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Chapter 1
SPECIFYING SYNTAX

Language provides a means of communication by sound and written
symbols. Human beings learn language as a consequence of their life
experiences, but in linguistics—the science of languages—the forms

and meanings of languages are subjected to a more rigorous examination.
This science can also be applied to the subject of this text, programming
languages. In contrast to the natural languages, with which we communi-
cate our thoughts and feelings, programming languages can be viewed as
artificial languages defined by men and women initially for the purpose of
communicating with computers but, as importantly, for communicating al-
gorithms among people.

Many of the methods and much of the terminology of linguistics apply to
programming languages. For example, language definitions consist of three
components:

1. Syntax  refers to the ways symbols may be combined to create well-formed
sentences (or programs) in the language. Syntax defines the formal rela-
tions between the constituents of a language, thereby providing a struc-
tural description of the various expressions that make up legal strings in
the language. Syntax deals solely with the form and structure of symbols
in a language without any consideration given to their meaning.

2. Semantics  reveals the meaning of syntactically valid strings in a lan-
guage. For natural languages, this means correlating sentences and
phrases with the objects, thoughts, and feelings of our experiences. For
programming languages, semantics describes the behavior that a com-
puter follows when executing a program in the language. We might dis-
close this behavior by describing the relationship between the input and
output of a program or by a step-by-step explanation of how a program
will execute on a real or an abstract machine.

3. Pragmatics  alludes to those aspects of language that involve the users of
the language, namely psychological and sociological phenomena such as
utility, scope of application, and effects on the users. For programming
languages, pragmatics includes issues such as ease of implementation,
efficiency in application, and programming methodology.
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2 CHAPTER 1 SPECIFYING SYNTAX

Syntax must be specified prior to semantics since meaning can be given only
to correctly formed expressions in a language. Similarly, semantics needs to
be formulated before considering the issues of pragmatics, since interaction
with human users can be considered only for expressions whose meaning is
understood. In the current text, we are primarily concerned with syntax and
semantics, leaving the subject of pragmatics to those who design and imple-
ment programming languages, chiefly compiler writers. Our paramount goal
is to explain methods for furnishing a precise definition of the syntax and
semantics of a programming language.

We begin by describing a metalanguage for syntax specification called BNF.
We then use it to define the syntax of the main programming language em-
ployed in this text, a small imperative language called Wren. After a brief look
at variants of BNF, the chapter concludes with a discussion of the abstract
syntax of a programming language.

At the simplest level, languages are sets of sentences, each consisting of a
finite sequence of symbols from some finite alphabet. Any really interesting
language has an infinite number of sentences. This does not mean that it has
an infinitely long sentence but that there is no maximum length for all the
finite length sentences. The initial concern in describing languages is how to
specify an infinite set with notation that is finite. We will see that a BNF
grammar is a finite specification of a language that may be infinite.

1.1  GRAMMARS AND BNF

Formal methods have been more successful with describing the syntax of
programming languages than with explaining their semantics. Defining the
syntax of programming languages bears a close resemblance to formulating
the grammar of a natural language, describing how symbols may be formed
into the valid phrases of the language. The formal grammars that Noam
Chomsky proposed for natural languages apply to programming languages
as well.

Definition : A grammar < Σ,N,P,S> consists of four parts:

1. A finite set Σ of terminal symbols , the alphabet  of the language, that are
assembled to make up the sentences in the language.

2. A finite set N of nonter minal symbols  or syntactic categories , each of
which represents some collection of subphrases of the sentences.

3. A finite set P of productions  or rules  that describe how each nonterminal
is defined in terms of terminal symbols and nonterminals. The choice of
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nonterminals determines the phrases of the language to which we ascribe
meaning.

4. A distinguished nonterminal S, the start symbol , that specifies the prin-
cipal category being defined—for example, sentence or program. ❚

In accordance with the traditional notation for programming language gram-
mars, we represent nonterminals with the form “<category-name>” and pro-
ductions as follows:

<declaration> ::= var <variable list> : <type> ;

where “var”, “:” , and “;” are terminal symbols in the language. The symbol
“::=” is part of the language for describing grammars and can be read “is
defined to be” or “may be composed of ”. When applied to programming lan-
guages, this notation is known as Backus-Naur For m or BNF for the re-
searchers who first used it to describe Algol60. Note that BNF is a language
for defining languages—that is, BNF is a metalanguage . By formalizing syn-
tactic definitions, BNF greatly simplifies semantic specifications. Before con-
sidering BNF in more detail, we investigate various forms that grammars
may take.

The vocabulary  of a grammar includes its terminal and nonterminal sym-
bols. An arbitrary production has the form α ::= β where α and β are strings
of symbols from the vocabulary, and α has at least one nonterminal in it.
Chomsky classified grammars according to the structure of their produc-
tions, suggesting four forms of particular usefulness, calling them type 0
through type 3.

Type 0: The most general grammars, the unrestricted grammars , require
only that at least one nonterminal occur on the left side of a rule,
“α ::= β”—for example,

a <thing> b ::= b <another thing>.

Type 1: When we add the restriction that the right side contains no fewer
symbols than the left side, we get the context-sensitive gram-
mars—for example, a rule of the form

<thing> b ::= b <thing>.

Equivalently, context-sensitive grammars can be built using only
productions of the form “α <B> γ ::= αβγ”, where <B> is a
nonterminal, α, β, and γ are strings over the vocabulary, and β is
not an empty string. These rules are called context-sensitive be-
cause the replacement of a nonterminal by its definition depends
on the surrounding symbols.

Type 2: The context-fr ee grammars  prescribe that the left side be a single
nonterminal producing rules of the form “<A> ::= α”, such as

1.1  GRAMMARS AND BNF
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<expression> ::= <expression> *  <term>

where “* ” is a terminal symbol. Type 2 grammars correspond to
the BNF grammars and play a major role in defining programming
languages, as will be described in this chapter.

