
341

Chapter 10
DOMAIN THEORY AND
FIXED-POINT SEMANTICS

Although we did not stress the point in Chapter 9, the notation of
denotational semantics is built upon that of the lambda calculus. The
purpose of denotational semantics is to provide mathematical descrip-

tions of programming languages independent of their operational behavior.
The extended lambda calculus serves as a mathematical formalism, a
metalanguage, for denotational definitions. As with all mathematical formal-
isms, we need to know that the lambda calculus has a model to ensure that
the definitions are not meaningless.

Furthermore, denotational definitions, as well as programming languages in
general, rely heavily on recursion, a mechanism whose description we de-
ferred in the discussion of the lambda calculus in Chapter 5. Normally a user
of a programming language does not care about the logical foundations of
declarations, but we maintain that serious questions can be raised concern-
ing the validity of recursion. In this chapter we justify recursive definitions to
guarantee that they actually define meaningful objects.

10.1  CONCEPTS AND EXAMPLES

Programmers use recursion to define functions and procedures as subpro-
grams that call themselves and also to define recursive data structures. Most
imperative programming languages require the use of pointers to declare
recursive data types such as (linked) lists and trees. In contrast, many func-
tional programming languages allow the direct declaration of recursive types.
Rather than investigating recursive types in an actual programming language,
we study recursive data declarations in a wider context. In this introductory
section we consider the problems inherent in recursively defined functions
and data and the related issue of nontermination.



342 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

Recursive Definitions of Functions

When we define a symbol in a denotational definition or in a program, we
expect that the symbol can be replaced by its meaning wherever it occurs. In
particular, we expect that the symbol is defined in terms of other (preferably
simpler) concepts so that any expression involving the symbol can be ex-
pressed by substituting its definition. With this concept in mind, consider
two simple recursive definitions:

f(n) = if n=0 then 1 else f(n–1)

g(n) = if n=0 then 1 else g(n+1).

The purpose of these definitions is to give meaning to the symbols “f” and “g”.
Both definitions can be expressed in the applied lambda calculus as

define f = λn . (if (zerop n) 1 (f (sub n 1)))

define g = λn . (if (zerop n) 1 (g (succ n))).

Either way, these definitions fail the condition that the defined symbol can
be replaced by its meaning, since that meaning also contains the symbol.
The definitions are circular. The best we can say is that recursive “defini-
tions” are equations in the newly defined symbol. The meaning of the symbol
will be a solution to the equation, if a solution exists. If the equation has
more than one solution, we need some reason for choosing one of those solu-
tions as the meaning of the new symbol.

An analogous situation can be seen with a mathematical equation that re-
sembles the recursive definitions:

x = x2 – 4x + 6.

This “definition” of x has two solutions, x=2 and x=3. Other similar defini-
tions of x, such as x = x+5, have no solutions at all, while x = x2/x has
infinitely many solutions. We need to describe conditions on a recursive defi-
nition of a function, really a recursion equation, to guarantee that at least
one solution exists and a reason for choosing one particular solution as the
meaning of the function.

For the examples considered earlier, we will describe in this chapter a meth-
odology that enables us to show that the equation in f has only one solution
(λn . 1), but the equation in g has many solutions, including

(λn . 1) and (λn . if n=0 then 1 else undefined).

One purpose of this chapter is to develop a “fixed-point” semantics that gives
a consistent meaning to recursive definitions of functions.



34310.1  CONCEPTS AND EXAMPLES

Recursive Definitions of Sets (Types)

Recursively defined sets occur in both programming languages and specifi-
cations of languages. Consider the following examples:

1. The BNF specification of Wren uses direct recursion in specifying the syn-
tactic category of identifiers,

<identifier> ::= <letter> | <identifier> <letter> | <identifier> <digit>,

and indirect recursion in many places, such as,

<command> ::= if <boolean expr> then  <command seq> end if

<command seq> ::= <command> | <command> ; <command seq>.

2. The domain of lists of natural numbers N may be provided in a functional
programming language according to the definition:

List = {nil } ∪ (N x List) where nil represents the empty list.

Scheme lists have essentially this form using “cons” as the constructor
operation forming ordered pairs in N x List. Standard ML allows data type
declarations following this pattern.

3. A model for the (pure) lambda calculus requires a domain of values that
are manipulated by the rules of the system. These values incorporate
variables as primitive objects and functions that may act on any values in
the domain, including any of the functions. If V denotes the set of vari-
ables and D→D represents the set of functions from set D to D, the do-
main of values for the lambda calculus can be “defined” by D = V ∪ (D→D).

The third example presents major problems if we analyze the cardinality of
the sets involved. We give the critical results without going into the details of
measuring the cardinality of sets. It suffices to mention that the sizes of sets
are compared by putting their elements into a one-to-one correspondence.
We denote the cardinality of a set A by |A| with the following properties:

1. |A| ≤ |B| if there is a one-to-one function A→B.

2. |A| = |B| if there is a one-to-one and onto function A→B (which can be
shown to be equivalent to |A| ≤ |B| and |B| ≤ |A|).

3. |A| < |B| if |A| ≤ |B| but not |A| ≥ |B|.

Two results about cardinalities of sets establish the problem with the recur-
sive “definition” of D:

1. In the first use of “diagonalization” as a proof method, Georg Cantor
proved that for any set A, |A| < |P(A)| where P(A) is the power set
of A—that is, the set of all subsets of A.



344 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

2. If |A| > 1, then |P(A)| ≤ |A→A|.

Since D→D is a subset of D by the definition, |D→D| ≤ |D|. Therefore,
|D→D| ≤ |D| < |P(D)| ≤ |D→D|,

which is clearly a contradiction.

One way to provide a solution to the recursion equation D = V ∪ (D→D) is to
restrict the membership in the set of functions D→D by putting a “structure”
on the sets under consideration and by requiring that functions are well-
behaved relative to the structure. Although the solution to this recursion
equation is beyond the scope of this book (see the further readings at the end
of this chapter), we study this structure carefully for the intuition that it
provides about recursively defined functions and sets.

Modeling Nontermination

Any programming language that provides (indefinite) iteration or recursively
defined functions unfortunately also allows a programmer to write nontermi-
nating programs. Specifying the semantics of such a language requires a
mechanism for representing nontermination. At this point we preview do-
main theory by considering how it handles nontermination. Domain theory
is based on a relation of definedness. We say x ⊆ y if x is less defined than or
equal to y. This means that the information content of x is contained in the
information content of y. Each domain (structured set) contains a least ele-
ment ⊥, called bottom, representing the absence of information. Bottom can
be viewed as the result of a computation that fails to terminate normally. By
adding a bottom element to every domain, values that produce no outcome
under a function can be represented by taking ⊥ as the result. This simple
idea enables us to avoid partial functions in describing the semantics of a
programming language, since values for which a function is undefined map
to the bottom element in the codomain.

Dana Scott developed domain theory to provide a model for the lambda cal-
culus and thereby provide a consistent foundation for denotational seman-
tics. Without such a foundation, we have no reason to believe that denotational
definitions really have mathematical meaning. At the same time, domain
theory gives us a valid interpretation for recursively defined functions and
types.

In this chapter we first describe the structure supplied to sets by domain
theory, and then we investigate the semantics of recursively defined func-
tions via fixed-point theory. Finally, we use fixed points to give meaning to
recursively defined functions in the lambda calculus, implementing them by
extending the lambda calculus evaluator described in Chapter 5.



345

Exercises

1. Write a recursive definition of the factorial function in the lambda calcu-
lus using define.

2. Give a recursive definition of binary trees whose leaf nodes contain natural
number values.

3. Suppose A is a finite set with |A| = n. Show that |P(A)| = 2n and |A→A|
= nn.

4. Let A be an arbitrary set. Show that it is impossible for f : A→P(A) to be a
one-to-one and onto function. Hint: Consider the set X = {a∈A | a∉f(a)}.

5. Prove that |P(A)| ≤ |A→A| for any set A with |A| ≥ 2. Hint: Consider the
characteristic functions of the sets in P(A).

10.2  DOMAIN THEORY

The structured sets that serve as semantic domains in denotational seman-
tics are similar to the structured sets called lattices, but these domains have
several distinctive properties. Domains possess a special element ⊥, called
bottom , that denotes an undefined element or simply the absence of infor-
mation. A computation that fails to complete normally produces ⊥ as its
result. Later in this section we describe how the bottom element of a domain
can be used to represent the nontermination of programs, since a program
that never halts is certainly an undefined object. But first we need to define
the structural properties of the sets that serve as domains.

Definition : A partial or der on a set S is a relation ⊆ with the following
properties:

1. ⊆ is reflexive : x ⊆ x for all x∈S.

2. ⊆ is transitive : (x ⊆ y and y ⊆ z) implies x ⊆ z for all x,y,z∈S.

3. ⊆ is antisymmetric : (x ⊆ y and y ⊆ x) implies x = y for all x,y∈S. ❚

Definition : Let A be a subset of S.

1. A lower bound  of A is an element b∈S such that b ⊆ x for all x∈A.

2. An upper bound  of A is an element u∈S such that x ⊆ u for all x∈A.

3. A least upper bound  of A, written lub A, is an upper bound of A with the
property that for any upper bound m of A, lub A ⊆ m. ❚

Example 1 : The subset relation ⊆ on the power set P({1,2,3}) is a partial order
as shown by the Hasse diagram  in Figure 10.1. The main idea of a Hasse

10.2  DOMAIN THEORY



346 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

diagram is to represent links between distinct items where no other values
intervene. The reflexive and transitive closure of this “minimal” relation forms
the ordering being defined. We know that the subset relation is reflexive,
transitive, and antisymmetric. Any subset of P({1,2,3}) has lower, upper, and
least upper bounds. For example, if A = { {1}, {1,3}, {3} }, both {1,2,3} and {1,3}
are upper bounds of A, ∅ is a lower bound of A, and lub A = {1,3}. ❚

{ 1,2,3 } 

{ 1,2 } { 1,3 } { 2,3 }

{ 1 } { 2 } { 3 }

∅ 

Figure 10.1: Partial order on P({1,2,3})

In addition to possessing a partial ordering, the structured sets of domain
theory require a “smallest” element and the existence of limits for sequences
that admit a certain conformity.

Definition : An ascending chain  in a partially ordered set S is a sequence of
elements {x1, x2, x3, x4, …} with the property x1 ⊆ x2 ⊆ x3 ⊆ x4 ⊆ …. ❚

Remember that the symbol ⊆ stands for an arbitrary partial order, not neces-
sarily the subset relation. Each item in an ascending chain must contain
information that is consistent with its predecessor in the chain; it may be
equal to its predecessor or it may provide additional information.

Definition : A complete partial or der (cpo) on a set S is a partial order ⊆
with the following properties:

1. There is an element ⊥∈S for which ⊥ ⊆ x for all x∈S.

2. Every ascending chain in S has a least upper bound in S. ❚

Sets with complete partial orders serve as the semantic domains in
denotational semantics. On these domains, ⊆ is thought of as the relation
approximates  or is less defined than or equal to . View x ⊆ y as asserting



347

that y has at least as much information content as x does, and that the
information in y is consistent with that in x. In other words, y is a consistent
(possibly trivial) extension of x in terms of information.

The least upper bound of an ascending chain summarizes the information
that has been accumulated in a consistent manner as the chain progresses.
Since an ascending chain may have an infinite number of distinct values, the
least upper bound acts as a limit value for the infinite sequence. On the
other hand, a chain may have duplicate elements, since ⊆ includes equality,
and a chain may take a constant value from some point onward. Then the
least upper bound is that constant value.

Example 1 (r evisited) : P({1,2,3}) with ⊆ is a complete partial order. If S is
a set of subsets of {1,2,3}, lub S = ∪{X | X∈S}, and ∅ serves as bottom.
Note that every ascending chain in P({1,2,3}) is a finite subset of P({1,2,3})—
for example, the chain with x1={2}, x2={2,3}, x3={1,2,3}, and xi={1,2,3} for
all i≥4. ❚

Example 2 : Define m ⊆ n on the set S = {1,2,3,5,6,15} as the divides relation,
m|n (n is a multiple of m). The set S with the divides ordering is a complete
partial order with 1 as the bottom element, and since each ascending chain
is finite, its last element serves as the least upper bound. Figure 10.2 gives a
Hasse diagram for this ordered set. Observe that the elements of the set lie
on three levels. Therefore no ascending chain can have more than three
distinct values. ❚

6 15

2 3 5

1

Figure 10.2: Partial order “divides” on {1,2,3,5,6,15}

These complete partially ordered sets have a lattice-like structure but need
not be lattices. Lattices possess the property that any two elements have a
least upper bound and a greatest lower bound. A complete lattice also satis-
fies the condition that any subset has a least upper bound and a greatest
lower bound. Observe that {1,2,3,5,6,15} with “divides” is not a lattice since
{6,15} has no least upper bound.

10.2  DOMAIN THEORY



348 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

Any finite set with a partial order and a bottom element ⊥ is a cpo since each
ascending chain is a finite set and its last component will be the least upper
bound. A partially ordered set with an infinite number of distinct elements
that lie on an infinite number of “levels” may not be a cpo.

Elementary Domains

Common mathematical sets such as the natural numbers and the Boolean
values are converted into complete partial orders by adding a bottom ele-
ment ⊥ and defining the discrete partial or der ⊆ as follows:

for x,y∈S, x ⊆ y iff x = y or x = ⊥.

In denotational semantics, elementary domains correspond to “answers” or
results produced by programs.  A typical program produces a stream of these
atomic values as its result.

Example 3 : The domain of Boolean values T has the structure shown in
Figure 10.3. With a discrete partial order, bottom is called an improper  value,
and the original elements of the set are called proper .  Each proper value,
true or false, contains more information than ⊥, but they are incomparable
with each other. The value true has no more information content than false;
it is just different information. ❚

true false

⊥T

Figure 10.3: Boolean Domain

Example 4 : The domain of natural numbers N has the structure portrayed
in Figure 10.4. ❚

0 1 2 3 …

⊥N

4

Figure 10.4: Domain of natural numbers



349

Do not confuse the “approximates” ordering ⊆ with the numeric ordering ≤
on the natural numbers. Under ⊆, no pair of natural numbers is comparable,
since neither contains more or even the same information as the other. These
primitive complete partially ordered sets are also called elementary  or flat
domains . More complex domains are formed by three domain constructors.

