false
| <variable>

condition:
case lookup-type(Name(<variable>),Symbol-table(<boolean element>)) is

boolean : error(“”)
undefined : error(“Variable not declared”)
integer, program : if Type(<boolean element>) = undefined

then error(“”)
else error(“Boolean variable expected”)

| <comparison>
Symbol-table(<comparison>) ← Symbol-table(<boolean element>)

| not (<boolean expr>)
Symbol-table(<boolean expr>) ← Symbol-table(<boolean element>)
Type(<boolean expr>) ← Type(<boolean element>)

| (<boolean expr>)
Symbol-table(<boolean expr>) ← Symbol-table(<boolean element>)
Type(<boolean expr>) ← Type(<boolean element>)

 <comparison> ::= <integer expr>1 <relation> <integer expr>2
Symbol-table(<integer expr>1) ← Symbol-table(<comparison>)
Symbol-table(<integer expr>2) ← Symbol-table(<comparison>)
Type(<integer expr>1) ← integer
Type(<integer expr>2) ← integer

 <relation> ::= = | < > | < | < = | > | > =

 <variable> ::= <identifier>
Name(<variable>) ← Name(<identifier>)

<identifier> ::=
 <letter>

Name(<identifier>) ← Name(<letter>)
| <identifier>2 <letter>

Name(<identifier>) ← str-concat(Name(<identifier>2),Name(<letter>))
| <identifier>2 <digit>

Name(<identifier>) ← str-concat(Name(<identifier>2),Name(<digit>))
 <letter> ::=

 a
Name(<letter>) ← ‘a’

: : :
| z

Name(<letter>) ← ‘z’

Figure 3.12: Context Checking Attribute Grammar for Wren (Part 5)

89

 <numeral> ::= <digit> | <numeral> <digit>
 <digit> ::=

 0
Name(<digit>) ← ‘0’

: : :
| 9

Name(<digit>) ← ‘9’

Auxiliary Functions
 build-symbol-table(var-list, type) =

if empty(var-list)
then empty-table
else add-item(head(var-list),type,build-symbol-table(tail(var-list), type))

 add-item(name, type, table) = cons([name,type], table)

 table-union(table1, table2) =
if empty(table1)

then table2
else if lookup-type(first-name(table1),table2) = undefined

then cons(head(table1), table-union(tail(table1), table2))
else table-union(tail(table1), table2))

 table-intersection(table1, table2) =
if empty(table1)

then empty
else if lookup-type(first-name(table1),table2) ≠ undefined

then nonempty else table-intersection(tail(table1),table2)

 lookup-type(name, table) =
if empty(table)

then undefined
else if head(table) = [name, type]

then type else lookup-type(name,tail(table))

 head([first | rest]) = head

 tail([first | rest]) = rest

 cons(first, rest) = [first | rest]

 first-name([[name,type] | restTable]) = name

 empty-table = empty-list = []

 empty([]) = true

 empty([first | rest]) = false

 str-concat(char-sequence1, char-sequence2) returns the
concatenation of char-sequence1 followed by char-sequence2

 error(string) prints nonempty strings

Figure 3.12: Context Checking Attribute Grammar for Wren (Part 6)

3.2 AN ATTRIBUTE GRAMMAR FOR WREN

90 CHAPTER 3 ATTRIBUTE GRAMMARS

Exercises

1 Draw the parse tree decorated with attributes for the following Wren
program:

program p is
var b: boolean;
var m, n: integer;

begin
read m; read n;
b := m < n;
if b then write m

else write n
end if

end

2. Suppose the declarations in the above program are replaced by

var b, m, n: integer;

Show the changes in the parse tree from exercise 1.

3. Modify the attribute grammar for Wren to allow for checking equality or
inequality of Boolean expressions in comparisons, but none of the other
relations.