Type 3: The most restrictive grammars, the regular grammars , allow only
a terminal or a terminal followed by one nonterminal on the right
side—that is, rules of the form “<A> ::= a” or “<A> ::= a <A>”. A
grammar describing binary numerals can be designed using the
format of a regular grammar:

<binary numeral> ::= 0

<binary numeral> ::= 1

<binary numeral> ::= 0 <binary numeral>

<binary numeral> ::= 1 <binary numeral>.

The class of regular BNF grammars can be used to specify identifi-
ers and numerals in most programming languages.

When a nonterminal has several alternative productions, the symbol “|” sepa-
rates the right-hand sides of alternatives. The four type 3 productions given
above are equivalent to the following consolidated production:

    <binary numeral> ::= 0 | 1 | 0 <binary numeral> | 1 <binary numeral>.

Context-Free Grammars

As an example of a context-free grammar, consider the syntactic specifica-
tion of a small fragment of English shown in Figure 1.1. The terminal sym-
bols of the language are displayed in boldface. This grammar allows sen-
tences such as “the girl sang a song. ” and “the cat surprised the boy with
a song. ”.

The grammar is context-free because only single nonterminals occur on the
left sides of the rules. Note that the language defined by our grammar con-
tains many nonsensical sentences, such as “the telescope sang the cat by
a boy. ”. In other words, only syntax, and not semantics, is addressed by the
grammar.

In addition to specifying the legal sentences of the language, a BNF definition
establishes a structure for its phrases by virtue of the way a sentence can be
derived. A derivation begins with the start symbol of the grammar, here the
syntactic category <sentence>, replacing nonterminals by strings of symbols
according to rules in the grammar.
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 <sentence> ::= <noun phrase> <verb phrase> .

 <noun phrase> ::= <determiner> <noun>

| <determiner> <noun> <prepositional phrase>

 <verb phrase> ::= <verb> | <verb> <noun phrase>

| <verb> <noun phrase> <prepositional phrase>

 <prepositional phrase> ::= <preposition> <noun phrase>

 <noun> ::= boy | girl  | cat | telescope  | song  | feather

 <determiner> ::= a | the

 <verb> ::= saw | touched  | surprised  | sang

 <preposition> ::= by | with

Figure 1.1: An English Grammar

An example of a derivation is given in Figure 1.2. It uniformly replaces the
leftmost nonterminal in the string. Derivations can be constructed following
other strategies, such as always replacing the rightmost nonterminal, but
the outcome remains the same as long as the grammar is not ambiguous. We
discuss ambiguity later. The symbol ⇒ denotes the relation encompassing
one step of a derivation.

The structure embodied in a derivation can be displayed by a derivation
tree or parse tr ee in which each leaf node is labeled with a terminal symbol

<sentence> ⇒ <noun phrase> <verb phrase> .

⇒ <determiner> <noun> <verb phrase> .

⇒ the  <noun> <verb phrase> .

⇒ the  girl  <verb phrase> .

⇒ the  girl  <verb> <noun phrase> <prepositional phrase> .

⇒ the  girl  touched  <noun phrase> <prepositional phrase> .

⇒ the  girl  touched  <determiner> <noun> <prepositional phrase> .

⇒ the  girl  touched  the <noun> <prepositional phrase> .

⇒ the  girl  touched  the cat <prepositional phrase> .

⇒ the  girl  touched  the  cat <preposition> <noun phrase> .

⇒ the  girl  touched  the cat with  <noun phrase> .

⇒ the  girl  touched  the cat with  <determiner> <noun> .

⇒ the  girl  touched  the cat with  a <noun> .

⇒ the  girl  touched  the cat with  a feather  .

Figure 1.2: A Derivation

1.1  GRAMMARS AND BNF
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feather

<sentence>

<noun phrase> <verb phrase> .

<det> <noun>

the girl touched

the cat with

a

<verb> <noun phrase>

<det> <noun>

<prep phrase>

<prep> <noun phrase>

<det> <noun>

Figure 1.3: A Derivation Tree

and each interior node by a nonterminal whose children represent the right
side of the production used for it in the derivation. A derivation tree for the
sentence “the girl  touched  the cat with  a feather.” is shown in Figure 1.3.

Definition : A grammar is ambiguous  if some phrase in the language gener-
ated by the grammar has two distinct derivation trees. ❚

Since the syntax of a phrase determines the structure needed to define its
meaning, ambiguity in grammars presents a problem in language specifica-
tion. The English language fragment defined in Figure 1.1 allows ambiguity
as witnessed by a second derivation tree for the sentence “the girl touched
the cat with a feather .” drawn in Figure 1.4. The first parsing of the sen-
tence implies that a feather was used to touch the cat, while in the second it
was the cat in possession of a feather that was touched.

We accept ambiguity in English since the context of a discourse frequently
clarifies any confusions. In addition, thought and meaning can survive in
spite of a certain amount of misunderstanding. But computers require a
greater precision of expression in order to carry out tasks correctly. There-
fore ambiguity needs to be minimized in programming language definitions,
although, as we see later, some ambiguity may be acceptable.

At first glance it may not appear that our fragment of English defines an
infinite language. The fact that some nonterminals are defined in terms of
themselves—that is, using recursion—admits the construction of unbounded
strings of terminals. In the case of our English fragment, the recursion is
indirect, involving noun phrases and prepositional phrases. It allows the con-
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<sentence>

<noun phrase> <verb phrase> .

<det> <noun>

the girl touched

the cat

with

a feather

<verb> <noun phrase>

<det> <noun> <prep phrase>

<prep> <noun phrase>

<det> <noun>

Figure 1.4: Another Derivation Tree

struction of sentences of the form “the cat saw a boy with a girl with a boy
with a girl with a boy with a girl. ” where there is no upper bound on the
number of prepositional phrases.

To determine whether a nonterminal is defined recursively in a grammar, it
suffices to build a directed graph that shows the dependencies among the
nonterminals. If the graph contains a cycle, the nonterminals in the cycle are
defined recursively. Figure 1.5 illustrates the dependency graph  for the En-
glish grammar shown in Figure 1.1.