Product Domains

Definition : If A with ordering ⊆A and B with ordering ⊆B are complete partial
orders, the product domain  of A and B is AxB with the ordering ⊆AxB where

AxB = {<a,b> | a∈A and b∈B}  and

<a,b> ⊆AxB <c,d> iff a ⊆A c and b ⊆B d. ❚

It is a simple matter to show that ⊆AxB is a partial order on AxB, which we
invite the reader to try as an exercise. Assuming that a product domain is a
partial order, we need a bottom element and least upper bound for ascending
chains to guarantee it is a cpo.

Theorem: ⊆AxB is a complete partial order on AxB.

Proof: ⊥AxB = <⊥A,⊥B> acts as bottom for AxB, since ⊥A ⊆A a and ⊥B ⊆ B b for
each a∈A and b∈B. If <a1,b1> ⊆ <a2,b2> ⊆ <a3,b3> ⊆ … is an ascending chain
in AxB, then a1 ⊆A a2 ⊆A a3 ⊆A … is a chain in A with a least upper bound
lub{ai|i≥1}∈A, and b1 ⊆B b2 ⊆B b3 ⊆B … is a chain in B with a least upper
bound lub{bi|i≥1}∈B. Therefore lub{<ai,bi>|i≥1} = <lub{ai|i≥1},lub{bi|i≥1}>∈AxB
is the least upper bound for the original chain. ❚

A product domain can be constructed with any finite set of domains in the
same manner. If D1, D2, …, Dn are domains (sets with complete partial or-
ders), then D1xD2x…xDn with the induced partial order is a domain. If the
original domains are identical, then the product domain is written Dn.

Example 5 : Consider a classification of university students according to two
domains.

1. Level = {⊥L, undergraduate, graduate, nondegree}

2. Gender = {⊥G, female, male}

The product domain Level x Gender allows 12 different values as depicted in
the diagram in Figure 10.5, which shows the partial ordering between the
elements using only the first letters to symbolize the values. Notice that six
values are “partial”, containing incomplete information for the classification.
We can interpret these partial values by imagining two processes, one to
determine the level of a student and the other to ascertain the gender. The
six incomplete values fit into one of three patterns.

10.2  DOMAIN THEORY



350 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

<⊥L,⊥G> Both processes fail to terminate normally.

<⊥L,male> The Gender process terminates with a result but the Level
process fails.

<graduate,⊥G> The Level process completes but the Gender one does not
terminate normally. ❚

<u,f>       <g,f>        <n,f>             <u,m>       <g,m>     <n,m>

  <⊥L,f>        <u,⊥G>      <g,⊥G>       <n,⊥G>      <⊥L,m>

<⊥L,⊥G>

Figure 10.5: Level x Gender

To choose components from an element of a product domain, selector func-
tions are defined on the structured domain.

Definition : Assume that for any product domain AxB, there are projection
functions

first : AxB→A, defined by first <a,b> = a for any <a,b>∈AxB, and

second : AxB→B, defined by second <a,b> = b for any <a,b>∈AxB. ❚

Selector functions of this sort may be applied to arbitrary product domains,
D1xD2x…xDn. As a shorthand notation we sometimes use 1st, 2nd, 3rd, …,
nth, for the names of the selector functions.

Example 6 : We used a product domain IntegerxOperationx IntegerxInteger
to represent the states of the calculator in Chapter 9. In the semantic equa-
tions of Figure 9.8, pattern matching simulates the projection functions—
for example, the equation

meaning [[P]] = d where (a,op,d,m) = perform [[P]]  (0,nop,0,0)

abbreviates the equation

meaning [[P]] = third(perform [[P]]  (0,nop,0,0)).

Similarly,

evaluate [[MR]] (a,op,d,m) = (a,op,m,m)



351

is a more readable translation of

evaluate [[MR]] st = (first(st),second(st),fourth(st),fourth(st)). ❚

Generally, using pattern matching to select components from a structure
leads to more understandable definitions, as witnessed by its use in Prolog
and many functional programming languages, such as Standard ML.

Sum Domains (Disjoint Unions)

Definition : If A with ordering ⊆A and B with ordering ⊆B are complete partial
orders, the sum domain  of A and B is A+B with the ordering ⊆A+B defined by

A+B = {<a,1> | a∈A} ∪ {<b,2> | b∈B} ∪ {⊥A+B},

<a,1> ⊆A+B <c,1> if a ⊆A c,

<b,2> ⊆A+B <d,2> if b ⊆B d,

⊥A+B ⊆A+B <a,1> for each a∈A,

⊥A+B ⊆A+B <b,2> for each b∈B, and

⊥A+B ⊆A+B ⊥A+B. ❚

The choice of “1” and “2” as tags in a disjoint union is purely arbitrary. Any
two distinguishable values can serve the purpose. In Chapter 9 we used the
symbols int and bool as tags for the sum domain of storable values when
specifying the semantics of Wren,

SV = int(Integer) + bool(Boolean),

which can be thought of as an abbreviation of {<i,int>|i∈Integer} ∪
{<b,bool>|b∈Boolean} ∪ {⊥}.

Again it is not difficult to show that ⊆A+B is a partial order on A+B, and the
proof is left as an exercise.

Theorem: ⊆A+B is a complete partial order on A+B.

Proof: ⊥A+B ⊆ x for any x∈A+B by definition. An ascending chain x1 ⊆ x2 ⊆ x3
⊆ … in A+B may repeat ⊥A+B forever or eventually climb into either Ax{1} or
Bx{2}. In the first case, the least upper bound will be ⊥A+B, and in the other
two cases the least upper bound will exist in A or B. ❚

Example 7 : The sum domain T+N (Boolean values and natural numbers)
may be viewed as the structure portrayed in Figure 10.6, where the tags have
been omitted to simplify the diagram. ❚

10.2  DOMAIN THEORY



352 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

⊥T+N

0 1 2 3 …

⊥N

4true false

⊥T

Figure 10.6: The sum domain T+N

A sum domain can be constructed with any finite set of domains in the same
manner as with two domains. If D1, D2, …, Dn are domains (sets with com-
plete partial orders), then D1 + D2 + … + Dn = {<d,i> | d∈Di, 1≤i≤n}  ∪ {⊥}with
the induced partial order is a domain.

Functions on sum domains include a constructor, a selector, and a testing
function.

Definition : Let S = A+B, where A and B are two domains.

1. Injection (creation):

inS : A→S is defined for a∈A as inS a = <a,1>∈S

inS : B→S is defined for b∈B as inS b = <b,2>∈S

2. Projection (selection):

outA : S→A is defined for s∈S as outA s = a∈A if s=<a,1>, and
outA s = ⊥A∈A if s=<b,2> or s=⊥S.

outB : S→B is defined for s∈S as outB s = b∈B if s=<b,2>, and
outB s = ⊥B∈B if s=<a,1> or s=⊥S.

3. Inspection (testing): Recall that T = {true, false, ⊥T}.

isA : S→T is defined for s∈S as
(isA s) if and only if there exists a∈A with s=<a,1>.

isB : S→T is defined for s∈S as
(isB s) if and only if there exists b∈B with s=<b,2>.

In both cases, ⊥S is mapped to ⊥T. ❚

Example 8 : In the semantic domain of storable values for Wren shown in
Figure 9.10, the identifiers int and bool act as the tags to specify the separate
sets of integers and Boolean values. The notation



353

SV = int(Integer) + bool(Boolean)
= {int(n)|n∈Integer} ∪ {bool(b)|b∈Boolean} ∪ {⊥SV}

represents the sum domain

SV = (Integer x {int}) ∪ (Boolean x {bool}) ∪ {⊥SV}.

Then an injection function is defined by

inSV : Integer → SV where inSV n = int(n). ❚

Actually, the tags themselves can be thought of as constituting the injection
function (or as constructors) with the syntax int : Integer → SV and
bool : Boolean → SV, so that we can dispense with the special injection func-
tion inSV.

A projection function takes the form

outInteger : SV → Integer where outInteger int(n) = n
outInteger bool(b) = ⊥.

Inspection is handled by pattern matching, as in the semantic equation

execute [[if E then  C]] sto = if p then execute [[C]] sto else sto
where bool(p) = evaluate [[E]]  sto,

which stands for

execute [[if E then  C]] sto =
if isBoolean(val)

then if outBoolean(val) then execute [[C]] sto else sto
else ⊥

where val = evaluate [[E]]  sto.

Example 9 : In the sum domain Level + Gender shown in Figure 10.7, tags lv
for level and gd for gender are attached to the elements from the two compo-
nent domains. If a computation attempts to identify either the level or the
gender of a particular student (but not both), it may utterly fail giving ⊥, it
may be able to identify the level or the gender of the student, or as a middle
ground it may know that the computation is working on the level value but
may not be able to complete its work, thus producing the result ⊥L. ❚

An infinite sum domain may be defined in a similar way.
If D1, D2, D3, … are domains, then D1 + D2 + D3 + … contains elements of the
form <d,i> where d∈Di for i≥1 plus a new bottom element.

This infinite sum domain construction allows the definition of the domain of
all finite sequences (lists) formed using elements from a domain D and de-
noted by D*.

10.2  DOMAIN THEORY



354 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

lv (undergraduate)

lv (⊥L)

⊥ L+G

gd (⊥G)

lv (graduate) 

lv (nondegree) gd (female) gd (male)

Figure 10.7: Level + Gender

D* = {nil }+D+D2+D3+D4+… where nil represents the empty sequence.

An element of D* is either the empty list nil, a finite ordered tuple from Dk for
some k≥1, or ⊥.

Special selector and constructor functions are defined on D*.

Definition : Let L∈D* and e∈D. Then L=<d,k> for d∈Dk for some k≥0 where
D0 = {nil }.

1. head : D*→D where
head (L) = first (outDk(L)) if k>0 and head (<nil,0>) = ⊥.

2. tail : D*→D* where
tail (L) = inD* (<2nd(outDk(L)),3rd(outDk(L)),…,kth(outDk(L))>) if k>0 and
tail (<nil,0>) = ⊥.

3. null : D*→T where
null (<nil,0>) = true and null (L) = false if L = <d,k> with k>0.
Therefore null (L) = isD0(L).

4. prefix : DxD*→D* where
prefix (e,L) = inD* (<e,1st(outDk(L)),2nd(outDk(L)),…,kth(outDk(L))>) and
prefix (e,<nil,0>)) =  <<e>,1>

5. affix : D*xD→D* where
affix (L,e) = inD* (<1st(outDk(L)),2nd(outDk(L)),…,kth(outDk(L)),e>) and
affix (<nil,0>,e) = <<e>,1>. ❚

Each of these five functions on lists maps bottom to bottom. The binary
functions prefix and affix produce ⊥ if either argument is bottom.



355

Function Domains

Definition : A function from a set A to a set B is total  if f(x)∈B is defined for
every x∈A. If A with ordering ⊆A and B with ordering ⊆B are complete partial
orders, define Fun(A,B)  to be the set of all total functions from A to B. (This
set of functions will be restricted later.) Define ⊆ on Fun(A,B) as follows:

For f,g∈Fun(A,B), f ⊆ g if f(x) ⊆B g(x) for all x∈A. ❚

Lemma : ⊆ is a partial order on Fun(A,B).

Proof:
1. Reflexive: Since ⊆B is reflexive, f(x) ⊆B f(x) for all x∈A, so f ⊆ f for any

f∈Fun(A,B).

2. Transitive: Suppose f ⊆ g and g ⊆ h. Then f(x) ⊆B g(x) and g(x) ⊆B h(x) for
all x∈A. Since ⊆B is transitive, f(x) ⊆B h(x) for all x∈A, and so f ⊆ h.

3. Antisymmetric: Suppose f ⊆ g and g ⊆ f. Then f(x) ⊆B g(x) and g(x) ⊆B
f(x) for all x∈A. Since ⊆B is antisymmetric, f(x) = g(x) for all x∈A, and so
f = g. ❚

Theorem: ⊆ is a complete partial order on Fun(A,B).

Proof: Define bottom for Fun(A,B) as the function ⊥(x) = ⊥B for all x∈A. Since
⊥(x) = ⊥B ⊆B f(x) for all x∈A and f∈Fun(A,B), ⊥ ⊆ f for any f∈Fun(A,B). Let f1 ⊆
f2 ⊆ f3 ⊆ … be an ascending chain in Fun(A,B). Then for any x∈A, f1(x) ⊆B f2(x)
⊆B f3(x) ⊆B … is a chain in B, which has a least upper bound, yx∈B. Note that
yx is lub{fi(x)|i≥1}. Define the function F(x) = yx for each x∈A. F serves as a
least upper bound for the original chain. Set lub{fi|i≥1} = F. ❚

The set Fun(A,B) of all total functions from A to B contains many functions
with abnormal behavior that precludes calculating or even approximating
them on a computer. For example, consider a function H : (N→N) → (N→N)
defined by

for g∈N→N, H g = λn . if g(n)=⊥ then 0 else 1.

Certainly H∈Fun(N→N,N→N), but if we make this function acceptable in the
domain theory that provides a foundation for denotational definitions, we
have accepted a function that solves the halting problem—that is, whether
an arbitrary function halts normally on given data. To exclude this and other
abnormal functions, we place two restrictions on functions to ensure that
they have agreeable behavior.

Definition : A function f in Fun(A,B) is monotonic  if x ⊆A y implies f(x) ⊆B f(y)
for all x,y∈A. ❚

Since we interpret ⊆ to mean “approximates”, whenever y has at least as
much information as x, it follows that f(y) has at least as much information

10.2  DOMAIN THEORY



356 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

as f(x). We get more information out of a function by putting more informa-
tion into it.

An ascending chain in a partially order set can be viewed as a subset of the
partially ordered set on which the ordering is total (any two elements are
comparable).