4. Add the declaration types character and string to Wren. Allow the input
of an integer and character (use readch), but not Boolean and string.
Allow output of integer, character, and string (use writech and writestr),
but not Boolean. Restrict a string literal to a sequence of lowercase al-
phabetic characters, digit characters, and the space character. Modify
the attribute grammar to enforce the related context conditions. Over-
loading read and write makes this problem more difficult.

5. After completing exercise 4, add the following string expressions, char-
acter expressions, and additions to integer expressions.

String Expressions:
concat(<str expr>,<str expr>)
substr(<str expr>,<int expr>,<int expr>)

where the first integer expression is the start
position and the second expression is the length

toStr(<char expr>)
“example of a string literal”

91

Character Expressions:
toChar(<str expr>,<int expr>)

where the integer expression is the position of the
character in the string

char(<int expr>)
'X' character literal

Additions to Integer Expressions:
ord(<char expr>)
length(<str expr>)

After carefully specifying the BNF for these operations, add the appro-
priate context checking using attributes.

6. Suppose that we extend Wren to allow for the following alternative in
declarations:

<declaration> ::= procedure <identifier> is <block>

This alternative results in a new value for Type, which we name proce-
dure. We also add a call command:

<command> ::= call <identifier>

These changes allow nested blocks with local declarations. Modify the
attribute grammar for Wren to accommodate these changes. Follow Pas-
cal scope rules by requiring that an identifier must be declared before it
is used. Furthermore, remove the first context condition concerning the
program identifier and relax the second and third context conditions:

2. All identifiers that appear in a block must be declared in that block or
in an enclosing block.

3. No identifier may be declared more than once at the top level of
a block.

Hint: One attribute should synthesize declarations and a different at-
tribute should inherit declarations since the declaration information has
to be inherited into the declaration section itself because of the occur-
rence of a <block> in a procedure declaration.

7. Recall the language of expressions formed as lists of integers in exercise
9 in section 1.2. Augment the BNF grammar for the language with at-
tributes that enforce the conformity of lists given to the arithmetic op-
erations +, –, and * .

3.2 AN ATTRIBUTE GRAMMAR FOR WREN

92 CHAPTER 3 ATTRIBUTE GRAMMARS

3.3 LABORATORY: CONTEXT CHECKING WREN

We have already seen how logic grammars in Prolog can be used to construct
an abstract syntax tree for a Wren program. Using several utility predicates,
we constructed a scanner that converts a text file containing a program into
a sequence of tokens. We utilize this same “front-end” software for the cur-
rent laboratory activity; however, we extend the parser using attributes to
perform context-sensitive declaration and type checking.

Before proceeding directly into the development of the attribute grammar in
Prolog, we need to make some important design decisions about the expected
output from our context checker. The scanning and parsing front-end pro-
gram from Chapter 2 assumes that the input program obeys the BNF for
Wren. With attribute grammars, we have additional context-sensitive condi-
tions at selected nodes that must be satisfied for the parse to succeed. The
first question we need to address is what should be the output of the parser
for a program that obeys the BNF but fails one of the context condition checks.
We can elect to have the entire parse fail, with Prolog simply reporting “no”,
but this response seems less than satisfactory. Another alternative, the one
we develop, is to allow the parse to succeed, provided the BNF is satisfied,
and to insert error messages in cases where context-sensitive checking fails.

The second design decision we have to make is the form of the output of the
parser in cases where the parse succeeds but may contain context checking
errors. In Chapter 2 Wren programs were transformed into a compact form
that contained only the relevant syntactic information—namely, abstract syn-
tax trees. For example, the assignment statement in Wren

x := 3 + 2 * y

was tokenized by the scanner to:

 [ide(x),assign,num(3),plus,num(2),times,ide(y)]

and then parsed to produce the abstract syntax tree:

assign(x,exp(plus,num(3),exp(times,num(2),ide(y)))).