<sentence>

<verb phrase>

<noun phrase>

<determiner>

<noun>

<prepositional phrase>

<verb>
<preposition>

Figure 1.5: The Dependency Graph

1.1  GRAMMARS AND BNF
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Finally, observe again that a syntactic specification of a language entails no
requirement that all the sentences it allows make sense. The semantics of
the language will decide which sentences are meaningful and which are non-
sense. Syntax only determines the correct form of sentences.

Context-Sensitive Grammars

To illustrate a context-sensitive grammar, we consider a synthetic language
defined over the alphabet Σ = { a, b, c } using the productions portrayed in
Figure 1.6.

<sentence> ::= abc | a<thing>bc

<thing>b ::= b<thing>

<thing>c ::= <other>bcc

a<other> ::= aa | aa<thing>

b<other> ::= <other>b

Figure 1.6: A Context-Sensitive Grammar

The language generated by this grammar consists of strings having equal
numbers of a’s, b’s, and c’s in that order—namely, the set { abc, aabbcc ,
aaabbbccc , … }. Notice that when replacing the nonterminal <thing>, the
terminal symbol following the nonterminal determines which rule can be
applied. This causes the grammar to be context-sensitive. In fact, a result in
computation theory asserts that no context-free grammar produces this lan-
guage. Figure 1.7 contains a derivation of a string in the language.

<sentence> => a<thing>bc

=> ab<thing>c

=> ab<other>bcc

=> a<other>bbcc

=> aabbcc

Figure 1.7: A Derivation

Exercises

1. Find two derivation trees for the sentence “the girl saw a boy with a
telescope. ” using the grammar in Figure 1.1 and show the derivations
that correspond to the two trees.
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2. Give two different derivations of the sentence “the boy with a cat sang
a song. ”, but show that the derivations produce the same derivation
tree.

3. Look up the following terms in a dictionary: linguistics, semiotics, gram-
mar, syntax, semantics, and pragmatics.

4. Remove the syntactic category <prepositional phrase> and all related
productions from the grammar in Figure 1.1. Show that the resulting
grammar defines a finite language by counting all the sentences in it.

5. Using the grammar in Figure 1.6, derive the <sentence> aaabbbccc  .

6. Consider the following two grammars, each of which generates strings of
correctly balanced parentheses and brackets. Determine if either or both
is ambiguous. The Greek letter ε represents an empty string.

a) <string> ::= <string> <string> | ( <string> ) |[ <string> ]  | ε

b) <string> ::= ( <string> ) <string> | [ <string> ] <string> | ε

7. Describe the languages over the terminal set { a, b } defined by each of
the following grammars:

a) <string> ::= a <string> b | ab

b) <string> ::= a <string> a | b <string> b | ε

c) <string>::= a <B> | b <A>
<A> ::= a | a <string> | b <A> <A>
<B> ::= b | b <string> | a <B> <B>

8. Use the following grammar to construct a derivation tree for the sen-
tence “the girl that the cat that the boy touched saw sang a song. ”:

<sentence> ::= <noun phrase> <verb phrase> .

<noun phrase> ::= <determiner> <noun>

| <determiner> <noun> <relative clause>

<verb phrase> ::= <verb> | <verb> <noun phrase>

<relative clause> ::= that  <noun phrase> <verb phrase>

<noun> ::= boy | girl  | cat | telescope  | song  | feather

<determiner> ::= a | the

<verb> ::= saw | touched  |surprised  | sang

Readers familiar with computation theory may show that the language
generated by this grammar is context-free but not regular.

1.1  GRAMMARS AND BNF
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9. Identify which productions in the English grammar of Figure 1.1 can be
reformulated as type 3 productions. It can be proved that productions of
the form <A> ::= a1 a2 a3 …an <B> are also allowable in regular gram-
mars. Given this fact, prove the English grammar is regular—that is, it
can be defined by a type 3 grammar. Reduce the size of the language by
limiting the terminal vocabulary to boy, a, saw, and by and omit the
period. This exercise requires showing that the concatenation of two
regular grammars is regular.

1.2  THE PROGRAMMING LANGUAGE WREN

In this text, the formal methods for programming language specification will
be illustrated with an example language Wren and several extensions to it.
Wren is a small imperative language whose only control structures are the if
command for selection and the while  command for iteration. The name of
the language comes from its smallness and its dependence on the while
command (w in Wren). Variables are explicitly typed as integer  or boolean ,
and the semantics of Wren follows a strong typing discipline when using
expressions.

A BNF definition of Wren may be found in Figure 1.8. Observe that terminal
symbols, such as reserved words, special symbols (:=, +, …), and the letters
and digits that form numbers and identifiers, are shown in boldface for em-
phasis.

Reserved words are keywords provided in a language definition to make it
easier to read and understand. Making keywords reserved prohibits their
use as identifiers and facilitates the analysis of the language. Many program-
ming languages treat some keywords as predefined identifiers—for example,
“write” in Pascal. We take all keywords to be reserved words to simplify the
presentation of semantics. Since declaration sequences may be empty, one
of the production rules for Wren produces a string with no symbols, denoted
by the Greek letter ε.

The syntax of a programming language is commonly divided into two parts,
the lexical syntax  that describes the smallest units with significance, called
tokens , and the phrase-structur e syntax  that explains how tokens are ar-
ranged into programs. The lexical syntax recognizes identifiers, numerals,
special symbols, and reserved words as if a syntactic category <token> had
the definition:

<token> ::= <identifier> | <numeral> | <reserved word> | <relation>

| <weak op> | <strong op> | := | ( | ) | , | ; | :

where
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 <program> ::= program  <identifier> is <block>

 <block> ::= <declaration seq> begin <command seq> end

 <declaration seq> ::= ε | <declaration> <declaration seq>

 <declaration> ::= var <variable list> : <type> ;