Definition : A function f∈Fun(A,B) is continuous  if it preserves least upper
bounds—that is, if x1 ⊆A x2 ⊆A x3 ⊆A … is an ascending chain in A, then
f(lub{xi|i≥1}}) = lub{f(xi)|i≥1}. ❚

Note that if f is also monotonic, then f(x1) ⊆B f(x2) ⊆B f(x3) ⊆B … is an ascend-
ing chain. Intuitively, continuity means that there are no surprises when
taking the least upper bounds (limits) of approximations. The diagram in
Figure 10.8 shows the relation between the two chains.

x1 ⊆A x2 ⊆A x3 ⊆A … ⇒ lub{xi|i≥1}

↓ ↓ ↓ ↓
f(x1) ⊆B f(x2) ⊆B f(x3) ⊆B … ⇒ lub{f(xi)|i≥1} = f(lub{xi|i≥1})

Figure 10.8: Continuity

A continuous function f has predictable behavior in the sense that if we know
its value on the terms of an ascending chain x1 ⊆ x2 ⊆ x3 ⊆ …, we also know
its value on the least upper bound of the chain since f(lub{xi|i≥1}) is the least
upper bound of the chain f(x1) ⊆ f(x2) ⊆ f(x3) ⊆  …. It is possible to predict the
value of f on lub{xi|i≥1} by its behavior on each xi.

Lemma : If f∈Fun(A,B) is continuous, it is also monotonic.

Proof: Suppose f is continuous and x ⊆A y. Then x ⊆A y ⊆A y ⊆A y ⊆A … is an
ascending chain in A, and so by the continuity of f,

f(x) ⊆B lubB{f(x),f(y)} = f(lubA{x,y}) = f(y). ❚

Definition : Define A→B to be the set of functions in Fun(A,B) that are
(monotonic and) continuous. This set is ordered by the relation ⊆ from
Fun(A,B). ❚

Lemma : The relation ⊆ restricted to A→B is a partial order.

Proof: The properties reflexive, transitive, and antisymmetric are inherited
by a subset. ❚

The example function H : (N→N) → (N→N) defined by

for g∈N→N, H g = λn . if g(n)=⊥ then 0 else 1

is neither monotonic nor continuous. It suffices to show that it is not mono-
tonic by a counterexample.



357

Let g1 = λn . ⊥ and g2 = λn . 0. Then g1 ⊆ g2. But H(g1) = λn . 0, H(g2) = λn . 1,
and the functions λn . 0 and λn . 1 are not related by ⊆ at all.

Two lemmas will be useful in proving the continuity of functions.

Lub Lemma : If x1 ⊆ x2 ⊆ x3 ⊆ … is an ascending chain in a cpo A, and xi ⊆
d∈A for each i≥1, it follows that lub{xi|i≥1} ⊆ d.

Proof: By the definition of least upper bound, if d is a bound for the chain, the
least upper bound lub{xi|i≥1} must be no larger than d. ❚

Limit Lemma : If x1 ⊆ x2 ⊆ x3 ⊆ … and y1 ⊆ y2 ⊆ y3 ⊆ … are ascending chains
in a cpo A, and xi ⊆ yi for each i≥1, then lub{xi|i≥1} ⊆ lub{yi|i≥1}.

Proof: For each i≥1, xi ⊆ yi ⊆ lub{yi|i≥1}. Therefore lub{xi|i≥1} ⊆ lub{yi|i≥1} by
the Lub lemma (take d = lub{yi|i≥1}). ❚

Theorem: The relation ⊆ on A→B, the set of functions in Fun(A,B) that are
monotonic and continuous, is a complete partial order.

Proof: Since ⊆ is a partial order on A→B, two properties need to be verified.

1. The bottom element in Fun(A,B) is also in A→B, which can be proved by
showing that the function ⊥(x) = ⊥B is monotonic and continuous.

2. For any ascending chain in A→B, its least upper bound, which is an ele-
ment of Fun(A,B), is also in A→B, which means that it is monotonic and
continuous.

Part 1 : If x ⊆A y for some x,y∈A, then ⊥(x) = ⊥B = ⊥(y), which means  ⊥(x) ⊆B
⊥(y), and so ⊥ is a monotonic function. If x1 ⊆A x2 ⊆A x3 ⊆A … is an ascending
chain in A, then its image under the function ⊥ will be the ascending chain
⊥B ⊆B ⊥B ⊆B ⊥B ⊆B …, whose least upper bound is ⊥B. Therefore ⊥(lub{xi|i≥1})
= ⊥B = lub{⊥(xi)|i≥1}, and ⊥ is a continuous function.

Part 2 : Let f1 ⊆ f2 ⊆ f3 ⊆ … be an ascending chain in A→B, and let F =
lub{fi|i≥1} be its least upper bound (in Fun(A,B)). Remember the definition of
F, F(x) = lub{fi(x)|i≥1} for each x∈A. We need to show that F is monotonic and
continuous so that we know F is a member of A→B.

Monotonic : If x ⊆A y, then fi(x) ⊆B fi(y) ⊆B lub{fi(y)|i≥1} for any i since each fi
is monotonic. Therefore F(y) = lub{fi(y)|i≥1} is an upper bound for each fi(x),
and so the least upper bound of all the fi(x) satisfies F(x) = lub{fi(x)|i≥1} ⊆ F(y),
and F is monotonic. This result can also be proved using the Limit lemma.
Since fi(x) ⊆B fi(y) for each i≥1, F(x) = lub{fi(x)|i≥1} ⊆ lub{fi(y)|i≥1} = F(y).

10.2  DOMAIN THEORY



358 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

Continuous : Let x1 ⊆A x2 ⊆A x3 ⊆A … be an ascending chain in A. We need to
show that F(lub{xj|j≥1}) = lub{F(xj)|j≥1} where F(x) = lub{fi(x)|i≥1} for each
x∈A. Note that “i” is used to index the ascending chain of functions from
A→B while “j” is used to index the ascending chains of elements in A and B.
So F is continuous if F(lub{xj|j≥1}) = lub{F(xj)|j≥1}.

Recall these definitions and properties.

1. Each fi is continuous:  fi(lub{xj|j≥1}) = lub{fi(xj)|j≥1} for each chain {xj|j≥1}
in A.

2. Definition of F:  F(x) = lub{fi(x)|i≥1} for each x∈A.

Thus F(lub{xj|j≥1}) = lub{fi(lub{xj|j≥1})|i≥1} by 2
= lub{lub{fi(xj)|j≥1}|i≥1} by 1
= lub{lub{fi(xj)|i≥1}|j≥1} ‡ needs to be shown
= lub{F(xj)|j≥1} by 2.

The condition ‡ to be proved is illustrated in Figure 10.9.

f1(x1)        ⊆       f2(x1)        ⊆       f3(x1)       ⊆                  F(x1)

f1(x2)        ⊆       f2(x2)        ⊆       f3(x2)       ⊆                  F(x2)

f1(x3)        ⊆       f2(x3)        ⊆       f3(x3)       ⊆                  F(x3)

f1(lub {xj|j≥1}) ⊆ f2(lub {xj|j≥1}) ⊆ f3(lub {xj|j≥1}) ⊆                   ?

⊆ ⊆ ⊆

⊆

⊆
⊆

⊆ ⊆ ⊆
⊆⊆⊆

⊆
⊆

⊆

⊆ ⊆ ⊆

lub {xj|j≥1}

x3

x1

x2

f1 f2 f3 F=lub {fi|i≥1} 

Figure 10.9: Continuity of F = lub{f
i
|i≥1}

The rows in the diagram correspond to the definition of F as the least upper
bound of the ascending chain of functions lub{fi|i≥1}. The columns corre-
spond to the continuity of each fi—namely, that lub{fi(xj)|j≥1} = fi(lub{xj|j≥1})
for each i and each ascending chain {xj|j≥1} in A.



35910.2  DOMAIN THEORY

First Half : lub{lub{fi(xj)|j≥1}|i≥1} ⊆ lub{lub{fi(xj)|i≥1}|j≥1}

For all k and j, fk(xj) ⊆ lub{fi(xj)|i≥1} by the definition of F (the rows of
Figure 10.9). We have ascending chains fk(x1) ⊆ fk(x2) ⊆ fk(x3) ⊆ … for
each k and lub{fi(x1)|i≥1} ⊆ lub{fi(x2)|i≥1} ⊆ lub{fi(x3)|i≥1} ⊆ …. So for each
k, lub{fk(xj)|j≥1} ⊆ lub{lub{fi(xj)|i≥1}|j≥1} by the Limit lemma. This corre-
sponds to the top row. Hence lub { lub { fk(x j)|j≥1}|k≥1} ⊆
lub{lub{fi(xj)|i≥1}|j≥1} by the Lub lemma. Now change k to i.

Second Half : lub{lub{fi(xj)|i≥1}|j≥1} ⊆ lub{lub{fi(xj)|j≥1}|i≥1}

For all i and k, fi(xk) ⊆ fi(lub{xj|j≥1}) = lub{fi(xj)|j≥1} by using the fact that each
fi is monotonic and continuous (the columns of Figure 10.9). So for each k,
lub{fi(xk)|i≥1} ⊆ lub{lub{fi(xj)|j≥1}|i≥1} by the Limit lemma. This corresponds
to the rightmost column. Hence lub{lub{fi(xk)|i≥1}|k≥1} ⊆ lub{lub {fi(xj)|j≥1}|i≥1}
by the Lub lemma. Now change k to j.

Therefore F is continuous. ❚

Corollary : Let f1 ⊆ f2 ⊆ f3 ⊆ … be an ascending chain of continuous functions
in A→B. Then F = lub{fi|i≥1} is a continuous function.

Proof: This corollary was proved in Part 2 of the proof of the previous theo-
rem. ❚

In agreement with the notation for denotational semantics in Chapter 9, as a
domain constructor, we treat → as a right associative operation. The domain
A→B→C means A→(B→C), which is the set of continuous functions from A
into the set of continuous functions from B to C. If f∈A→B→C, then for a∈A,
f(a)∈B→C. Generally, we write “:” to represent membership in a domain. So
we write g : A→B for g∈A→B.

Example 10 : Consider the functions from a small domain of students,

Student = {⊥, Autry, Bates}

to the domain of levels,

Level = {⊥, undergraduate, graduate, nondegree}.

We can think of the functions in Fun(Student,Level) as descriptions of our
success in classifying two students, Autry and Bates. The set of all total
functions, Fun(Student,Level), contains 64 (43) elements, but only 19 of these
functions are monotonic and continuous. The structure of Student → Level
is portrayed by the lattice-like structure in Figure 10.10, where the values in
the domains are denoted by only their first letters. ❚

Since the domain Student of a function in Student→Level is finite, it is enough
to show that the function is monotonic as we show in the next theorem.



360 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

a → u
b → u
⊥ → u

a → g
b → g
⊥ → g

a → n
b → n
⊥ → n

a → g
b → n
⊥ → ⊥

a → n
b → g
⊥ → ⊥

a → n
b → n
⊥ → ⊥

a → u
b → u
⊥ → ⊥

a → n
b → u
⊥ → ⊥

a → u
b → g
⊥ → ⊥

a → u
b → ⊥
⊥ → ⊥

a → g
b → g
⊥ → ⊥

a → u
b → n
⊥ → ⊥

a → g
b → u
⊥ → ⊥

a → g
b → ⊥
⊥ → ⊥

a → n
b → ⊥
⊥ → ⊥

a →⊥
b → g
⊥ → ⊥

a → ⊥
b → n
⊥ → ⊥

a → ⊥
b → u
⊥ → ⊥

a → ⊥
b → ⊥
⊥ → ⊥

Figure 10.10: Function domain Student → Level

Theorem: If A and B are cpo’s, A is a finite set, and f∈Fun(A,B) is monotonic,
then f is also continuous.

Proof: Let x1 ⊆A x2 ⊆A x3 ⊆A … be an ascending chain in A. Since A is finite, for
some k, xk = xk+1 = xk+2 = …. So the chain is a finite set {x1, x2, x3, …, xk}
whose least upper bound is xk. Since f is monotonic, f(x1) ⊆B f(x2) ⊆B f(x3) ⊆B



361

… ⊆B f(xk) = f(xk+1) = f(xk+2) = … is an ascending chain in B, which is also a
finite set—namely, {f(x1), f(x2), f(x3), …, f(xk)} with f(xk) as its least upper bound.
Therefore, f(lub{xi|i≥1}) = f(xk) = lub{f(xi)|i≥1}, and f is continuous. ❚

Lemma : The function f : Student → Level defined by

f(⊥) = graduate, f(Autry) = nondegree, f(Bates) = graduate

is neither monotonic nor continuous.

Proof: Clearly, ⊥ ⊆ Autry. But f(⊥) = graduate and f(Autry) = nondegree are
incomparable. Therefore, f is not monotonic. By the contrapositive of an ear-
lier theorem, if f is not monotonic, it is also not continuous. ❚

Continuity of Functions on Domains

The notation used for the special functions defined on domains implied that
they were continuous—for example, first : AxB→A. To justify this notation, a
theorem is needed.

Theorem: The following functions on domains and their analogs are con-
tinuous:

1. first : AxB→A

2. inS : A→S where S = A+B

3. outA : A+B→A

4. isA : A+B→T

Proof:
1. Let <a1,b1> ⊆ <a2,b2> ⊆ <a3,b3> ⊆ … be an ascending chain in AxB.

Then lub{first <ai,bi>|i≥1} = lub{ai|i≥1}
= first <lub{ai|i≥1},lub{bi|i≥1}> = first (lubAxB{<ai,bi>|i≥1}).

2. An exercise.

3. An exercise.

4. An ascending chain x1 ⊆ x2 ⊆ x3 ⊆ … in A+B may repeat ⊥A+B forever or
eventually climb into either Ax{1} or Bx{2}. In the first case, the least up-
per bound will be ⊥A+B, and in the other two cases the lub will be some
a∈A or some b∈B.

Case 1 : {xi|i≥1} = {⊥A+B}. Then isA(lubA+B{xi|i≥1}) = isA(⊥A+B) = ⊥T, and
lubT{isA(xi)|i≥1} = lubT{isA(⊥A+B)} = lubT{⊥T} = ⊥T.

Case 2 : {xi|i≥1} = {⊥A+B,…,⊥A+B,<a1,1>,<a2,1>,…} where  a1 ⊆A a2 ⊆A a3
⊆A … is a chain in A. Suppose a = lub{ai|i≥1}. Then isA(lubA+B{xi|i≥1}) =
isA(<a,1>) = true, and lubT{isA(xi)|i≥1} = lubT{⊥,…,⊥,true,true,…} = true.