This latter form will be useful when we develop an interpreter for Wren in
later chapters. Since the current project deals with the detection of context
condition violations, we elect to retain the stream of tokens output from the
scanner with the possible error messages inserted to indicate any context
condition violations. This approach is best illustrated by an example. The
program below does not perform any useful function; it simply demonstrates
a variety of commands and types.

93

?- go.

>>> Checking Context Constraints in Wren <<<

Enter name of source file: prog1.wren

 program prog1 is
 var x,y: integer;
 var b,c: boolean;
 begin
 read x; read y; write x+y;
 b := x < y;
 if x = y
 then c := x <= y
 else c := x > y end if;
 while c do x := x + 1 end while;
 b := b and (b or c)
 end

Scan successful
[program,ide(prog1),is,
 var,ide(x),comma,ide(y),colon,integer,semicolon,
 var,ide(b),comma,ide(c),colon,boolean,semicolon,
 begin,
 read,ide(x),semicolon,read,ide(y),semicolon,
 write,ide(x),plus,ide(y),semicolon,
 ide(b),assign,ide(x),less,ide(y),semicolon,
 if,ide(x),equal,ide(y),

 then,ide(c),assign,ide(x),lteq,ide(y),
 else,ide(c),assign,ide(x),grtr,ide(y),
 end,if,semicolon,
 while,ide(c),do,
 ide(x),assign,ide(x),plus,num(1),
 end,while,semicolon,
 ide(b),assign,ide(b),and,lparen,ide(b),or,ide(c),rparen,
 end,
eop]

Parse successful
[program,ide(prog1),is,
 var,ide(x),comma,ide(y),colon,integer,semicolon,
 var,ide(b),comma,ide(c),colon,boolean,semicolon,
 begin,
 read,ide(x),semicolon,read,ide(y),semicolon,
 write,ide(x),plus,ide(y),semicolon,
 ide(b),assign,ide(x),less,ide(y),semicolon,
 if,ide(x),equal,ide(y),

3.3 LABORATORY: CONTEXT CHECKING WREN

94 CHAPTER 3 ATTRIBUTE GRAMMARS

 then,ide(c),assign,ide(x),lteq,ide(y),
 else,ide(c),assign,ide(x),grtr,ide(y),
 end,if,semicolon,
 while,ide(c),do,
 ide(x),assign,ide(x),plus,num(1),
 end,while,semicolon,
 ide(b),assign,ide(b),and,lparen,ide(b),or,ide(c),rparen,
 end]

For readability, we have inserted line feeds and spacing for indentation in the
listing shown above. The test program obeys the BNF and all context-sensi-
tive conditions, so the output of the parser is the same as the output from
the scanner, except for the removal of the final eop token. It may seem that
we have done a lot of work to accomplish nothing, but introducing some
context-sensitive errors will illustrate what the parser is doing for us.

?- go.

>>> Checking Context Constraints in Wren <<<

Enter name of source file: prog2.wren
 program prog2 is
 var x,y,b: integer;
 var b,c: boolean;
 begin
 read x; read c; write x+a;
 b := x < c;
 if x = y
 then c := x <= y
 else y := x > y
 end if;
 while c > b do x := x + 1 end while;
 b := b and (y or z)
 end
Scan successful
[program,ide(prog2),is,
 var,ide(x),comma,ide(y),comma,ide(b),colon,integer,semicolon,
 var,ide(b),comma,ide(c),colon,boolean,semicolon,
 begin,
 read,ide(x),semicolon,read,ide(c),semicolon,
 write,ide(x),plus,ide(a),semicolon,
 ide(b),assign,ide(x),less,ide(c),semicolon,
 if,ide(x),equal,ide(y),
 then,ide(c),assign,ide(x),lteq,ide(y),
 else,ide(y),assign,ide(x),grtr,ide(y),
 end,if,semicolon,
 while,ide(c),grtr,ide(b),do,