 <type> ::= integer | boolean

 <variable list> ::= <variable> | <variable> , <variable list>

 <command seq> ::= <command> | <command> ; <command seq>

 <command> ::= <variable> := <expr> | skip

| read <variable> | write  <integer expr>

| while  <boolean expr> do <command seq> end while

| if <boolean expr> then  <command seq> end if

| if <boolean expr> then  <command seq> else  <command seq> end if

 <expr> ::= <integer expr> | <boolean expr>

 <integer expr> ::= <term> | <integer expr> <weak op> <term>

 <term> ::= <element> | <term> <strong op> <element>

 <element> ::= <numeral> | <variable> | ( <integer expr> ) | – <element>

 <boolean expr> ::= <boolean term> | <boolean expr> or <boolean term>

 <boolean term> ::= <boolean element>

         | <boolean term> and <boolean element>

 <boolean element> ::= true  | false  | <variable> | <comparison>

| not ( <boolean expr> ) | ( <boolean expr> )

 <comparison> ::= <integer expr> <relation> <integer expr>

 <variable> ::= <identifier>

 <relation> ::= <= | < | = | > | >= | <>

 <weak op> ::= + | –

 <strong op>  ::=  *  | /

 <identifier> ::= <letter> | <identifier> <letter> | <identifier> <digit>

 <letter> ::= a | b | c | d | e | f | g | h | i | j | k | l | m

         | n | o | p | q | r | s | t | u | v | w | x | y | z

 <numeral> ::= <digit> | <digit> <numeral>

 <digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure 1.8: BNF for Wren

<reserved word> ::= program  | is | begin  | end | var | integer

| boolean  | read | write  | skip  | while  | do | if

| then  | else  | and | or | true  | false  | not.

1.2  THE PROGRAMMING LANGUAGE WREN
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Such a division of syntax into lexical issues and the structure of programs in
terms of tokens corresponds to the way programming languages are nor-
mally implemented. Programs as text are presented to a lexical analyzer  or
scanner  that reads characters and produces a list of tokens taken from the
lexicon , a collection of possible tokens of the language. Since semantics
ascribes meaning to programs in terms of the structure of their phrases, the
details of lexical syntax are irrelevant. The internal structure of tokens is
immaterial, and only intelligible tokens take part in providing semantics to a
program. In Figure 1.8, the productions defining <relation>, <weak op>,
<strong op>, <identifier>, <letter>, <numeral>, and <digit> form the lexical
syntax of Wren, although the first three rules may be used as abbreviations
in the phrase-structure syntax of the language.

Ambiguity

The BNF definition for Wren is apparently free of ambiguity, but we still con-
sider where ambiguity might enter into the syntactic definition of a program-
ming language. Pascal allows the ambiguity of the “dangling else” by the
definitions

  <command> ::= if <boolean expr> then  <command>

 | if <boolean expr> then  <command> else  <command>.

The string “if expr1 then  if expr2 then  cmd1 else  cmd2” has two structural
definitions, as shown in Figure 1.9. The Pascal definition mandates the sec-
ond form as correct by adding the informal rule that an else  clause goes with
the nearest if command. In Wren this ambiguity is avoided by bracketing the
then  or else  clause syntactically with end if. These examples illustrate that
derivation trees can be constructed with any nonterminal at their root. Such
trees can appear as subtrees in a derivation from the start symbol <pro-
gram>.

Another source of ambiguity in the syntax of expressions is explored in an
exercise. Note that these ambiguities arise in recursive productions that al-
low a particular nonterminal to be replaced at two different locations in the
definition, as in the production

<command>  ::=  if  <boolean expr> then  <command> else  <command>.

This observation does not provide a method for avoiding ambiguity; it only
describes a situation to consider for possible problems. In fact, there exists
no general method for determining whether an arbitrary BNF specification is
ambiguousornot.
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<command>

<expr  >
1

<expr  >
2

<cmd  >
1

<cmd  >
2

if then else

if

<command>

then

<cmd  >
2

<expr  >
2

<cmd  >
1

<command>

<command>if <expr  >
1

if

then

then else

Figure 1.9: Two Structural Definitions

Context Constraints in Wren

Each program in Wren can be thought of as a string of tokens, although not
every string of tokens is a legal Wren program. The BNF specification re-
stricts the set of possible strings to those that can be obtained by a deriva-
tion from the nonterminal <program>. Even then, illegal programs remain.
The BNF notation can define only those aspects of the syntax that are con-
text-free, since each production can be applied regardless of the surround-
ing symbols. Therefore the program in Figure 1.10 passes the requirements
prescribed by the BNF grammar for Wren.

program  illegal is

var a : boolean;

begin

a := 5

end

Figure 1.10: An Illegal Wren Program

The error in the program “illegal” involves a violation of the context defined
by a declaration. The variable “a” has been declared of Boolean type, but in
the body of the program, an attempt is made to assign to it an integer value.
The classification of such an error entails some controversy. Language

1.2  THE PROGRAMMING LANGUAGE WREN
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implementers, such as compiler writers, say that such an infraction belongs
to the static semantics  of a language since it involves the meaning of sym-
bols and can be determined statically, which means solely derived from the
text of the program. We argue that static errors belong to the syntax, not the
semantics, of a language. Consider a program in which we declare a con-
stant:

const  c = 5;

In the context of this declaration, the following assignment commands are
erroneous for essentially the same reason: It makes no sense to assign an
expression value to a constant.

5 := 66;

c := 66;

The error in the first command can be determined based on the context-free
grammar (BNF) of the language, but the second is normally recognized as
part of checking the context constraints. Our view is that both errors involve
the incorrect formation of symbols in a command—that is, the syntax of the
language. The basis of these syntactic restrictions is to avoid commands that
are meaningless given the usual model of the language.

Though it may be difficult to draw the line accurately between syntax and
semantics, we hold that issues normally dealt with from the static text should
be called syntax, and those that involve a program’s behavior during execu-
tion be called semantics. Therefore we consider syntax to have two compo-
nents: the context-fr ee syntax  defined by a BNF specification and the con-
text-sensitive syntax  consisting of context conditions or constraints that
legal programs must obey. While the context-free syntax can be defined eas-
ily with a formal metalanguage BNF, at this point we specify the context
conditions for Wren informally in Figure 1.11.