10.2  DOMAIN THEORY



362 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

Case 3 : {xi|i≥1} = {⊥A+B,…,⊥A+B,<b1,2>,<b2,2>,…} where b1 ⊆B b2 ⊆B b3
⊆B … is a chain in B. Suppose b = lub{bi|i≥1}.Then isA(lubA+B{xi|i≥1}) =
isA(<b,2>) = false, and lubT{isA(xi)|i≥1} = lubT{⊥,…,⊥,false,false,…} =
false. ❚

The functions defined on lists, such as head and tail, are mostly built from
the selector functions for products and sums. The list functions can be shown
to be continuous by proving that composition preserves the continuity of
functions.

Theorem: The composition of continuous functions is continuous.

Proof: Suppose f : A → B and g : B → C are continuous functions. Let a1 ⊆ a2
⊆ a3 ⊆ … be an ascending chain in A. Then f(a1) ⊆ f(a2) ⊆ f(a3) ⊆ … is an
ascending chain in B with f(lub{ai|i≥1}) = lub{f(ai)|i≥1} by the continuity of f.
Since g is continuous, g(f(a1)) ⊆ g(f(a2)) ⊆ g(f(a3)) ⊆ … is an ascending chain in
C with g(lub{f(ai)|i≥1}) = lub{g(f(ai))|i≥1}. Therefore g(f(lub{ai|i≥1})) =
g(lub{f(ai)|i≥1}) = lub{g(f(ai))|i≥1} and g°f is continuous. ❚

To handle tail, prefix, and affix we need a generalization of this theorem to allow
for tuples of continuous functions, a result that appears as an exercise.

Theorem: The following functions on lists are continuous:

1. head : D* → D
2. tail : D*→ D*

3. null : D* → T
4. prefix : DxD* → D*

5. affix : D*xD → D*

Proof: For 1, 2, 4, 5 use the continuity of the compositions of continuous
functions and the previous theorems. A case analysis is needed to deal with
ascending sequences that contain mostly nil values.

3. An ascending chain x1 ⊆ x2 ⊆ x3 ⊆ … in D* may repeat ⊥D*  forever or
eventually climb into Dk, where k≥0 and D0 = {nil }.

Case 1 : {xi|i≥1} = {⊥D*}. null(lubD*{xi|i≥1}) = null(⊥D*) = ⊥T, and
lubT{null(xi)|i≥1} = lubT{⊥T} = ⊥T.

Case 2 : {xi|i≥1} = {⊥D*,⊥D*,…,⊥D*,<nil,0>,<nil,0>,…}.
null(lubD*{xi|i≥1}) = null(<nil,0>) = true, and
lubT{null(xi)|i≥1} = lubT{⊥T,⊥T,…,⊥T,true,true,…} = true.

Case 3 : {xi|i≥1} = {⊥D*,…,⊥D*,<d1,k>,<d2,k>,…} where di∈Dk for some k>0
and d1 ⊆Dk d2 ⊆Dk d3 ⊆Dk … is a chain in Dk. null(lubD*{xi|i≥1}) =
null(<lubDk{di|i≥1},k>) = false since (lubDk{di|i≥1})∈Dk, and lubD{null(xi)|i≥1}
= lubD{null<d1,k>, null<d2,k>, …} = lubD{false, false, …} = false. ❚



36310.2  DOMAIN THEORY

Exercises

1. Determine which of the following ordered sets are complete partial orders:

a) Divides ordering on {1,3,6,9,12,18}.

b) Divides ordering on {2,3,6,12,18}.

c) Divides ordering on {2,4,6,8,10,12}.

d) Divides ordering on the set of positive integers.

e) Divides ordering on the set P of prime numbers.

f) Divides ordering on the set P ∪ {1}.

g) ⊆ (subset) on the nonempty subsets of {a,b,c,d}.

h) ⊆ (subset) on the collection of all finite subsets of the natural num-
bers.

i) ⊆ (subset) on the collection of all subsets of the natural numbers
whose complement is finite.

2. Which of the partially ordered sets in exercise 1 are also lattices?

3. Let S = {1,2,3,4,5,6,9,15,25,30} be ordered by the divides relation.

a) Find all lower bounds for {6,30}.

b) Find all lower bounds for {4,6,15}.

c) Find all upper bounds for {1,2,3}.

d) Does {4,9,25} have an upper bound?

4. Show that ⊆AxB is a partial order on AxB.

5. Show that ⊆A+B is a partial order on A+B.

6. Prove that the least upper bound of an ascending chain x1 ⊆ x2 ⊆ x3 ⊆ …
in a domain D is unique.

7. Let Hair = {⊥,black,blond,brown} and Eyes = {⊥,blue,brown,gray} be two
elementary domains (flat complete partially ordered sets).

a) Sketch a Hasse diagram showing all the elements of Hair x Eyes and
the relationships between its elements under ⊆.

b) Sketch a Hasse diagram showing all the elements of Hair+Eyes and
the relationships between its elements under ⊆.



364 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

8. Suppose that A = {⊥,a} and B = {⊥,b,c,d} are elementary domains.

a) Sketch a Hasse diagram showing all seven elements of A→B and the
relationships between its elements under ⊆.

b) Give an example of one function in Fun(A,B) that is not monotonic.

c) Sketch a Hasse diagram showing all the elements of AxB and the
relationships between its elements under ⊆.

9. Suppose A = {⊥,a,b} and B = {⊥,c} are elementary domains.

a) Sketch a Hasse diagram showing all the elements of (A→B)+(AxB) and
their ordering under the induced partial order. Represent functions
as sets of ordered pairs. Since A→B and AxB are disjoint, omit the
tags on the elements, but provide subscripts for the bottom elements.

b) Give one example of a function in Fun(A→B,AxB) that is continuous
and one that is not monotonic.

10. Prove the following property:

A function f in Fun(A,B) is continuous if and only if both of the following
conditions hold.

a) f is monotonic.

b) For any ascending chain x1 ⊆ x2 ⊆ x3 ⊆ … in A, f(lubA{xi|i≥1}) ⊆
lubB{f(xi)|i≥1}.

11. Let A = {⊥,a1,a2,…,am} and B = {⊥,b1,b2,…,bn} be flat domains. Show that

a) Fun(A,B) has (n+1)m+1 elements.

b) A→B has n+(n+1)m elements.

12. Prove that inS and outA are continuous functions.

13. Prove that head and tail are continuous functions.

14. Tell whether these functions F : (N→N)→(N→N) are monotonic and/or
continuous.

a) F g n = if total(g) then g(n) else ⊥, where total(g) is true if and only if
g(n) is defined (not ⊥) for all proper n∈N.

b) F g n = if g = (λn .0) then 1 else 0.

c) F g n = if n∉dom(g) then 0 else ⊥, where dom(g) ={n∈N | g(n)≠⊥}
denotes the domain of g.



365

15. Let N = {⊥,0,1,2,3,…} be the elementary domain of natural numbers. A
function f : N→N is called strict  if f(⊥) = ⊥. Consider the function add1 :
N→N defined by add1(n) = n+1 for all n∈N with n≠⊥. Prove that if add1 is
monotonic, it must also be strict.

16. Consider the function F : (N→N) → (N→N) defined by

for g∈N→N, F g = λn . if g(n)=⊥ then 0 else 1

Describe F g1, F g2, and F g3 where the gk : N→N are defined by

g1(n) = n

g2(n) = if n>0 then n/0 else ⊥

g3(n) = if even(n) then n+1 else ⊥

17. Prove that if f∈Fun(A,B), where A and B are domains (cpo’s), is a con-
stant function (there is a b∈B such that f(a) = b for all a∈A), then f is
continuous.

18. An ascending chain x1 ⊆ x2 ⊆ x3 ⊆ … in a cpo A is called stationary  if
there is an n≥1 such that for all i≥n, xi = xn. Carefully prove the following
properties:

a) If every ascending chain in A is stationary and f∈Fun(A,B) is mono-
tonic, then f must be continuous.

b) If an ascending chain x1 ⊆ x2 ⊆ x3 ⊆ …  is not stationary, then for all
i≥1, xi ≠ lub{xj|j≥1}. Hint: Prove the contrapositive.

19. Prove the following lemma: If a1 ⊆ a2 ⊆ a3 ⊆ … and b1 ⊆ b2 ⊆ b3 ⊆ … are
ascending chains with the property that for each m≥1 there exists an
n≥1 such that am ⊆ bn, it follows that lub{ai|i≥1} ⊆ lub{bi|i≥1}.

10.3  FIXED-POINT SEMANTICS

Functions, and in particular recursively defined functions, are central to com-
puter science. Functions are used not only in programming but also in de-
scribing the semantics of programming languages as witnessed by the recur-
sive definitions in denotational specifications. Recursion definitions entail a
circularity that can make them suspect. Many of the paradoxes of logic and
mathematics revolve about circular definitions—for example, the set of all
sets. Considering the suspicious nature of circular definitions, how can we
be certain that function definitions have a consistent model? The use of do-
mains (complete partially ordered sets) and the associated fixed-point theory

10.3  FIXED-POINT SEMANTICS



366 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

to be developed below put recursive function definitions and denotational
semantics on a firm, consistent foundation.

Our goal is to develop a coherent theory of functions that makes sense out of
recursive definitions. In describing fixed-point semantics we restate some of
the definitions from section 10.2 as we motivate the concepts. The discus-
sion breaks into two parts: (1) interpreting partial functions so that they are
total, and (2) giving meaning to a recursively defined function as an approxi-
mation of a sequence of “finite” functions.

First Step

We transform partial functions into analogous total functions.

Example 11 : Let f be a function on a few natural numbers with domain D =
{0,1,2} and codomain C = {0,1,2} and with its rule given as

f(n) = 2/n or as a set of ordered pairs: f = {<1,2>,<2,1>}.

Note that f(0) is undefined; therefore f is a partial function. Now extend f to
make it a total function.

f = {<0,?>,<1,2>,<2,1>}.

Add an undefined element to the codomain, C+ = {⊥C+,0,1,2}, and for symme-
try, do likewise with the domain, D+ = {⊥D+,0,1,2}.

Then define the natural extension  of f by having ⊥D+ map to ⊥C+ under f.

f+ = {<⊥,⊥>,<0,⊥>,<1,2>,<2,1>}.

From this point on, we drop the subscripts on ⊥ unless they are needed
to clarify an example. Finally, define a relationship that orders functions
and domains according to how “defined” they are, putting a lattice-like
structure on the elementary domains: For x,y∈D+, x⊆y if x=⊥ or x=y. It
follows that f⊆f+. ❚

This relation is read “f approximates f+” or “f is less defined than or equal to
f+”. D+ and C+ are examples of the flat domains of the previous section.

Consider the function g = {<⊥,⊥>,<0,0>,<1,2>,<2,1>}, which is an extension
of f+ that is slightly more defined. The relationship between the two functions
is denoted by f+ ⊆ g. Observe that the two functions agree where they are
both defined (do not map to ⊥).

Theorem: Let f+ be a natural extension of a function between two sets D and
C so that f+ is a total function from D+ to C+. Then f+ is monotonic and
continuous.



367

Proof: Let x1 ⊆ x2 ⊆ x3 ⊆ … be an ascending chain in the domain D+ = D∪{⊥D+}.
There are two possibilities for the behavior of the chain.

Case 1 : xi = ⊥D+ for all i≥1. Then lub{xi|i≥1} = ⊥D+, and f+(lub{xi|i≥1}) = f+(⊥D+)
= ⊥C+ = lub{⊥C+} = lub{f+(xi)|i≥1}.

Case 2 : xi = ⊥D+ for 1≤i≤k and ⊥D+ ≠ xk+1 = xk+2 = xk+3 = …, since once the
terms move above bottom, the sequence is constant in a flat domain. Then
lub{xi|i≥1} = xk+1, and f+(lub{xi|i≥1}) = f+(xk+1) = lub{⊥C+,f+(xk+1)} = lub{f+(xi)|i≥1}.
If f+ is continuous, it is also monotonic. ❚

Since many functions used in programming, such as “addition”, “less than”,
and “or”, are binary operations, their natural extensions need to be clarified.

Definition : The natural extension  of a function whose domain is a Carte-
sian product—namely, f : D1

+xD2
+x…xDn

+→C+—has the property that
f+(x1,x2,…,xn) = ⊥C whenever at least one xi=⊥. Any function that satisfies this
property is known as a strict  function. ❚

Theorem: If f+: D1
+xD2

+x…xDn
+→C+ is a natural extension where Di

+, 1≤i≤n,
and C+ are elementary domains, then f+ is monotonic and continuous.

Proof: Consider the case where n=2. We show f+ is continuous.
Let <x1,y1> ⊆ <x2,y2> ⊆ <x3,y3> ⊆ … be an ascending chain in D1

+xD2
+. Since

D1
+ and D2

+ are elementary domains, the chains {xi|i≥1} and {yi|i≥1} must
follow one of the two cases in the previous proof—namely, all ⊥ or eventually
constant proper values in D1

+ and D2
+, respectively.

Case 1 : lub{xi|i≥1} = ⊥D1
+ or lub{yi|i≥1} = ⊥D2

+ (or both). Then f+(lub{<xi,yi>|i≥1})
= f+(<lub{xi|i≥1},lub{yi|i≥1}>) = ⊥C because f+ is a natural extension and one
of its arguments is ⊥; furthermore, lub{f+(<xi,yi>)|i≥1}= lub{⊥C+} = ⊥C+, since
at least one of the chains must be all ⊥.

Case 2 : lub{xi|i≥1} = x∈D1 and lub{yi|i≥1} = y∈D2 (neither is ⊥). Since D1
+

and D2
+ are both elementary domains, there is an integer k such that xi = x

and yi = y for all i≥k. So f+(lub{<xi,yi>|i≥1}) = f+(<lub{xi|i≥1},lub{yi|i≥1}>) =
f+(<x,y>)∈C+  and lub{f+(<xi,yi>)|i≥1}= lub{⊥C+,f+(<x,y>)} = f+(<x,y>). ❚

Example 12 : Consider the natural extension of the conditional expression
operation (if a b c) = if a then b else c.

The natural extension unduly restricts the meaning of the conditional ex-
pression—for example, we prefer that the following expression returns 0 when
m=1 and n=0 instead of causing a fatal error: if n>0 then m/n else 0.

But if we interpret the undefined operation 1/0 as ⊥, when m=1 and n=0,

(if+ n>0 m/n 0) = (if+ false ⊥ 0) = ⊥ for a natural extension. ❚

10.3  FIXED-POINT SEMANTICS



368 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

As we continue with the development of fixed-point semantics, we drop the
superscript plus sign (+) on sets and functions since all sets will be assumed
to be domains (cpo’s) and all functions will be naturally extended unless
otherwise specified.