95

 ide(x),assign,ide(x),plus,num(1),
 end,while,semicolon,
 ide(b),assign,ide(b),and,lparen,ide(y),or,ide(z),rparen,
 end, eop]

Parse successful
[program,ide(prog2),is,
 var,ide(x),comma,ide(y),comma,ide(b),colon,integer,semicolon,
 ERROR: Duplicate declaration of an identifier,
 var,ide(b),comma,ide(c),colon,boolean,semicolon,
 begin,
 read,ide(x),semicolon,
 read,ide(c),
 ERROR: Integer variable expected for read,semicolon,
 write,ide(x),plus,ide(a),
 ERROR: Variable not declared,semicolon,
 ide(b),assign,ide(x),less,ide(c),
 ERROR: Integer variable expected,
 ERROR: Integer expression expected,
 semicolon,
 if,ide(x),equal,ide(y),
 then,ide(c),assign,ide(x),lteq,ide(y),
 else,ide(y),assign,ide(x),grtr,ide(y),
 ERROR: Integer expression expected,
 end,if,semicolon,
 while,ide(c),
 ERROR: Integer variable expected,grtr,ide(b),do,
 ide(x),assign,ide(x),plus,num(1),end,while,semicolon,
 ide(b),assign,ide(b),
 ERROR: Boolean variable expected,and,lparen,ide(y),
 ERROR: Boolean variable expected,or,ide(z),
 ERROR: Variable not declared,rparen,
 ERROR: Integer expression expected,
 end]

Again, we have formatted the output for readability. It should be noted that
the error messages appear near the locations where the errors occur. As
mentioned previously, for programs that obey the BNF, we allow the parse to
succeed, although there may or may not be context-sensitive errors. The
following strategy is implemented: An error variable is placed at all locations
when a context-sensitive check is made. This variable is bound either to the
atom noError or to an appropriate error message entered as an atom (a string
inside apostrophes). During the final stage of processing, we flatten the parse
tree into a linear list and strip away all noError values using a predicate called
flattenplus, so only the real error messages remain.

3.3 LABORATORY: CONTEXT CHECKING WREN

96 CHAPTER 3 ATTRIBUTE GRAMMARS

Declarations

Now that we have formulated a goal for this laboratory exercise, we can pro-
ceed to develop the parser using stepwise refinement. Enough code is pre-
sented to introduce the idea of implementing the attribute grammar in Prolog.
Those portions of code that are not detailed here are left as exercises.

program(TokenList) -->
[program], [ide(I)], [is],
{ addItem(I,program,[],InitialSymbolTable) },
block(Block, InitialSymbolTable),
{ flattenplus([program, ide(I), is, Block], TokenList) }.

After getting the program identifier name, we add it with the pseudo-type
program to the InitialSymbolTable, which is passed to the predicate block. This
predicate returns a structure (Block) that is used to build the list

[program, ide(I), is, Block],

which is flattened into a modified token list and given as the result of the
context checker.

The utility functions in our attribute grammar use functional notation that
can only be simulated in Prolog. We adopt the strategy that the return value
is the last term in the parameter list, so addItem in Prolog becomes

addItem(Name, Type, Table, [[Name,Type] | Table]).

The code for block is the first place we do context checking to ensure that the
program name is not declared elsewhere in the program.

block([ErrorMsg, Decs, begin, Cmds, end],InitialSymbolTable) -->
decs(Decs,DecsSymbolTable),
{ tableIntersection(InitialSymbolTable, DecsSymbolTable,Result),
 tableUnion(InitialSymbolTable, DecsSymbolTable, SymbolTable),
 (Result=nonEmpty,

ErrorMsg='ERROR: Program name used as a variable'
 ; Result=empty, ErrorMsg=noError) },
[begin], cmds(Cmds,SymbolTable), [end].