1. The program name identifier may not be declared elsewhere in the program.

2. All identifiers that appear in a block must be declared in that block.

3. No identifier may be declared more than once in a block.

4. The identifier on the left side of an assignment command must be declared
as a variable, and the expression on the right must be of the same type.

5. An identifier occurring as an (integer) element must be an integer variable.

6. An identifier occurring as a Boolean element must be a Boolean variable.

7. An identifier occurring in a read command must be an integer variable.

Figure 1.11: Context Conditions for Wren
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In theory the context conditions can be prescribed using a context-sensitive
grammar, but these grammars are unsuitable for several reasons. For one,
they bear no resemblance to the techniques that are used to check context
conditions in implementing a programming language. A second problem is
that the expansion of a node in the derivation tree may depend on sibling
nodes (the context). Therefore we lose the direct hierarchical relationships
between nonterminals that furnish a basis for semantic descriptions. Fi-
nally, formal context-sensitive grammars are difficult to construct and un-
derstand. Later in the text, more pragmatic formal methods for defining the
context-sensitive aspects of programming languages will be investigated us-
ing attribute grammars, two-level grammars, and the methods of denotational
semantics and algebraic semantics.

An eighth rule may be added to the list of context conditions for Wren:

8. No reserved word may be used as an identifier.

Since a scanner recognizes reserved words and distinguishes them from iden-
tifiers, attaching tags of some sort to the identifiers, this problem can be
handled by the requirements of the BNF grammar. If a reserved word occurs
in a position where an identifier is expected, the context-free derivation fails.
Therefore we omit rule 8 from the list of context conditions.

The relationships between the languages specified in defining Wren are shown
in the diagram below:

All strings of terminal symbols

Sentences defined by 
the context-free grammar

Well-formed Wren programs that 
satisfy the context constraints

Semantic Errors in Wren

As any programmer knows, even after all syntax errors are removed from a
program, it may still be defective. The fault may be that the program ex-
ecutes to completion but its behavior does not agree with the specification of
the problem that the program is trying to solve. This notion of correctness
will be dealt with in Chapter 11. A second possibility is that the program
does not terminate normally because it has tried to carry out an operation

1.2  THE PROGRAMMING LANGUAGE WREN
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that cannot be executed by the run-time system. We call these faults seman-
tic or dynamic  errors. The semantic errors that can be committed while
executing a Wren program are listed in Figure 1.12.

1. An attempt is made to divide by zero.

2. A variable that has not been initialized is accessed.

3. A read command is executed when the input file is empty.

4. An iteration command (while ) does not terminate.

Figure 1.12: Semantic Errors in Wren

We include nontermination as a semantic error in Wren even though some
programs, such as real-time programs, are intended to run forever. In pre-
senting the semantics of Wren, we will expect every valid Wren program to
halt.

Exercises

1. Draw a dependency graph for the nonterminal <expr> in the BNF defini-
tion of Wren.

2. Consider the following specification of expressions:
<expr> ::= <element> | <expr> <weak op> <expr>
<element> ::= <numeral> | <variable>
<weak op> ::= + | –

Demonstrate its ambiguity by displaying two derivation trees for the
expression “a–b–c ”. Explain how the Wren specification avoids this prob-
lem.

3. This Wren program has a number of errors. Classify them as context-
free, context-sensitive, or semantic.

program  errors was
var a,b : integer ;
var p,b ; boolean ;

begin
a := 34;
if b≠0 then  p := true else  p := (a+1);
write  p; write  q

end



17

4. Modify the concrete syntax of Wren by adding an exponential operator ↑
whose precedence is higher than the other arithmetic operators (includ-
ing unary minus) and whose associativity is right-to-left.

5. This BNF grammar defines expressions with three operations, * , -, and
+, and the variables “a”, “b”, “c”, and “d”.

<expr>  ::= <thing> | <thing> *  <expr>

<object> ::= <element> | <element> – <object>

<thing> ::= <object> | <thing> + <object>

<element>  ::= a | b | c | d | (<object>)

a) Give the order of precedence among the three operations.

b) Give the order (left-to-right or right-to-left) of execution for each op-
eration.

c) Explain how the parentheses defined for the nonterminal <element>
may be used in these expressions. Describe their limitations.

6. Explain how the Wren productions for <identifier> and <numeral> can
be written in the forms allowed for regular grammars (type 3)—namely,
<A> ::= a or <A> ::= a <B>.

7. Explain the relation between left or right recursion in definition of ex-
pressions and terms, and the associativity of the binary operations (left-
to-right or right-to-left).

8. Write a BNF specification of the syntax of the Roman numerals less than
100. Use this grammar to derive the string “XLVII”.

9. Consider a language of expressions over lists of integers. List constants
have the form: [3,-6,1], [86], [ ]. General list expressions may be formed
using the binary infix operators

+, –, * , and @ (for concatenation),

where *  has the highest precedence, + and - have the same next lower
precedence, and @ has the lowest precedence. @ is to be right associa-
tive and the other operations are to be left associative. Parentheses may
be used to override these rules.

Example: [1,2,3] + [2,2,3] *  [5,-1,0] @ [8,21] evaluates to [11,0,3,8,21].

Write a BNF specification for this language of list expressions. Assume
that <integer> has already been defined. The conformity of lists for the
arithmetic operations is not handled by the BNF grammar since it is a
context-sensitive issue.

1.2  THE PROGRAMMING LANGUAGE WREN
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10. Show that the following grammar for expressions is ambiguous and pro-
vide an alternative unambiguous grammar that defines the same set of
expressions.

<expr> ::= <term> | <factor>
<term> ::= <factor> | <expr> + <term>
<factor> ::= <ident> | ( <expr> )  | <expr> *  <factor>
<ident> ::= a | b | c

11. Consult [Naur63] to see how Algol solves the dangling else problem.

12. Explain how the syntactic ambiguity of the term “a(5)” in Ada is re-
solved. (Note: Ada uses parentheses to enclose array subscripts.)