Second Step

We now define the meaning of a recursive definition of a function defined on
complete partially ordered sets (domains) as the limit of a sequence of ap-
proximations.

Example 13 : Consider a recursively defined function f : N→N where N =
{⊥,0,1,2,3,…} and

f(n) = if n=0 then 5 else if n=1 then f(n+2) else f(n-2). (†)

Two questions can be asked about a recursive definition of a function.

1. What function, if any, does this equation in f denote?

2. If the equation specifies more than one function, which one should be
selected?

Define a functional  F, a function on functions, by

F : (N→N)→(N→N) where
(F(f)) (n) = if n=0 then 5 else if n=1 then f(n+2) else f(n-2). (‡)

Assuming function application associates to the left, we usually omit the
parentheses with multiple applications, writing F f n for (F(f)) (n). A function,
f : N→N, satisfies the original definition (†) if and only if it is a fixed point  of
the definition of F (‡)—namely, F f n  = f(n) for all n∈N or just F f = f. ❚

Just in case this equivalence has not been understood, we go through it once
more carefully. Suppose f : D→C is a function defined recursively by f(x) =
α(x,f) for each x∈D where α(x,f) is some expression in x and f. Furthermore,
let F : (D→C)→(D→C) be the functional defined by F f x = α(x,f). Then F(f) = f
if and only if F f x = f x for all x∈D if and only if α(x,f) = f x for all x∈D, which
is the same as f(x) = α(x,f) for all x∈D. Observe that the symbol “f” plays
different roles in (†) and (‡). In the recursive definition (†), “f” is the name of
the function being defined, whereas in the functional definition (‡), “f” is a
formal parameter to the (nonrecursive) functional F being defined.

The notation of the lambda calculus is frequently used to define these
functionals.

F f = λn . if n=0 then 5 else if n=1 then f(n+2) else f(n-2)
or

F = λf . λn . if n=0 then 5 else if n=1 then f(n+2) else f(n-2).



369

Fixed points occur frequently in mathematics. For instance, solving simple
equations can be framed as fixed-point problems. Consider functions de-
fined on the set of natural numbers N and consider fixed points of the func-
tions—namely, n∈N such that g(n) = n.

Function Fixed points

g(n) = n2-6n 0 and 7

g(n) = n all n∈N

g(n) = n+5 none

g(n) = 2 2

For the first function, g(0) = 02-6•0 = 0 and g(7) = 72-6•7 = 7.

Certainly the function specified by a recursive definition must be a fixed
point of the functional F. But that is not enough. The function g = λn . 5 is a
fixed point of F in example 13 as shown by the following calculation:

F g = λn . if n=0 then 5 else if n=1 then g(n+2) else g(n-2)
= λn . if n=0 then 5 else if n=1 then 5 else 5
= λn . 5 = g.

The only problem is that this fixed point does not agree with the operational
view of the function definition. It appears that f(1) = f(3) = f(1) = … does not
produce a value, whereas g(1) = 5. We need to find a fixed point for F that
captures the entire operational behavior of the recursive definition.

When the functional corresponding to a recursive definition (equation) has
more than one fixed point, we need to choose one of them as the function
specified by the definition. It turns out that the fixed points of a suitable
functional are partially ordered by ⊆ in such a way that one of those func-
tions is less defined than all of the other fixed points. Considering all the
fixed points of a functional F, the least defined one makes sense as the func-
tion specified because of the following reasons:

1. Any fixed point of F embodies the information that can be deduced from F.

2. The least fixed point includes no more information than what must be
deduced.

Define the meaning of a recursive definition of a function to be the least fixed
point with respect to ⊆ of the corresponding functional F. We show next that
a unique least fixed point exists for a continuous functional. The following
theorem proves the existence and provides a method for constructing the
least fixed point.

Notation : We define fk for each k≥0 inductively using the rules:
f0(x) = x is the identity function and
fn+1(x) = f(fn(x)) for n≥0. ❚

10.3  FIXED-POINT SEMANTICS



370 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

Fixed-Point Theor em: If D with ⊆ is a complete partial order and g : D→D is
any monotonic and continuous function on D, then g has a least fixed point
in D with respect to ⊆.

Proof:

Part 1 : g has a fixed point. Since D is a cpo, g0(⊥) = ⊥ ⊆ g(⊥). Also, since g is
monotonic, g(⊥) ⊆ g(g(⊥)) = g2(⊥). In general, since g is monotonic, gi(⊥) ⊆
gi+1(⊥) implies gi+1(⊥) = g(gi(⊥)) ⊆ g(gi+1(⊥)) = gi+2(⊥). So by induction, ⊥ ⊆ g(⊥)
⊆ g2(⊥) ⊆ g3(⊥) ⊆ g4(⊥) ⊆ … is an ascending chain in D, which must have a
least upper bound u = lub{gi(⊥)|i≥0}∈D.

Then g(u) = g(lub{gi(⊥)|i≥0})

= lub{g(gi(⊥))|i≥0} because g is continuous

= lub{gi+1(⊥)|i≥0}

= lub{gi(⊥)|i>0} = u.
That is, u is a fixed point for g. Note that g0(⊥) = ⊥ has no effect on the least
upper bound of {gi(⊥)|i≥0}.

Part 2 : u is the least fixed point. Let v∈D be another fixed point for g. Then
⊥ ⊆ v and g(⊥) ⊆ g(v) = v, the basis step for induction. Suppose gi(⊥) ⊆ v. Then
since g is monotonic, gi+1(⊥) = g(gi(⊥)) ⊆ g(v) = v, the induction step. There-
fore, by mathematical induction, gi(⊥) ⊆ v for all i≥0. So v is an upper bound
for {gi(⊥)|i≥0}. Hence u ⊆ v by the Lub lemma, since u is the least upper
bound for {gi(⊥)|i≥0}. ❚

Corollary : Every continuous functional F : (A→B)→(A→B), where A and B
are domains, has a least fixed point Ffp : A→B, which can be taken as the
meaning of the (recursive) definition corresponding to F.

Proof: This is an immediate application of the fixed-point theorem. ❚

Example 13 (r evisited) : Consider the functional F : (N→N)→(N→N) that we
defined earlier corresponding to the recursive definition (†),

F f n  = if n=0 then 5 else if n=1 then f(n+2) else f(n-2). (‡)

Construct the ascending sequence

⊥ ⊆ F(⊥) ⊆ F2(⊥) ⊆ F3(⊥) ⊆ F4(⊥) ⊆ …

and its least upper bound following the proof of the fixed-point theorem.

Use the following abbreviations:

f0(n) = F0 ⊥ n  = ⊥(n)

f1(n) = F ⊥ n  = F f0 n

f2(n) = F (F ⊥) n = F f1 n

fk+1(n) = Fk+1 ⊥ n  = F fk n, in general.



371

Now calculate a few terms in the ascending chain

f0 ⊆ f1 ⊆ f2 ⊆ f3 ⊆ ….

f0(n) = F0 ⊥ n = ⊥(n) = ⊥ for n∈N, the everywhere undefined function.

f1(n) = F ⊥ n = F f0 n
= if n=0 then 5 else if n=1 then f0(n+2) else f0(n-2)
= if n=0 then 5 else if n=1 then ⊥(n+2) else ⊥(n-2)
= if n=0 then 5 else ⊥

f2(n) = F2 ⊥ n = F f1 n

= if n=0 then 5 else if n=1 then f1(n+2) else f1(n-2)

= if n=0 then 5
else if n=1 then f1(3)

else (if n-2=0 then 5 else ⊥)
= if n=0 then 5

else if n=1 then ⊥
else if n=2 then 5 else ⊥

f3(n) = F3 ⊥ n = F f2 n
= if n=0 then 5 else if n=1 then f2(n+2) else f2(n-2)
= if n=0 then 5

else if n=1 then f2(3)
else (if n-2=0 then 5

else if n-2=1 then ⊥
else if n-2=2 then 5 else ⊥)

= if n=0 then 5
else if n=1 then ⊥

else if n=2 then 5
else if n=3 then ⊥

else if n=4 then 5 else ⊥

f4(n) = F4 ⊥ n = F f3 n

= if n=0 then 5 else if n=1 then f3(n+2) else f3(n-2)

= if n=0 then 5
else if n=1 then f3(3)

else (if n-2=0 then 5
else if n-2=1 then ⊥

else if n-2=2 then 5
else if n-2=3 then ⊥

else if n-2=4 then 5 else ⊥)

10.3  FIXED-POINT SEMANTICS



372 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

= if n=0 then 5
else if n=1 then ⊥

else if n=2 then 5
else if n=3 then ⊥

else if n=4 then 5
else if n=5 then ⊥

else if n=6 then 5 else ⊥

A pattern seems to be developing.

Lemma : For all i≥0, fi(n) = if n<2i and even(n) then 5 else ⊥
= if n<2i then (if even(n) then 5 else ⊥) else ⊥.

Proof: The proof proceeds by induction on i.

1. By the previous computations, for i = 0 (also i= 1, 2, 3, and 4)
fi(n) = if n<2i then (if even(n) then 5 else ⊥) else ⊥

2. As the induction hypothesis, assume that fi(n) = if n<2i then (if even(n)
then 5 else ⊥) else ⊥, for some arbitrary i≥0.
Then
fi+1(n) = F fi n

= if n=0 then 5 else if n=1 then fi(n+2) else fi(n-2)

= if n=0 then 5
else if n=1 then fi(3)

else (if n-2<2i then (if even(n–2) then 5 else ⊥) else ⊥)
= if n=0 then 5

else if n=1 then ⊥
else (if n<2i+2 then (if even(n) then 5 else ⊥) else ⊥)

= if n<2(i+1) then (if even(n) then 5 else ⊥) else ⊥.
Therefore our pattern for the fi is correct. ❚

The least upper bound of the ascending chain f0 ⊆ f1 ⊆ f2 ⊆ f3 ⊆ …, where fi(n)
= if n<2i then (if even(n) then 5 else ⊥) else ⊥, must be defined (not ⊥) for any
n where some fi is defined, and must take the value 5 there. Hence the least
upper bound is

Ffp(n) = (lub{fi|i≥0}) n
= (lub{Fi ⊥|i≥0}) n
= if even(n) then 5 else ⊥, for all n∈N,

and this function can be taken as the meaning of the original recursive defi-
nition. Figure 10.11 shows the chain of approximating functions as sets of
ordered pairs, omitting the undefined (⊥) values. Following this set theoretic
viewpoint, the least upper bound of the ascending chain can be taken as the
union of all these functions, lub{fi|i≥0} = ∪{fi|i≥0}, to get a function that is
undefined for all odd values.



373

f0 = ∅

f1 = { <0,5> }

f2 = { <0,5>,<2,5> }

f3 = { <0,5>,<2,5>,<4,5> }

f4 = { <0,5>,<2,5>,<4,5>,<6,5> }

f5 = { <0,5>,<2,5>,<4,5>,<6,5>,<8,5> }

f6 = { <0,5>,<2,5>,<4,5>,<6,5>,<8,5>,<10,5> }
 : :
fk = { <0,5>,<2,5>,<4,5>,<6,5>,<8,5>,<10,5>,…,<2•k-2,5> }
 : :

Figure 10.11: Approximations to Ffp

Remember that the definition of the function lub{fi|i≥0} is given as the least
upper bound of the fi’s on individual values of n,

(lub{fi|i≥0}) n = lub{fi(n)|i≥0}.

The procedure for computing a least fixed point for a functional can be
described as an operator on functions F : D→D.

fix : (D→D)→D where
fix = λF . lub{Fi(⊥)|i≥0}.

The least fixed point of the functional

F = λf . λn . if n=0 then 5 else if n=1 then f(n+2) else f(n-2)

can then be expressed as Ffp = fix F where D = N→N.

For F : (N→N)→(N→N), fix has type fix : ((N→N)→(N→N))→(N→N).

The fixed-point operator fix provides a fixed point for any continuous func-
tional—namely, the least defined function with this fixed-point property.

Fixed-Point Identity :  F(fix F) = fix F.

Summary : Recapping the fixed-point semantics of functions, we start with a
recursive definition, say fac : N→N, where

fac n = if n=0 then 1 else n•fac(n-1) or

fac = λn . if n=0 then 1 else n•fac(n-1)

Operationally, the meaning of fac on a value n∈N results from unfolding the
definition enough times, necessarily a finite number of times, until the basis
case is reached. For example, we calculate fac(4) by the following process:

fac(4) = if 4=0 then 1 else 4•fac(3) = 4•fac(3)
= 4•(if 3=0 then 1 else 3•fac(2)) = 4•3•fac(2)

10.3  FIXED-POINT SEMANTICS



374 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

= 4•3•(if 2=0 then 1 else 2•fac(1)) = 4•3•2•fac(1)
= 4•3•2•(if 1=0 then 1 else 1•fac(0)) = 4•3•2•1•fac(0)
= 4•3•2•1•1 = 24

The problem with providing a mathematical interpretation of this unfolding
process is that we cannot predict ahead of time how many unfoldings of the
definition are required. The idea of fixed-point semantics is to consider a
corresponding (nonrecursive) functional

Fac : (N→N)→(N→N) where

Fac = λf . λn . if n=0 then 1 else n•f(n-1)

and construct terms in the ascending chain

⊥ ⊆ Fac(⊥) ⊆ Fac2(⊥) ⊆ Fac3(⊥) ⊆ Fac4(⊥) ⊆ ….

Using the abbreviations faci = Faci(⊥) for i≥0, the chain can also be viewed as
fac0 ⊆ fac1 ⊆ fac2 ⊆ fac3 ⊆ fac4 ⊆ ….

A careful investigation of these “partial” functions faci : N→N reveals that

fac0 n = ⊥

faci n = Faci(⊥) n
= Fac(faci-1) n
= if n<i then n! else ⊥  for i≥1.

The proof that this pattern is correct for the functions in the ascending chain
is left as an exercise. It follows that any application of fac to a natural num-
ber can be handled by one of these nonrecursive approximating functions
faci. For instance, fac 4 = fac5 4, fac 100 = fac101 100, and in general fac m =
facm+1 m.