A block parses simply as

decs(Decs,DecsSymbolTable), [begin], cmds(Cmds,SymbolTable), [end],

but we have added some Prolog code to perform a table intersection, which
returns one of two results: empty or nonEmpty. We bind the variable ErrorMsg
to the atom noError if the intersection is empty or to an appropriate error
message (another atom) if the program name appears in the declarations. We
also form the union of the InitialSymbolTable and the DecsSymbolTable produc-
ing a value to be passed to the command sequence as SymbolTable.

97

The utility predicate tableIntersection follows directly from the definition of the
utility function in the attribute grammar. Notice the use of lookupType that
returns the value undefined if the identifier is not found in the table, or the
associated type if the identifier is found. The predicate tableUnion also follows
directly from the definition in the attribute grammar; its definition is left as
an exercise.

tableIntersection([], Table2, empty).

tableIntersection(Table1, [], empty).

tableIntersection([[Name, Type1] | RestTable], Table2, nonEmpty) :-
lookupType(Name, Table2,Type2), (Type2=integer; Type2=boolean).

tableIntersection([[Name, Type] | RestTable], Table2, Result) :-
tableIntersection(RestTable, Table2, Result).

lookupType(Name, [], undefined).

lookupType(Name, [[Name,Type] | RestTable], Type).

lookupType(Name, [Name1 | RestTable], Type) :-
lookupType(Name, RestTable, Type).

Observe that many of the variables in the heads of these clauses do not
appear in the bodies of the clauses. Anonymous variables such as the follow-
ing can be used in this situation:

tableIntersection([], _, empty).

tableIntersection(_, [], empty).

tableIntersection([[Name, _] | _], Table2, nonEmpty) :-
lookupType(Name, Table2,Type2), (Type2=integer; Type2=boolean).

tableIntersection([[_ , _] | RestTable], Table2, Result) :-
tableIntersection(RestTable, Table2, Result).

We prefer using variable names instead of anonymous variables because
suggestive variable names make the clause definitions more intelligible. Sub-
stituting variable names in place of anonymous variables may result in warn-
ing messages from some Prolog systems, but the program still functions cor-
rectly.

Two types of multiple declarations may occur in Wren: duplicates within the
same declaration, as in

var x, y, z, x : boolean ;

and duplicates between two different declarations, as in

var x, y, z: boolean ;

var u, v, w, x: integer ;

3.3 LABORATORY: CONTEXT CHECKING WREN

98 CHAPTER 3 ATTRIBUTE GRAMMARS

The context checker needs to recognize both errors. A variable list is a single
variable followed by a list of variables, which may or may not be empty. In
either case, we check if the current head of the variable list is a member of
the list of remaining variables. If so, we have a duplicate variable error; oth-
erwise, we pass forward the error message generated by the remainder of the
list. Note that commas are inserted into the variable list that is returned
since we want to construct the original token sequence.

varlist(Vars,ErrorMsg) --> [ide(Var)], restvars(ide(Var),Vars,ErrorMsg).

restvars(ide(Var),[ide(Var), comma |Vars],ErrorMsg) -->
[comma], varlist(Vars,ErrorMsg1),
{ member(ide(Var),Vars),
 ErrorMsg='ERROR: Duplicate variable in listing'
 ; ErrorMsg = ErrorMsg1 }.

restvars(ide(Var),[ide(Var)],ErrorMsg) --> [], { ErrorMsg=noError }.

Once we have determined there are no duplicate variables within a single
declaration, we check between declarations. The strategy is much the same:
A sequence of declarations is a single declaration followed by any remaining
declarations, which may or may not be empty. In each case, we check if the
table intersection of the symbol table associated with the current declaration
is disjoint from the symbol table of the remaining declarations. If it is not, an
error message is generated. The code shown below is incomplete, as the table
intersection test and the ERROR message are missing. Completing this code
is left as an exercise.

decs(Decs,SymbolTable) --> dec(Dec,SymbolTable1),
restdecs(Dec,SymbolTable1,Decs,SymbolTable).

decs([],[]) --> [].

restdecs(Dec,SymbolTable1,[Dec,ErrorMsg|Decs],SymbolTable) -->
decs(Decs,SymbolTable2),
{ tableUnion(SymbolTable1,SymbolTable2,SymbolTable),
 (ErrorMsg=noError) }.

restdecs(Dec,SymbolTable,[Dec],SymbolTable) --> [].