1.3  VARIANTS OF BNF

Several notational variations of BNF are in common usage for describing
context-free grammars. First we consider an alternate way of expressing regu-
lar grammars—namely, by regular expr essions . Each regular expression E
denotes some language L(E) defined over an alphabet Σ. Figure 1.13 exhibits
the language of regular expressions with ε representing the empty string,
lowercase letters at the beginning of the alphabet portraying symbols in Σ,
and uppercase letters standing for regular expressions.

Regular Expression Language Denoted

∅ ∅

ε { ε }

a { a }

(E • F) { uv | u∈L(E) and v∈L(F) } = L(E)•L(F)

(E | F) { u | u∈L(E) or u∈L(F) } = L(E) ∪ L(F)

(E*) { u1u2...un | u1,u2,,...,un∈L(E) and n≥0 }

Figure 1.13: Regular Expressions

The normal precedence for these regular operations is, from highest to low-
est, “*” (Kleene closure or star), “•” (concatenation), and “|” (alternation), so
that some pairs of parentheses may be omitted. Observe that a language over
an alphabet Σ is a subset of Σ*, the set of all finite length strings of symbols
from Σ.
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The BNF definition of <digit> in Wren is already in the form of a regular
expression. Numerals in Wren can be written as a regular expression using

 <numeral> ::= <digit> • <digit>*.

The concatenation operator “•” is frequently omitted so that identifiers can
be defined by

<identifier> ::= <letter> (<letter> | <digit>)*.

Several regular expressions have special abbreviations:

E+ = E • E* represents the concatenation of one or more strings from L(E).

En represents the concatenation of exactly n≥0 strings from L(E).

E?= ε | E  represents zero or one string from L(E).

For example, in a language with signed numerals, their specification can be
expressed as

<signed numeral>  ::=  (+ | –)? <digit>+,

and the context-sensitive language defined in Figure 1.6 can be described as
the set { anbncn | n≥1 }. Although this set is not regular, it can be described
succinctly using this extension of the notation. The new operators “+”, “n”,
and “?” have the same precedence as “*”.

The major reason for using the language of regular expressions is to avoid an
unnecessary use of recursion in BNF specifications. Braces are also em-
ployed to represent zero or more copies of some syntactic category, for ex-
ample:

<declaration seq> ::=  { <declaration> },

<command seq> ::= <command> { ; <command> }, and

<integer expr> ::= <term> { <weak op> <term> }.

In general, braces are defined by { E } = E*. The braces used in this notation
bear no relation to the braces that delimit a set. Since the sequencing of
commands is an associative operation, these abbreviations for lists lose no
information, but for integer expressions we no longer know the precedence
for weak operators, left-to-right or right-to-left. Generally, we use only abbre-
viations in specifying syntax when the lost information is immaterial. The
example of command sequences illustrates a place where ambiguity may be
allowed in a grammar definition without impairing the accuracy of the defini-
tion, at least for program semantics. After all, a command sequence can be
thought of simply as a list of commands. A derivation tree for a command
sequence can be represented using a nested tree structure or the multibranch
tree illustrated in Figure 1.14.

1.3  VARIANTS OF BNF
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<command seq> <command seq>

<command seq>

<command seq>

<command seq>

cmd 1

cmd2

cmd 3

cmd4

cmd1

cmd 2 cmd 3

cmd4

Figure 1.14: Derivation Trees for Command Sequences

Exercises

1. Use braces to replace recursion in specifying variable lists and terms in
Wren.

2. Specify the syntax of the Roman numerals less that 100 using regular
expressions.

3. Write a BNF grammar that specifies the language of regular expressions
in Figure 1.13 over the alphabet Σ = {a,b,c}. The grammar should enforce
the precedence rules for the operators.

4. Investigate possible algebraic laws for the binary operators in regular
expressions. Consider associative, commutative, and distributive laws
for the operators “•” and “|”. Prove properties that hold and give
counterexamples for those that do not. Do these binary operations have
identities?

5. Prove these special laws for “*”:

a) E* = ε | (E•E*)

b) E* = ε | (E*•E)

Hint: Show that the languages, sets of strings, denoted by the expres-
sions are equal.

6. Use regular expressions to define the following token classes:

a) Integer numerals (positive or negative) with no leading zeros.

b) Fixed point decimal numerals that must have at least one digit before
and after the decimal point.

c) Identifiers that allow lowercase letters and underscores but with the
properties that no underscore occurs at the beginning or the end of
the identifier and that it contains no two consecutive underscores.
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1.4  ABSTRACT SYNTAX

The BNF definition of a programming language is sometimes referred to as
the concrete syntax  of the language since it tells how to recognize the physi-
cal text of a program. Software utilities take a program as a file of characters,
recognize that it satisfies the context-free syntax for the language, and pro-
duce a derivation tree exhibiting its structure. This software usually decom-
poses into two parts: a scanner  or lexical analyzer  that reads the text and
creates a list of tokens and a parser  or syntactic analyzer  that forms a
derivation tree from the token list based on the BNF definition. Figure 1.15
illustrates this process.

Program
text

Token
list

Scanner Parser Derivation
tree

Figure 1.15: The Scanner and Parser

We can think of this process as two functions:

scan : Character* → Token*

parse : Token* → Derivation Tree

whose composition “parse ° scan” creates a derivation tree from a list of
characters forming the physical program.

The success of this process “parse ° scan” depends on the accuracy and
detail found in the syntactic specification, the BNF, of the programming lan-
guage. In particular, ambiguity in a language specification may make it im-
possible to define this function.

Abstract Syntax Trees

Those qualities of a BNF definition that make parsing possible also create a
resulting derivation tree containing far more information than necessary for
a semantic specification. For example, the categories of terms and elements
are required for accurate parsing, but when ascribing meaning to an expres-
sion, only its basic structure is needed. Consider the trees in Figures 1.16
and 1.17.