The purpose of each approximating function faci = Faci(⊥) is to embody any
calculation of the factorial function that entails fewer than i unfoldings of the
recursive definition. Fixed-point semantics gives the least upper bound of
these approximating functions as the meaning of the original recursive defi-
nition of fac. The ascending chain, whose limit is the least upper bound,
lub{faci|i≥0} = lub{Faci ⊥|i≥0}, is made up of finite functions, each consistent
with its predecessor in the chain, and having the property that any computa-
tion of fac can be obtained by one of the functions far enough out in the
chain.

Continuous Functionals

To apply the theorem about the existence of a least fixed point to the
functionals F as described in the previous examples, it must be established
that these functionals are continuous.



375

Writing the conditional expression function if-then-else as a function
if : TxNxN→N or alternatively taking a curried version if : T→N→N→N, these
functionals take the form

F f n = if(n=0, 5, if(n=1, f(n+2), f(n–2))) uncurried if

Fac f n = (if n=0 1 n•f(n–1)) curried if

Since it has already been proved that the natural extension of an arbitrary
function on elementary domains is continuous, parts of these definitions are
known to be continuous—namely, the functions defined by the expressions
“n=0”, “n+2”, and “n–1”. Several lemmas will fill in the remaining properties
needed to verify the continuity of these and other functionals.

Lemma : A constant function f : D→C, where f(x) = k for some fixed k∈C and
for all x∈D, is continuous given either of the two extensions

1. The natural extension where f(⊥D) = ⊥C.

2. The “unnatural” extension where f(⊥D) = k.

Proof: Part 1 follows by a proof similar to the one for the earlier theorem
about the continuity of natural extensions, and part 2 is left as an exercise at
the end of this section. ❚

Lemma : An identity function f : D→D, where f(x) = x for all x in a domain D,
is continuous.

Proof: If x1 ⊆ x2 ⊆ x3 ⊆ … is an ascending chain in D, it follows that f(lub{xi|i≥1})
= lub{xi|i≥1} = lub{f(xi)|i≥1}. ❚

In defining the meaning of the conditional expression function,

if(a,b,c) = if a then b else c.

where if : TxDxD→D for some domain D and T = {⊥,true,false},

the natural extension is considered too restrictive. The preferred approach is
to define this function by

(if true then b else c) = b for any b,c∈D
(if false then b else c) = c for any b,c∈D
(if ⊥ then b else c) = ⊥D for any b,c∈D

Note that this is not a natural extension. It allows an undefined or “errone-
ous” expression in one branch of a conditional as long as that branch is
avoided when the expression is undefined. For example, h(nil) is defined for
the function

h(L) = if L≠nil then head(L) else nil.

10.3  FIXED-POINT SEMANTICS



376 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

Lemma : The uncurried “if” function as defined above is continuous.

Proof: Let <t1,b1,c1> ⊆ <t2,b2,c2> ⊆ <t3,b3,c3> ⊆ … be an ascending chain in
TxDxD. Three cases need to be considered:

Case 1 : ti= ⊥T for all i≥1.

Case 2 : ti= true for all i≥k, for some fixed k.

Case 3 : ti= false for all i≥k, for some fixed k.

The details of this proof are left as an exercise. ❚

Lemma : A generalized composition of continuous functions is continuous—
namely, if f : C1xC2x…xCn→C is continuous and gi : Di→Ci is continuous for
each i, 1≤i≤n, then f°(g1,g2,…,gn) : D1xD2x…xDn→C, defined by
f°(g1,g2,…,gn) <x1,x2,…,xn> = f <g1(x1),g2(x2),…,gn(xn)> is also continuous.

Proof: This is a straightforward application of the definition of continuity and
is left as an exercise. ❚

The previous lemmas apply to functions on any domains. When considering
the continuity of functionals, say

F : (D→D)→(D→D) for some domain D

where F is defined by a rule of the form

F f d = some expression in f and d,
a composition will probably involve the “independent” variable f—for
example, in a functional such as

F : (N→N)→(N→N) where

F f n = n + (if n=0 then 0 else f(f(n-1))).

Lemma : If F1, F2, …, Fn are continuous functionals, say Fi : (D
n→D)→(Dn→D)

for each i, 1≤i≤n, the functional F : (Dn→D)→(Dn→D) defined by
F f d = f <F1 f d, F2 f d, …, Fn f d> for all f∈Dn→D and d∈Dn is also continuous.

Proof: Consider the case where n=1.
So F1 : (D→D)→(D→D), F : (D→D)→(D→D), and F f d = f <F1 f d> for all
f∈D→D and d∈D. Let f1 ⊆ f2 ⊆ f3 ⊆ … be an ascending chain in D→D. The
proof shows that lub{F(fi)|i≥1} = F(lub{fi|i≥1}) in two parts.

Part 1 : lub{F(fi)|i≥1} ⊆ F(lub{fi|i≥1}). For each i≥1, fi ⊆ lub{fi|i≥1}. Since F1 is
monotonic, F1(fi) ⊆ F1(lub{fi|i≥1}), which means that F1 fi d ⊆ F1 lub{fi|i≥1} d
for each d∈D.

Since fi is monotonic, fi <F1 fi d> ⊆ fi <F1 lub{fi|i≥1} d>. But F fi d = fi <F1 fi d>
and fi <F1 lub{fi|i≥1} d> ⊆ lub{fi|i≥1} <F1 lub{fi|i≥1} d>. Therefore, F fi d ⊆
lub{fi|i≥1} <(F1 lub{fi|i≥1} d> for each i≥1 and d∈D. So by the Lub lemma,
lub{F(fi)|i≥1} d = lub{F fi d|i≥1} ⊆ lub{fi|i≥1} <F1 lub{fi|i≥1} d> = F lub{fi|i≥1} d
for each d∈D.



377

Part 2 : F(lub{fi|i≥1}) ⊆ lub{F(fi)|i≥1}.
For any d∈D,
F lub{fi|i≥1} d = lub{fi|i≥1} <F1 lub{fj} d> by the definition of F

= lub{fi|i≥1} <lub{F1(fj)} d> since F1 is continuous
= lub{lub{fi|i≥1} <{F1(fj)} d>} since lub{fi|i≥1} is continuous
= lub{lub{fi <{F1(fj)} d>|i≥1}} by the definition of lub{fi|i≥1}. †

If j≤i, then fj ⊆ fi, F1 fj ⊆ F1 fi since F1 is monotonic, F1 fj d ⊆ F1 fi d for each
d∈D, and fi <F1 fj d> ⊆ fi <F1 fi d> since fi is monotonic.

If i<j, then fi ⊆ fj and fi <F1 fj d> ⊆ fj <F1 fj d> for each d∈D by the meaning
of ⊆.

Therefore fi <F1 fj d> ⊆ lub{fn <F1 fn d>|n≥1} for each i,j≥1.
But lub{fn <F1 fn d>|i≥1} = lub{F fn d|i≥1} = lub{F(fn)|i≥1} d by the defini-
tion of F. So fi <F1 fj d> ⊆ lub{F(fn)|n≥1} d for each i,j≥1,
and lub{fi <F1 fj d>|i≥1} ⊆ lub{F(fn)|n≥1} d for each j≥1.
Hence lub{lub{fi <F1 fj d>|i≥1}|j≥1} ⊆ lub{F(fn)|n≥1} d.
Combining with † gives F(lub{fi|i≥1}) d ⊆ lub{F(fn)|n≥1} d. ❚

Continuity Theor em: Any functional H defined by the composition of natu-
rally extended functions on elementary domains, constant functions, the iden-
tity function, the if-then-else conditional expression, and a function param-
eter f, is continuous.

Proof: The proof follows by structural induction on the form of the definition
of the functional. The basis is handled by the continuity of natural exten-
sions, constant functions, and the identity function, and the induction step
relies on the previous lemmas, which state that the composition of continu-
ous functions, possibly involving f, is continuous. The details are left as an
exercise. ❚

Example 14 : Before proceeding, we work out the least fixed point of another
functional by constructing approximating terms in the ascending chain.

H : (N→N)→(N→N) where

H h n = n + (if n=0 then 0 else h(h(n-1)))
= if n=0 then n else n+h(h(n-1)).

Consider the ascending chain h0 ⊆ h1 ⊆ h2 ⊆ h3 ⊆ … where h0 n = H0 ⊥ n =
⊥(n) and hi n = Hi ⊥ n = H hi-1 n for i≥1. Calculate terms of this sequence until
a pattern becomes apparent.

h0(n) = ⊥(n) = ⊥

h1(n) = H h0 n = H ⊥ n
= if n=0 then n else n+h0(h0(n-1))
= if n=0 then n else n+⊥(⊥(n-1))
= if n=0 then 0 else ⊥

10.3  FIXED-POINT SEMANTICS



378 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

Note that the natural extension of + is strict in ⊥.

h2(n) = H h1 n
= if n=0 then 0 else n+h1(h1(n-1))
= if n=0 then 0 else n+h1(if n-1=0 then 0 else ⊥)
= if n=0 then 0 else n+h1(if n=1 then 0 else ⊥)
= if n=0 then 0 else n+if n=1 then h1(0) else h1(⊥)
= if n=0 then 0 else if n=1 then n+0 else n+⊥
= if n=0 then 0 else if n=1 then 1 else ⊥

h3(n) = H h2 n

= if n=0 then 0 else n+h2(h2(n-1))

= if n=0 then 0
else n+h2(if n–1=0 then 0 else if n–1=1 then 1 else ⊥)

= if n=0 then 0
else n+h2(if n=1 then 0 else if n=2 then 1 else ⊥)

= if n=0 then 0
else if n=1 then 1+h2(0)

else if n=2 then 2+h2(1) else n+h2(⊥)
= if n=0 then 0

else if n=1 then 1
else if n=2 then 3 else ⊥

h4(n) = H h3 n

= if n=0 then 0 else n+h3(h3(n-1))

= if n=0 then 0
else n+h3(if n–1=0 then 0

else if n–1=1 then 1
else if n–1=2 then 3 else ⊥)

= if n=0 then 0
else n+h3(if n=1 then 0

else if n=2 then 1
else if n=3 then 3 else ⊥)

= if n=0 then 0
else if n=1 then 1+h3(0)

else if n=2 then 2+h3(1)
else if n=3 then 3+h3(3) else n+h3(⊥)

= if n=0 then 0
else if n=1 then 1

else if n=2 then 3
else if n=3 then ⊥ else ⊥

= h3(n)

Therefore hk(n) = h3(n) for each k≥3, and the least fixed point is
lub{hk|k≥0} = h3. Note that the last derivation shows that H h3 = h3. ❚



379

Fixed points for Nonrecursive Functions

Consider the function g(n) = n2 – 6n defined on the natural numbers N. The
function g allows two interpretations in the context of fixed-point theory.

First Interpr etation : The natural extension g+: N+→N+ of g is a continuous
function on the elementary domain N+ = N∪{⊥}. Then the least fixed point of
g+, which will be an element of N+, may be constructed as the least upper
bound of the ascending sequence

⊥ ⊆ g+(⊥) ⊆ g+(g+(⊥)) ⊆ g+(g+(g+(⊥))) ⊆ ….

But g+(⊥) = ⊥, and if (g+)k-1(⊥) = ⊥, then (g+)k(⊥) = g+((g+)k-1(⊥)) =  g+(⊥) = ⊥. So
by induction (g+)k(⊥) = ⊥ for any k≥1.

Therefore lub{(g+)k(⊥)|k≥0} = lub{⊥|k≥0} = ⊥ is the least fixed point.

In fact, g+ has three fixed points in N∪{⊥}: g+(0) = 0, g+(7) = 7, and g+(⊥) = ⊥.

0 7

⊥

Second Interpr etation : Think of g(n) = n2 – 6n as a rule defining a “recur-
sive” function that just has no actual recursive call of g.

The corresponding functional G : (N→N)→(N→N) is defined by the rule
G g n = n2 – 6n.

A function g satisfies the definition g(n) = n2 – 6n if and only if it is a fixed
point of G—that is, G g = g.

The fixed point construction proceeds as follows:
G0 ⊥ n = ⊥(n) = ⊥
G1 ⊥ n = n2 – 6n
G2 ⊥ n = n2 – 6n

:
Gk ⊥ n = n2 – 6n

:
Therefore the least fixed point is lub{Gk(⊥)|k≥0} = λn . n2 – 6n, which follows
the same definition rule as the original function g.

In the first interpretation we computed the least fixed point of the original
function g, while in the second we obtained the least fixed point of a func-
tional related to g. These two examples show that the least fixed point con-
struction can be applied to any continuous function, although its impor-
tance comes from giving a consistent semantics to functions specified by
actual recursive definitions.

10.3  FIXED-POINT SEMANTICS



380 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

Revisiting Denotational Semantics

In Chapter 9 we were tempted to define the meaning of a while  command in
Wren recursively with the semantic equation

execute [[while  E do C]] sto =
if evaluate [[E]] sto = bool(true)

then execute [[while  E do C]](execute [[C]] sto) else sto.

But this approach violates the principle of compositionality that states that
the meaning of any syntactic phrase may be defined only in terms of the
meanings of its proper subparts. This circular definition disobeys the prin-
ciple, since the meaning of execute [[while  E do C]] is defined in terms of
itself.

Now we can solve this problem by using a fixed-point operator in the defini-
tion of the while  command. The function execute [[while  E do C]]  satisfies the
recursive definition above if and only if it is a fixed point of the functional

W = λf . λs . if evaluate [[E]] s = bool(true) then f(execute [[C]] s) else s
= λf . λs . if evaluate [[E]] s = bool(true) then (f°execute [[C]]) s else s.

Therefore we obtain a nonrecursive and compositional definition of the mean-
ing of a while  command by means of

execute [[while  E do C]] = fix W.

We gain insight into both the while  command and fixed-point semantics by
constructing a few terms in the ascending chain whose least upper bound is
fix W,

W0 ⊥ ⊆ W1 ⊥ ⊆ W2 ⊥ ⊆ W3 ⊥ ⊆ … where fix W = lub{Wi(⊥)|i≥0}.

The fixed-point construction for W proceeds as follows:

W0(⊥) = λs . ⊥

W1(⊥) = W(W0 ⊥)
= λs . if evaluate [[E]] s = bool(true) then ⊥(execute [[C]] s) else s
= λs . if evaluate [[E]] s = bool(true) then ⊥ else s

Let exC stand for the function execute [[C]] and continue the construction.