A single declaration results in a symbol table that is constructed by the util-
ity predicate buildSymbolTable, which takes a list of variables and a single
type and inserts a [Var, Type] pair into an initially empty symbol table for each
variable name in the list. Observe that we remove commas from the variable
list before passing it to buildSymbolTable. A predicate delete needs to be de-
fined to perform this task.

99

dec([var, Vars, ErrorMsg, colon, Type, semicolon],SymbolTable) -->
[var], varlist(Vars, ErrorMsg), [colon], type(Type), [semicolon],
{ delete(comma,Vars,NewVars),
 buildSymbolTable(NewVars, Type, SymbolTable) }.

type(integer) --> [integer].

type(boolean) --> [boolean].

buildSymbolTable([], Type, []).

buildSymbolTable([ide(Var)|RestVars], Type, SymbolTable):-
buildSymbolTable(RestVars,Type,SymbolTable1),
addItem(Var, Type, SymbolTable1, SymbolTable).

Commands

We now turn our attention to the context checking within command sequences.
A command sequence is a single command followed by the remaining com-
mands, which may or may not be empty. We pass the symbol table attribute
down the derivation tree to both the first command and to the remaining
commands.

cmds(Cmds,SymbolTable) -->
command(Cmd,SymbolTable), restcmds(Cmd,Cmds,SymbolTable).

restcmds(Cmd,[Cmd, semicolon|Cmds],SymbolTable) -->
[semicolon], cmds(Cmds,SymbolTable).

restcmds(Cmd,[Cmd],SymbolTable) --> [].

The skip command is very simple; it needs no type checking. The read com-
mand requires the associated variable to be of type integer. Two possible
errors may occur in a read command: The variable has not been declared or
the variable is of the wrong type.

command(skip,SymbolTable) --> [skip].

command([read, ide(I), ErrorMsg], SymbolTable) -->
[read], [ide(I)],
{ lookupType(I,SymbolTable,Type),

(Type = integer, ErrorMsg=noError
; Type = undefined, ErrorMsg='ERROR: Variable not declared'
; (Type = boolean; Type = program),

ErrorMsg='ERROR: Integer variable expected') }.

The write command requests an integer expression by passing the value
integer as an inherited attribute to the expression. This task is left as an
exercise.

3.3 LABORATORY: CONTEXT CHECKING WREN

100 CHAPTER 3 ATTRIBUTE GRAMMARS

A correct assignment command has one of two forms: An integer variable is
assigned the result of an integer expression or a Boolean variable is assigned
the result of a Boolean expression. Two potential errors can occur: The target
variable is not declared or the target variable and the expression are not the
same type. The decision to have a successful parse whenever the BNF is
satisfied complicates the code for the assignment command. No matter which
errors occur, we must consume the symbols in the expression on the right-
hand side. View the definition below as a case command controlled by the
type of the target variable. Each case selection includes a call to parse the
expression.

command([ide(V), assign, E, ErrorMsg], SymbolTable) -->
[ide(V)], [assign],
{ lookupType(V,SymbolTable,VarType) },
 ({ VarType = integer },

(expr(E,SymbolTable,integer), { ErrorMsg=noError }
 ; expr(E,SymbolTable,boolean),

{ ErrorMsg='ERROR: Integer expression expected' }) ;
 { VarType = boolean },

(expr(E,SymbolTable,boolean), { ErrorMsg=noError }
; expr(E,SymbolTable,integer),

{ ErrorMsg='ERROR: Boolean expression expected' }) ;
 { VarType = undefined, ErrorMsg='ERROR: Target of assign not declared' ;
 VarType = program,

ErrorMsg='ERROR: Program name used as a variable' },
 expr(E,SymbolTable,undefined)).