1.4  ABSTRACT SYNTAX
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<integer expr>

<weak op> <term>

<element><strong op>

<integer expr>

<term>

<term>

<element>

<integer expr>( )

–

+

* <weak op> <term><integer expr>

<term>

<element>

<element>

<element>

num(5) ide(a)

ide(b)

num(1)

<numeral>

<numeral>

<variable>

<identifier>

<variable>

<identifier>

Figure 1.16: A Derivation Tree for 5* a– (b+1)

The derivation tree retains all the information used in parsing including de-
tails that only the parser needs. On the other hand, an abstract  syntax tr ee
captures the syntactic structure of the expression completely in a much sim-
pler form. After all, the crucial property of the expression “5* a – (b+1)” is that
it is a difference of a product and a sum of certain numbers and variables.
Any other information is redundant. Figure 1.17 shows two possible abstract
syntax trees for the expression. In all three trees, we assume that the text
has already been tokenized (scanned).

In transforming a derivation tree into an abstract syntax tree, we generally
pull the terminal symbols representing operations and commands up to the
root nodes of subtrees, leaving the operands as their children. The second
tree in Figure 1.17 varies slightly from this principle in the interest of regu-
larity in expressions. Using this approach, this expression can be thought of
as a binary operation and two subexpressions. The choice of the left subtree
for the binary operation is arbitrary; it seems to suggest a prefix notation for
binary operations, but we are not talking about concrete syntax here, only
an abstract representation of certain language constructs. We may choose
any representation that we want as long as we can describe the constructs of
the language adequately and maintain consistency.
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–

+*

num(5) ide(a) ide(b) num(1)   num(5) ide(a) ide(b) num(1)

expr

expr

expr–

* +

Figure 1.17: Abstract Syntax Trees for 5* a– (b+1)

The literature of computer science contains considerable confusion between
derivation trees and abstract syntax trees; the term parse tree has been used
to refer to both kinds of trees. We explain the issue by viewing these trees as
abstractions of phrases in a programming language. Derivation trees ab-
stract derivations in the sense that one derivation tree can correspond to
several different derivations—for example, leftmost or rightmost. Further-
more, abstract syntax trees abstract derivation trees, since several strings in
the language may correspond to the same abstract syntax tree but yet have
different derivation trees; for example, “(a+5)–x/2” and “a+5–(x/2)” have the
same abstract syntax tree, although their derivation trees are different.

Abstract Syntax of a Programming Language

The point of abstract syntax is simply to communicate the structure of phrases
in terms of their semantics in a programming language as trees. Semantics
can be defined in terms of derivation trees and actually is with attribute
grammars, but most semantic methods are far more understandable when
based on a cleaner representation of the phrases in a language. As can be
seen from Figure 1.17, designing patterns for abstract syntax allows freedom
in format, but for a particular programming language specification, we want
uniform templates for the various parts of a language. The blueprints for the
abstract syntax trees of a programming language are specified by a collection
of syntactic categories or domains and a set of rules telling how categories
are decomposed into other categories or tokens.

To design the abstract syntax for a programming language, we need to deter-
mine which notions (nonterminals) are fundamental to the language and
which basic forms the constructs of the language may take. As an example,
consider the expressions in Wren—that is, those language phrases derivable
from the nonterminal <expr>. By observing the concrete syntax for Wren
(Figure 1.8), we see that expressions ultimately consist of operations (+, –,
and, not, and so on) applied to numerals, identifiers, and Boolean constants
(true  and false ). Therefore we reduce the nonterminals used to define ex-
pressions into three abstract syntactic categories: Expression, Numeral, and

1.4  ABSTRACT SYNTAX
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Identifier. We fold the categories of terms, elements, and comparisons into
Expression since they are simply special cases of expressions.

To find the abstract productions that specify the basic patterns of expres-
sions, we first repeat those BNF rules that define expressions in Wren, but
with the nonterminals <weak op>, <strong op>, <relation>, and <variable>
factored out:

<expr> ::= <integer expr> | <boolean expr>

<integer expr> ::= <term>

| <integer expr> + <term> | <integer expr> – <term>

<term> ::= <element> | <term> *  <element> | <term> / <element>

<element> ::= <numeral> | <identifier> | ( <integer expr> ) | – <element>

<boolean expr> ::= <boolean term> | <boolean expr> or <boolean term>

<boolean term> ::= <boolean element>

   | <boolean term> and <boolean element>

<boolean element> ::= true  | false  | <identifier> | <comparison>

| not ( <boolean expr> ) | ( <boolean expr> )

<comparison> ::= <integer expr> <= <integer expr>

| <integer expr> < <integer expr>

| <integer expr> = <integer expr>

| <integer expr> >= <integer expr>

| <integer expr> > <integer expr>

| <integer expr> <> <integer expr>

Observe that in a derivation

<expr> ⇒ <integer expr> ⇒ <term> ⇒ <element> ⇒ <numeral>,

the only essential information relative to Wren is that an expression can be a
numeral. Outside of the parsing problem, the intervening nonterminals play
no essential role in describing Wren. Therefore unit rules such as <integer
expr> ::= <term>, can be ignored unless they involve basic components of
expressions, such as numerals, identifiers, or essential nonterminals. So we
select only those rules from the BNF that describe the structure of possible
expressions. Omitting parenthesized expressions, the following list results:

<integer expr> + <term>

<integer expr> – <term>

<term> *  <element>

<term> / <element>

<numeral>
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<identifier>

– <element>

<boolean expr> or <boolean term>

<boolean term> and <boolean element>

true

false

not ( <boolean expr> )

<integer expr> <= <integer expr>

<integer expr> < <integer expr>

<integer expr> = <integer expr>

<integer expr> >= <integer expr>

<integer expr> > <integer expr>

<integer expr> <> <integer expr>

After the redundant nonterminals are merged into Expression, these basic
templates can be summarized by the following abstract production rules:

Expression ::= Numeral | Identifier | true  | false

| Expression Operator Expression | – Expression

| not(  Expression )

Operator ::= + | – | *  | / | or | and | <= | < | = | > | >= | <>

An abstract syntax for Wren is given in Figure 1.18. This abstract syntax
delineates the possible abstract syntax trees that may be produced by pro-
grams in the language. To avoid confusion with concrete syntax, we utilize a
slightly different notation for abstract production rules, using identifiers start-
ing with uppercase letters for syntactic categories.