W2(⊥) = W(W1 ⊥)

= λs . if evaluate [[E]] s = bool(true) then W1 ⊥ (exC s) else s

= λs . if evaluate [[E]] s = bool(true)
then (if evaluate [[E]] (exC s) = bool(true)

then ⊥ else exC s)
else s



381

W3(⊥) = W(W2 ⊥)

= λs . if evaluate [[E]] s = bool(true) then W2 ⊥ (exC s) else s

= λs . if evaluate [[E]] s = bool(true)
then (if evaluate [[E]] (exC s) = bool(true)

  then (if evaluate [[E]] (exC (exC s)) = bool(true)
then ⊥ else exC (exC s))

  else (exC s))
else s

= λs . if evaluate [[E]] s = bool(true)
then (if evaluate [[E]] (exC s) = bool(true)

  then (if evaluate [[E]] (exC2 s) = bool(true)
then ⊥ else (exC2 s))

  else (exC s))
else s

W4(⊥) = λs . if evaluate [[E]] s = bool(true)
then (if evaluate [[E]] (exC s) = bool(true)

  then (if evaluate [[E]] (exC2 s) = bool(true)
then (if evaluate [[E]] (exC3 s) = bool(true)

then ⊥ else (exC3 s))
else (exC2 s))

  else (exC s))
else s

In general,
Wk+1(⊥) = W(Wk ⊥)

= λs . if evaluate [[E]] s = bool(true)
then (if evaluate [[E]] (exC s) = bool(true)

then (if evaluate [[E]] (exC2 s) = bool(true)
then (if evaluate [[E]] (exC3 s) = bool(true)

:
then (if evaluate [[E]] (exCk s) = bool(true)

then ⊥ else (exCk s))
else (exCk-1 s))

:
else (exC2 s))

  else (exC s))
else s

The function Wk+1(⊥) allows the body C of the while  to be executed up to k
times, which means that this approximation to the meaning of the while
command can handle any instance of a while  with at most k iterations of the
body. Any application of a while  command will have some finite number of
iterations, say n. Therefore its meaning is subsumed in the approximation
Wn+1(⊥). The least upper bound of this ascending sequence provides seman-

10.3  FIXED-POINT SEMANTICS



382 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

tics for the while  command: execute [[while  E do C]] = fix W = lub{Wi(⊥)|i≥0}.
Unlike previous examples of fixed-point constructions, we cannot derive a
closed form representation of the least fixed point because of the complexity
of the definition.

Another way to view the definition of execute [[while  E do C]] is in terms of the
fixed-point identity, W(fix W) = fix W, where

W= λf . λs . if evaluate [[E]] s = bool(true) then f(execute [[C]] s) else s.

In this context, execute [[while  E do C]] = fix W. Now define loop = fix W.

Then
execute [[while  E do C]] = loop

where loop s = (W loop) s
= loop

where loop s = if evaluate [[E]] s = bool(true)
then loop(execute [[C]] s) else s.

The local function “loop” is the least fixed point of W. Following this approach
produces the compositional definition of execute [[while  E do C]] that we used
in our specification of Wren in Figure 9.11.

Fixed-Point Induction

Since recursively defined functions get their meaning from the least fixed-
point construction, properties of these functions can be established by means
of induction on the construction of the least fixed point lub{Fi(⊥)|i≥0}. For
instance, alternate definitions and properties of “closed form” definitions can
frequently be proved using fixed-point induction.

Let Φ(f) be a predicate that describes a property for an arbitrary function f
defined recursively. To show Φ holds for the least fixed point Ffp of the func-
tional F corresponding to a recursive definition of f, two conditions are needed.

Part 1 :Show by induction that Φ holds for each element in the ascending
chain

⊥ ⊆ F(⊥) ⊆ F2(⊥) ⊆ F3(⊥) ⊆ ….

Part 2 :Show that Φ remains true when the least upper bound is taken.

Part 2 is handled by defining a class of predicates with the necessary prop-
erty, the so-called admissible predicates.

Definition : A predicate is called admissible  if it has the property that when-
ever the predicate holds for each term in an ascending chain of functions, it
also must hold for the least upper bound of that chain. ❚



383

Theorem: Any finite conjunction of inequalities of the form α(F) ⊆ β(F), where
α and β are continuous functionals, is an admissible predicate. This includes
terms of the form α(F) = β(F).

Proof: The proof of this theorem is beyond the scope of this text. See the
further readings at the end of the chapter. ❚

Mathematical induction is used to verify the condition in Part 1.

Given a functional F : (D→D)→(D→D) for some domain D and an admissible
predicate Φ(f), show the following properties:

(a) Φ(⊥) holds where ⊥ : D→D.

(b) For any i≥0, if Φ(Fi(⊥)), then Φ(Fi+1(⊥)).

An alternate version of condition (b) is

(b') For any f : D→D, if Φ(f), then Φ(F(f)).

Either formulation is sufficient to infer that the predicate Φ holds for every
function in the ascending chain {Fi(⊥)|i≥0}.

We illustrate fixed-point induction with a simple example.

Example 15 : Let f : N→N be defined by f(n) = if n=0 then 1 else 3n2-n+f(n-1).
Prove that f ⊆ λn . n3+n2. The recursively defined function f corresponds to
the functional F : (N→N)→(N→N) given by

F f n = if n=0 then 0 else 3n2-n+f(n-1).

Let Φ(f) be the predicate f ⊆ λn . n3+n2.

(a) Since ⊥ ⊆ λn . n3+n2, Φ(⊥) holds.

(b') Suppose Φ(f)—that is, f ⊆ λn . n3+n2.

Then F f n = if n=0 then 0 else 3n2-n+f(n-1)

⊆ if n=0 then 0 else 3n2-n+(n-1)3+(n-1)2

= if n=0 then 0 else 3n2-n+n3-3n2+3n-1+n2-2n+1

= if n=0 then 0 else n3+n2 = n3+n2 for n≥0. ❚

A property proved by fixed-point induction may involve two functions, say
Φ(f,g). Then satisfying the hypothesis (Part 1) for induction involves the fol-
lowing two steps:

(a) Φ(⊥,⊥).

(b') For any f and g given by functionals F and G, Φ(f,g) implies Φ(F(f),G(g)).

10.3  FIXED-POINT SEMANTICS



384 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

Example 16 : A recursive definition of a function is called tail r ecursive  if
each recursive call of the function is the last computation performed by the
function. For example, the factorial function can be defined recursively by

fac n = if n=0 then 1 else n•fac(n-1)

or it can be given a tail recursive definition using

tailfac (n,p) = if n=0 then p else tailfac(n-1,n•p)

where the factorial of n results from the call, tailfac(n,1).

The correctness of the tail-recursive approach can be verified by fixed-point
induction. The functionals that correspond to these two recursive definitions
have the form

F : (N→N)→(N→N), where F f n = if n=0 then 1 else n•f(n-1)

and

G : (NxN→N)→(NxN→N), where G g (n,p) = if n=0 then p else g(n-1,n•p).

We want to prove that Ffp n = Gfp (n,1) for all n∈N. The result follows from a
stronger assertion—namely, that p•Ffp(n) = Gfp (n,p) for all n,p∈N.

Let Φ(f,g) be the predicate “p•f(n) = g(n,p) for all n,p∈N”.

(a) Since f0 n= ⊥ = g0(n,p) for all n,p∈N, Φ(f0,g0) holds.

(b) Suppose Φ(fi,gi)—that is, p•fi(n) = gi(n,p) for all n,p∈N. Note that for
some values of n, both sides of this equation are ⊥.

Then gi+1(n,p) = G gi (n,p)
= if n=0 then p else gi(n-1,n•p)
= if n=0 then p else n•p•fi(n-1) (induction hypothesis)
= p•(if n=0 then 1 else n•fi(n-1))
= p•fi+1(n).

Therefore by fixed-point induction Φ(Ffp,Gfp) holds—that is,

p•Ffp(n) = Gfp (n,p) for all n∈N.

The verification of fac n = tailfac(n,1) follows taking p=1, since fac is Ffp
and tailfac is Gfp. ❚

The property p•fac n = tailfac(n,p) can be verified using normal mathematical
induction on n as well.

Exercises

1. Show that the converse of the theorem about natural extensions is not
true—namely,



385

False Theor em: Let g be an extension of a function between two sets D
and C so that g is a total function from D+ to C+. If g is monotonic and
continuous, then g is the natural extension of f.

2. Use the construction of the functions hi
 as in the example in this section

to find the least fixed point for these functionals. State the recursive
definitions that give rise to these functionals.

a) H f n  = if n=0 then 3 else f(n+1)

b) H f n  = if n=0 then 0 else (2n–1)+f(n–1)

3. Prove by induction that the approximating functions for the recursive
definition

fac n = if n=0 then 1 else n•fac(n-1)

have the form

fac0 n = ⊥
faci n = if n<i then n! else ⊥  for i≥1.

4. Prove that the “unnatural” extension of a constant function is continu-
ous.

5. Complete the proof that if : TxNxN→N is continuous and also show that
if : T→N→N→N is continuous.

6. Prove that a generalized composition of continuous functions is con-
tinuous.

7. Find a simple (nonrecursive) definition for each of these functions in
N→N using a fixed-point construction.

a) g(n) = if n>0 then 2+g(n–1) else 0

b) h(n) = if n=0 then 0 else if n=1 then h(n+1)–1 else h(n–1)+1

c) f(n) = if n=0 then 0 else if n=1 then f(n-1)+1 else n2

d) g(n) = if n=0 then 1 else 2n+g(n–1)

e) h(n) = if n=0 then 1 else if n=1 then 2 else 4n–4+h(n–2)

f) f(n) = if n=0 then f(n+1)+1 else 1

g) f(n) = if n>100 then n–10 else f(f(n+11))  (McCarthy’s 91 function)

8. Consider the following functional defined on functions over the natural
numbers:

G : (N→N)→(N→N)
G = λg . λn . if n=0 then 2 else g(n)

10.3  FIXED-POINT SEMANTICS



386 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

a) Give and justify a recursive definition that corresponds to this func-
tional—that is, an operational definition of a function that will be a
fixed point of G.

b) Define four different functions, g0, g1, g2, and g3, that are fixed points
of the functional G, including the least fixed point, g0. Carefully prove
that g0 and g1 are fixed points of G.

c) Draw a diagram showing the relationship “is less defined than or
equal” between these four functions.

d) Informally describe the operational behavior of the recursive defini-
tion in part a). Which of the four fixed-point functions has the closest
behavior to the operational view?

9. Let T = {⊥,true,false} be the elementary domain of Boolean values with
the bottom element ⊥. The function and : T x T → T must agree with the
following truth table:

and true false ⊥

true true false ?

false false false ?

⊥ ? ? ?

Complete this truth-table in two ways to produce two different mono-
tonic versions of the function and defined on T. Explain how these two
and functions correspond to the possible interpretations of the predefined
Boolean and function in a programming language such as Pascal.

10. Prove the Continuity Theorem:

Any functional H defined by the composition of naturally extended func-
tions on elementary domains, constant functions, the identity function,
the if-then-else conditional expression, and a function variable f, is con-
tinuous.

11. Use fixed-point induction to prove the equality of the following functions
in N→N:

f(n) = if n>5 then n-5 else f(f(n+13))

g(n) = if n>5 then n-5 else g(n+8)

12. Use fixed point-induction to prove the equality of the following functions
in NxN→N:

f(m,n) = if m=0 then n else f(2•m,n)+3

g(m,n) = if m=0 then n else g(2•m,n+3)

Hint: Let Φ(f,g) be ∀m>0∀n[f(m,n)=g(m,n) and g(m,n+3)=g(m,n)+3].



387

13. Let f : N→N be a function defined by a recursive rule of the form

f(n) = if p(n) then n else f(f(h(n))),

where p:N→T and h:N→N are two arbitrary functions.

Use fixed-point induction to show that f°f = f (f is idempotent).
Hint: Let Φ(g) be “f(g(n)) = g(n) for all n∈N”.

14. Let D be the set of natural numbers. Prove that the fixed-point operator

fix : (D→D)→D where
fix = λF . lub{Fi(⊥)|i≥0}

is monotonic and continuous.

15. Let N be the domain of natural numbers. The set of finite lists of natural
numbers can be specified by the recursive definition L = {nil } ∪ (NxL),
where nil is a special constant symbol. One way to give meaning to such
a recursive definition is to take L to be the least fixed point of the func-
tion F(X) = {nil} ∪ (NxX)—namely, L = F(L).

a) Define and prove those properties that F must satisfy to guarantee
the existence of a least fixed point.

b) Carefully describe the first four terms in the ascending chain that is
used in constructing the least fixed point for F.

16. (Thanks to Art Fleck at the University of Iowa for this problem.) Context-
free grammars can be viewed as systems of equations where the
nonterminals are regarded as variables (or unknowns) over sets of strings;
the solution for the start symbol yields the language to be defined. In
general, such an equation system has solutions that are tuples of sets,
one for each nonterminal. Such solutions can be regarded as fixed points
in that when they are substituted in the right-hand side, the result is
precisely the solution again. For example (using ε for the null string), the
grammar

A ::= aAc | B
B ::= bB | C
C ::= ε | C

corresponds to the transformation on triples <X,Y,Z> of sets defined
by

f(<X,Y,Z>) = <{a}•X•{c} ∪ Y, {b}•Y ∪ Z, {ε} ∪ Z>,
whose fixed point <A, B, C> then satisfies the set equations

A = {a}•A•{c} ∪ B
B = {b}•B ∪ C
C = {ε} ∪ C

for appropriate A,B,C ⊆ {a,b,c}*. For instance, the equations above are
satisfied by the sets A = {an b* cn | n≥0}, B = b*, C = {ε}.

10.3  FIXED-POINT SEMANTICS



388 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

Show that the equation system corresponding to the grammar above
has more than one possible solution so that simply seeking an arbitrary
solution is insufficient for formal language purposes. However, the least
fixed point solution provides exactly the language normally defined by
the grammar. Illustrate how the first few steps of the ascending chain in
the fixed-point construction lead to the desired language elements for
the grammar above, and discuss the connection with derivations in the
grammar.
Note: We have the natural partial order for tuples of sets where

<S1, …, Sk> ⊆ <T1, … , Tk> if Si ⊆ Ti for all i, 1≤i≤k.