The if and while commands do no type checking directly; rather they pass
the SymbolTable and Type attributes to their constituent parts. The if-then-
else command is given; the while command is left as an exercise.

command([if,Test,then,Then,Else],SymbolTable) -->
[if], boolexpr(Test,SymbolTable,boolean), [then],

cmds(Then,SymbolTable), restif(Else,SymbolTable).

restif([else,Else,end,if],SymbolTable) -->
[else], cmds(Else,SymbolTable), [end], [if].

restif([end,if],SymbolTable) --> [end], [if].

101

Expressions

The inherited attribute passed from <expr> to <int expr> and <bool expr>
may have the value undefined. We cannot let such a value cause failure in the
parsing, so four clauses are needed in the logic grammar.

expr(E,SymbolTable,integer) --> intexpr(E,SymbolTable,integer).

expr(E,SymbolTable,boolean) --> boolexpr(E,SymbolTable,boolean).

expr(E,SymbolTable,undefined) --> intexpr(E,SymbolTable,undefined).

expr(E,SymbolTable,undefined) --> boolexpr(E,SymbolTable,undefined).

In the attribute grammar, we made expression and term left recursive since
this matches the left associativity of the additive and multiplicative opera-
tions. Since we cannot use left recursion in logic grammars, we need to adopt
a different strategy for producing the same parse tree. When we studied BNF,
we learned that

<int expr> ::= <int expr> <weak op> <term>

can also be expressed as

<int expr> ::= <term> { <weak op> <term> }

where the braces mean zero or more occurrences. We use this technique to
develop our logic grammar (see Chapter 2 for more on this issue).

intexpr(E,SymbolTable,Type) -->
term(T,SymbolTable,Type), restintexpr(T,E,SymbolTable,Type).

restintexpr(T, E, SymbolTable,Type) -->
weakop(Op), term(T1, SymbolTable,Type),
restintexpr([T,Op,T1], E, SymbolTable,Type).

restintexpr(E,E,SymbolTable,Type) --> [].

weakop(plus) --> [plus].

weakop(minus) --> [minus].

A term is an element, possibly followed by more elements separated by mul-
tiplication or division (strong operators). The code for term, restterm, and
strongop is left as an exercise.

An element may be a constant number, in which case no type checking is
required. If the element is a variable, it is looked up in the symbol table. Two
errors are possible: The variable is not declared or it is the wrong type. No
error occurs if it is an integer and we are expecting an integer or if the vari-
able is defined, but we are not expecting any type in particular (the inherited
attribute Type has the value undefined because the target variable in an as-
signment command was undeclared).

3.3 LABORATORY: CONTEXT CHECKING WREN

102 CHAPTER 3 ATTRIBUTE GRAMMARS

element([num(N)],SymbolTable,Type) --> [num(N)].

element([ide(I),ErrorMsg],SymbolTable,Type) -->
[ide(I)],
{ lookupType(I,SymbolTable,VarType),

(VarType = integer, Type = integer, ErrorMsg=noError
; VarType = undefined, ErrorMsg='ERROR: Variable not declared'
; Type = undefined, ErrorMsg=noError
; (VarType = boolean; VarType = program),

ErrorMsg='ERROR: Integer variable expected') }.

element([lparen, E, rparen], SymbolTable,Type) -->
[lparen], intexpr(E,SymbolTable,Type), [rparen].

element([minus|E],SymbolTable,Type) -->
[minus], element(E, SymbolTable,Type).