17. Prove Park’s Induction Principle: If f : D→D is a continuous function on
a domain D and d∈D such that f d ⊆ d, it follows that fix f ⊆ d.

18. Let A and B be two domains with functions f : A→B and g : B→A.
Prove that fix (f°g) = f(fix (g°f)).

10.4  LABORATORY: RECURSION IN THE LAMBDA CALCULUS

Before we implement a fixed-point finder to provide recursively defined func-
tions in the lambda calculus evaluator presented in Chapter 5, we describe
how a definition mechanism, like a macro system, can be added to the evalu-
ator. An example showing the definition and use of symbols follows.

>>> Evaluating the Lambda Calculus <<<
Enter name of source file: cube
    define Thrice = (L f x (f (f (f x))))
    define Sqr = (L x (mul x x))
    define Cube = (L x (mul x (Sqr x)))
    (Thrice Cube 2)
Successful Scan
Successful Parse
Result =  134217728
yes

Without the capability of forming definitions, the lambda expressions that
we want to evaluate get extremely large. Now the file submitted to the evalu-
ator will contain zero or more definitions followed by one lambda expression
to be evaluated. Symbols defined in earlier lines may be used in later defini-
tions.

The system maintains definitions of new symbols in a definition table Tab
using predicates extendTab and applyTab in the same with way that environ-



389

ments are handled with the SECD machine in Chapter 8 and Pelican in Chap-
ter 9. Processing the definitions decomposes into two parts: (1) elaboration
and (2) expansion. As the list of definitions is processed, the right side of
each definition must be expanded and a new binding added to the table.

elaborate(Tab,[def(X,E)|Defns],NewTab) :- expand(E,Tab,[ ],NewE),
extendTab(Tab,X,NewE,TempTab),
elaborate(TempTab,Defns,NewTab).

elaborate(Tab,[ ],Tab).

The expansion mechanism keeps track of the variable occurrences that have
been bound since only free occurrences of symbols are replaced. Moving
inside of an abstraction appends the lambda variable to the set of bound
variables BV.

expand(var(X),Tab,BV,var(X)) :- member(X,BV). % X is bound
expand(var(X),Tab,BV,E) :- applyTab(Tab,X,E). % X is free and defined
expand(var(X),Tab,BV,var(X)). % X is a free variable
expand(con(C),Tab,BV,con(C)). % C is a constant
expand(comb(Rator,Rand),Tab,BV,comb(NewRator,NewRand)) :-

expand(Rator,Tab,BV,NewRator), expand(Rand,Tab,BV,NewRand).
expand(lamb(X,E),Tab,BV,lamb(X,NewE)) :-

concat(BV,[X],NewBV), expand(E,Tab,NewBV,NewE).

The definition table is manipulated by two predicates. We add a binding
Ide|→Exp to the definition table Tab using extendTab.

extendTab(Tab,Ide,Exp,tab(Ide,Exp,Tab)).

We look up an identifier Ide in the definition table Tab using applyTab, which
fails if the identifier is not found.

applyTab(tab(Ide,Exp,Tab),Ide,Exp).

applyTab(tab(Ide1,Exp1,Tab),Ide,Exp) :- applyTab(Tab,Ide,Exp).

The scanner must be altered to recognize the reserved word define and the
equal symbol. The parser then produces a list of definitions of the form def(X,E)
together with the lambda expression to be evaluated. The definitions are
elaborated starting with an empty table nil, the lambda expression is ex-
panded, and then the new expression can be evaluated.

go  :- nl,write('>>> Evaluating the Lambda Calculus <<<'), nl, nl,
write('Enter name of source file:  '), nl, readfile(File), nl,
see(File), scan(Tokens), nl, write('Successful Scan'), nl, !,
seen, program(prog(D,E),Tokens,[eop]), write('Successful Parse'), nl, !,
elaborate(nil,D,Tab), expand(E,Tab,[ ],Expr), !,
evaluate(Expr,Result), nl, write('Result =  '), pp(Result),nl.

10.4  LABORATORY: RECURSION IN THE LAMBDA CALCULUS



390 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

Conditional Expressions

Recursive definitions require some way of choosing between the basis case and
the recursive case. An expression-oriented language such as the lambda calcu-
lus (or a functional programming language) uses a conditional expression

(if e1 e2 e3) = if e1 then e2 else e3.

Recall that function application is left associative so that the abstract syntax
tree for this expression takes the form

comb(comb(comb(con(if),e1),e2),e3)

where if has been added as another constant to the applied lambda calculus.
To see how to evaluate comb(con(if),e1), consider the behavior that we expect
when the value of e1 is true or false.

Case 1 : e1 evaluates to true. We want the value of comb(con(if),e1) to be a
selector function that takes the next value e2 and ignores the value e3 after
it. Therefore take the value of comb(con(if),e1) to be the parsed lambda ex-
pression lamb(x,lamb(y, var(x)). Then

comb(comb(comb(con(if),true),e2),e3)
⇒ comb(comb(lamb(x,lamb(y,var(x)),e2),e3)
⇒ comb(lamb(y,e2),e3)
⇒ e2

Case 2 : e1 evaluates to false. Now we want the value of comb(con(if),e1) to select
the second value, and so we take its value to be lamb(x,lamb(y,var(y)). The ex-
pression comb(comb(comb(con(if),false),e2),e3) is left for the reader to reduce.

The Prolog code to carry out the evaluation of “if” is shown below.

compute(if, true, lamb(x,(lamb(y,var(x))))).
compute(if, false, lamb(x,(lamb(y,var(y))))).

Now we can express a functional corresponding to a recursive definition in
the applied lambda calculus.

define Fac = (L f n (if (zerop n) 1 (mul n (f (sub n 1))))).

Notice here the use of a predicate “zerop” that tests whether its argument is
equal to zero or not.

Paradoxical Combinator

Given a mechanism (conditional expressions) for describing the functionals
corresponding to recursive definitions of functions, the next step is to pro-
vide an implementation of the fixed-point operator fix. The (untyped) lambda
calculus contains expressions that can replicate parts of themselves and



391

thereby act as fixed-point finders satisfying the fixed-point identity. The best
known such expression, called the paradoxical combinator , is given by

define Y = λf . (λx . f (x x)) (λx . f (x x))

or for the lambda calculus evaluator

define Y = (L f ((L x (f (x x))) (L x (f (x x))))).

A reduction proves that Y satisfies the fixed-point identity.

Y E = (λf . (λx . f (x x)) (λx . f (x x))) E
⇒ (λx . E (x x)) (λx . E (x x))
⇒ E ((λx . E (x x)) (λx . E (x x)))
⇒ E (λh . (λx . h (x x)) (λx . h (x x)) E)
⇒ E (Y E).

The careful reader will have noticed that this calculation follows normal or-
der reduction, a necessary prerequisite for having the Y combinator satisfy
the fixed-point identity. Following an applicative order strategy leads to a
nonterminating reduction.

Y E = (λf . (λx . f (x x)) (λx . f (x x))) E
⇒ (λf . f (λx . f (x x)) (λx . f (x x)))) E
⇒ (λf . f (f (λx . f (x x)) (λx . f (x x))))) E
⇒ ….

As motivation for the definition of Y, consider a lambda expression W with a
free variable f

define W  =  λx . f (x x),

and notice what happens when it is applied to itself.

W W = (λx . f (x x)) (λx . f (x x))  ⇒  f((λx . f (x x)) (λx . f (x x)))
= f(W W)  ⇒  f(f((λx . f (x x)) (λx . f (x x)))
= f(f(W W))  ⇒  f(f(f((λx . f (x x)) (λx . f (x x))))
= f(f(f(W W)))  ⇒  f(f(f(f(W W))))  ⇒ ….

By continuing this reduction, as many copies of f can be created as are needed.
The fixed-point operator (W W) for f replicates the function f any number of
times. The fixed-point operator Y can then be defined for an arbitrary func-
tion f by

Y f = W W
or abstracting the f

Y = λf . W W.

Actually, the lambda calculus has an infinite number of expressions that
can act as fixed-point operators. Three of these are given in the exercises.

10.4  LABORATORY: RECURSION IN THE LAMBDA CALCULUS



392 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

Using the paradoxical combinator, we can execute a function defined recur-
sively as shown by the following transcript of a computation with the facto-
rial function.

>>> Evaluating the Lambda Calculus <<<
Enter name of source file: fact8
  define Y = (L f ((L x (f (x x))) (L x (f (x x)))))
  define Fac = (L f n (if (zerop n) 1 (mul n (f (sub n 1)))))
  define Factorial = (Y Fac)
  (Factorial 8)
Successful Scan
Successful Parse
Result =  40320
yes

Without the mechanism for defining symbols, the expression must be writ-
ten in its expanded form,

((L f ((L x (f (x x))) (L x (f (x x)))))
(L f n (if (zerop n) 1 (mul n (f (sub n 1)))))

8) ,
but the results obtained from the lambda calculus evaluator are the same.

Fixed-Point Identity

A second approach to providing a fixed-point operator in the evaluator is to
code fix in the evaluator as a constant satisfying the fixed-point identity

F(fix F) = fix F.

All we have to do is add a reduction rule that carries out the effect of the
fixed-point identity from right to left so as to replicate the functional F—
namely, fix F ⇒ F(fix F). In the Prolog code for the evaluator, insert the follow-
ing clause just ahead of the clause for reducing other constants.

reduce(comb(con(fix),E),comb(E,comb(con(fix),E))).      % Fixed Point Operator

Also the constant “fix” must be added to the scanner and parser. A sample
execution follows.
Enter name of source file: fixfact8
  define Fac = (L f n (if (zerop n) 1 (mul n (f (sub n 1)))))
  (fix Fac 8)
Successful Scan
Successful Parse
Result =  40320
yes



393

To provide a better understanding of the effect of following the fixed-point
identity, consider the definition of factorial with its functional again.

fac n = if n=0 then 1 else n•fac(n-1) and

Fac = λf . λn . if n=0 then 1 else n•f(n-1).

The least fixed point of Fac, (fix Fac), serves as the definition of the factorial
function. The function (fix Fac) is not recursive and can be “reduced” using
the fixed-point identity

fix Fac ⇒ Fac(fix Fac).

The replication of the function encoded in the fix operator enables a reduc-
tion to create as many copies of the original function as it needs.

(fix Fac) 4 ⇒  (Fac (fix Fac)) 4
⇒  (λf . λn . if n=0 then 1 else n•f(n-1)) (fix Fac) 4
⇒  (λn . if n=0 then 1 else n•(fix Fac)(n-1)) 4
⇒  if 4=0 then 1 else 4•(fix Fac)(4-1)
⇒  4•((fix Fac) 3)  ⇒  4•((Fac (fix Fac)) 3)
⇒  4•((λf . λn . if n=0 then 1 else n•f(n-1)) (fix Fac) 3)
⇒  4•((λn . if n=0 then 1 else n•((fix Fac)(n-1)) 3)
⇒  4•(if 3=0 then 1 else 3•(fix Fac)(3-1))
⇒  4•3•((fix Fac) 2)  ⇒  4•3•(Fac (fix Fac)) 2)
⇒  4•3•((λf . λn . if n=0 then 1 else n•f(n-1)) (fix Fac) 2)
⇒  4•3•((λn . if n=0 then 1 else n•(fix Fac)(n-1)) 2)
⇒  4•3•(if 2=0 then 1 else 2•(fix Fac)(2-1))
⇒  4•3•2•((fix Fac) 1)  ⇒  4•3•2•((Fac (fix Fac)) 1)
⇒  4•3•2•((λf . λn . if n=0 then 1 else n•f(n-1)) (fix Fac) 1)
⇒  4•3•2•((λn . if n=0 then 1 else n•(fix Fac)(n-1)) 1)
⇒  4•3•2•(if 1=0 then 1 else 1•(fix Fac)(1-1))
⇒  4•3•2•1•((fix Fac) 0)  ⇒  4•3•2•1•((Fac (fix Fac)) 0)
⇒  4•3•2•1•((λf . λn . if n=0 then 1 else n•f(n-1)) (fix Fac) 0)
⇒  4•3•2•1•((λn . if n=0 then 1 else n•(fix Fac)(n-1)) 0)
⇒  4•3•2•1•(if 0=0 then 1 else 0•(fix Fac)(0-1))
⇒  4•3•2•1•1  =  24

Exercises

1. Add the definition mechanism to the lambda calculus evaluator.

2. Extend the lambda calculus evaluator to recognize and interpret the
conditional expression (if). Remember to add if to the list of reserved
words in the scanner.

10.4  LABORATORY: RECURSION IN THE LAMBDA CALCULUS



394 CHAPTER 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS

3. Show that each of the following expressions is a fixed-point operator in
the lambda calculus:

Yr = λh . (λg . λx . h (g g) x) (λg . λx . h (g g) x)

Yf = λh . (λx . h (λy . x x y)) (λx . h (λy . x x y))

Yg = (λx . λy . y (x x y)) (λx . λy . y (x x y))

4. Using the following definitions, calculate fib 4 by applying the Fixed-
Point Identity.

G = λg . λn . if n=0 then 0 else if n=1 then 1 else g(n-1) + g(n-2)

fib = fix G = fix (λg . λn . if n<2 then n else g(n-1) + g(n-2)).

5. Add several relational operators, such as = and <, to the lambda calcu-
lus evaluator and use them to test other recursive definitions.

10.5  FURTHER READING

Many of the books that contain material on denotational semantics also treat
domain theory. In particular, see [Allison86], [Schmidt88], [Stoy77], and
[Watt91]. David Schmidt’s book has a chapter on recursively defined do-
mains, including the inverse limit construction that justifies their existence.
[Paulson87] also contains material on domain theory. For a more advanced
treatment of domain theory, see [Mosses90] and [Gunter90]. Dana Scott’s
description of domains and models for the lambda calculus may be found in
[Scott76], [Scott80], and [Scott82].

The early papers on fixed-point semantics [Manna72] and [Manna73] are a
good source of examples, although the notation shows its age. Much of this
material is summarized in [Manna74]. This book contains a proof of the theo-
rem about admissible predicates for fixed-point induction. [Bird76] also con-
tains considerable material on fixed-point semantics.

Most books on functional programming or the lambda calculus contain dis-
cussions of the paradoxical combinator and the fixed-point identity. Good
examples include [Field88], [Peyton Jones87], and [Reade89]. For an advanced
presentation of recursion in the lambda calculus, see [Barendregt84].