We complete the discussion of the Prolog implementation of the attribute
grammar for context checking by focusing on the code for Boolean expres-
sions and for comparisons. Boolean expression, which handles the or opera-
tor, and Boolean term, which handles the and operator, are very similar to
integer expression and term. A Boolean element may be a constant, true or
false , a variable, whose declaration and type must be checked, a compari-
son, a parenthesized Boolean expression, or the unary Boolean operator not.
Except for comparison, which is given below, this code is left as an exercise.

comparison([E1,R,E2],SymbolTable) -->
intexpr(E1,SymbolTable,integer), rel(R), intexpr(E2,SymbolTable,integer).

rel(equal) --> [equal]. rel(neq) --> [neq]. rel(less) --> [less].

rel(grtr) --> [grtr]. rel(gteq) --> [gteq]. rel(lteq) --> [lteq].

This completes the discussion and partial implementation of our context
checking attribute grammar. When the omitted code has been developed, the
program will produce the output given at the start of the section.

Exercises

1. Complete the code for the following predicates that were omitted from
the text:

• the tableUnion utility function

• the predicate restdecs by adding the tableIntersection test

• the write command

103

• the while command

• term, restterm, and strongop

• boolexpr, boolterm, and boolelement

• a flatten utility predicate flattenplus that also removes noError

2. Modify the Prolog implementation of our Wren attribute grammar to al-
low checking equality or inequality of Boolean expressions in compari-
sons, but none of the other relations.

3. Following exercise 4 in Section 3.2, add the declaration types character
and string to Wren. Implement the changes to the attribute grammar in
Prolog.

4. Following exercise 5 in Section 3.2, add the commands for character
and string manipulations. Use attributes to add any appropriate con-
text checking.

5. Following exercise 6 in Section 3.2, add the declaration and calling of
parameterless procedures.

3.4 FURTHER READING

The seminal paper in attribute grammars has been written by Donald Knuth
[Knuth68]. Other papers have explored the mathematical semantics of at-
tribute grammars [Mayoh81] or developed new concepts, such as ordered
attribute grammars [Kastens80]. David Watt presents an extended attribute
grammar for Pascal [Watt79].

The primary application of attribute grammars is in compiler construction
[Bochman78]. Attribute grammars can be used both for type checking, as we
have seen in this chapter, and code generation, as we will see in Chapter 7.
Many automated tools have been written to aid in compiler construction.
Kennedy and Warren discuss the generation of attribute grammar evaluators
[Kennedy76]. Those familiar with Unix software may have used LEX, an au-
tomated lexical analyzer [Lesk75], and YACC, “Yet Another Compiler-Com-
piler” [Johnson78]. Automated tools can help generate production level com-
pilers [Farrow84]. Readers wanting to explore the application of attribute
grammars in compiler construction can consult any number of references,
including [Aho86], [Fischer91], [Parsons92], and [Pittman92].

Recent research in attribute grammars includes work in attribute propaga-
tion by message passing [Demers85] and using attribute grammars to build
language-based editors [Johnson85]. The Synthesizer-Generator [Reps89] is

3.4 FURTHER READING

104 CHAPTER 3 ATTRIBUTE GRAMMARS

a modern software tool to build context-sensitive editors. This sophisticated,
windows-based product is built on top of LEX and YACC (or equivalent tools).
Editors are available for languages such as Pascal and C. We have used the
Synthesizer-Generator as a teaching tool in a compiler class by asking stu-
dents to build a context-sensitive editor for Wren. Uses of the Synthesizer-
Generator include many diverse context-sensitive situations, such as calcu-
lations in a spreadsheet or balancing chemical equations.

Attribute grammars can also be used for type inferencing. It is possible to
have a strongly typed language without requiring explicit declarations. ML is
one such language. The first time an identifier appears in a program, its type
is inferred from the usage. The type can be synthesized to the root of the
parse tree. Other usage of the same identifier must be type consistent. Reps
and Teitelbaum [Reps89] demonstrate type inferencing by using the Synthe-
sizer-Generator to build a language editor that automatically inserts type
declarations in a program based on the usage of identifiers.