Notice that a definition of abstract syntax tolerates more ambiguity since the
concrete syntax has already determined the correct interpretation of the sym-
bols in the program text. We investigate a formal description of abstract syn-
tax in Chapter 12, using the terminology of algebraic semantics.

We suggested earlier that parsing a program results in the construction of a
derivation tree for the program. As a consequence of adhering to the BNF
syntax of a language, any parsing algorithm must at least implicitly create a
derivation tree. But in fact we usually design a parser to generate an abstract
syntax tree instead of a derivation tree. Therefore the syntax of “parse” is
given by

parse : Token* → Abstract Syntax Tree.

1.4  ABSTRACT SYNTAX
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 Abstract Syntactic Categories
Program Type Operator

Block Command Numeral

Declaration Expression Identifier

 Abstract Production Rules
Program ::= program  Identifier is Block

Block ::= Declaration* begin Command+ end

Declaration ::= var Identifier+ : Type ;

Type ::= integer | boolean

Command ::= Identifier := Expression | skip  | read Identifier

| write Expression | while  Expression do Command+

| if Expression then  Command+

| if Expression then  Command+ else  Command+

Expression ::= Numeral | Identifier | true  | false

| Expression Operator Expression | – Expression

| not(  Expression)

Operator ::= + | – | *  | / | or | and | <= | < | = | > | >= | <>

Figure 1.18: Abstract Syntax for Wren

Generally, this parse function will not be one to one. The token lists for the
expressions “a+b-c” and “(a+b-c)” map to the same abstract syntax tree. The
main point of abstract syntax is to omit the details of physical representa-
tion, leaving only the forms of the abstract trees that may be produced. For
example, the abstract syntax has no need for parentheses since they are just
used to disambiguate expressions. Once this assessment has been done by
the parser, the resulting abstract trees have unambiguous meaning, since
the branching of trees accurately conveys the hierarchical structure of a
phrase. Whereas the concrete syntax defines the way programs in a lan-
guage are actually written, the abstract syntax captures the pure structure
of phrases in the language by specifying the logical relations (relative to the
intended semantics) between parts of the language. We can think of an ab-
stract syntax tree as embodying the derivation history of a phrase in the
language without mentioning all of the terminal and nonterminal symbols.

When we implement a parser using Prolog in Chapter 2, the parsing opera-
tion applied to the token string for the expression “5* a – (b+1)” will create a
Prolog structure:

expr(minus,expr(times,num(5),ide(a)),expr(plus,ide(b),num(1))),
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which is a linear representation of one of the abstract syntax trees in Figure
1.17. See Appendix A for a definition of Prolog structures.

In the abstract production rules, lists of declarations, commands, and iden-
tifiers are described by means of the closure operators “*” and “+”. An alter-
native approach used in many formal methods of specifying semantics in-
volves direct recursion as in:

command = command ; command | identifier := expression | skip  | ....

The closure operator “+” on commands ignores the occurrence of semicolons
between commands, but in abstract syntax semicolons are only cosmetic.
Although the abstract production rules in Figure 1.18 use reserved words,
these act only as mnemonic devices to help us recognize the phrases being
formulated. In fact, not all the reserved words are used in the productions,
only enough to suggest the structure of the programming constructs. Note
that we have deleted end if  and end while  for the sake of conciseness.

An alternative way of describing the abstract production rules is displayed in
Figure 1.19 where the definitions are given as tagged record structures. Ac-
tually, the notation used to specify the abstract productions is not crucial.
The important property of abstract syntax is embodied in the relationships
between the categories; for example, a while  command consists of an ex-
pression and a list of commands. As mathematical objects, the various cat-
egories are built from aggregations (Cartesian products), alternations (dis-
joint unions), and list structures. Any notations for these three constructors
can serve to define the abstract production rules. We explore these math-
ematical structures more carefully in Chapter 10.

As an example, consider abstract pattern of the command

while  n>0 do write  n; n:=n-1 end while .

Figure 1.20 shows an abstract syntax tree for this command based on the
abstract syntax defined in Figure 1.18. Since the body of a while command is
a command sequence, we need an extra level in the tree to represent the list
of commands. In contrast, following the abstract syntax specification in Fig-
ure 1.19 produces a structure representing a similar abstract syntax tree:

while(expr(>,ide(n),num(0)),
[write(ide(n)),assign(ide(n), expr(-,ide(n),num(1)))]).

The list of commands (a command sequence) in the body of the while com-
mand is represented as a list using brackets in the structure. This notation
agrees with that used by Prolog lists in the next chapter—namely, [a, b, c].
The abstract syntax tree of a complete Wren program as a Prolog structure
can be found at the beginning of Chapter 2. Notice the lists of variables,
declarations, and commands in the representation of that tree.

1.4  ABSTRACT SYNTAX
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Abstract Production Rules

Program ::= prog(Identifier, Block)

Block ::= block(Declaration*, Command+)

Declaration ::= dec(Type, Identifier+)

Type ::= integer | boolean

Command ::= assign(Identifier, Expression) | skip

| read(Identifier) | write(Expression)

| while(Expression, Command+) | if(Expression, Command+)

| ifelse(Expression, Command+, Command+)

Expression ::= Numeral | Identifier | true | false | not(Expression)

| expr(Operator, Expression, Expression) | minus(Expression)

Operator ::= + | – | *  | / | or | and | <= | < | = | > | >= | <>

Figure 1.19: Alternative Abstract Syntax for Wren

Although concrete syntax is essential to implementing programming lan-
guages, it is the abstract syntax that lies at the heart of semantic definitions.
The concrete syntax is incidental to language specification, but it is impor-
tant to users since it influences the way they think about a language. This
aspect of pragmatics is not of direct concern to us in studying the semantics
of programming languages.

num(0)ide(n)

num(1)

assign

while

>

–ide(n)

ide(n)

write

ide(n)

Figure 1.20: Abstract Syntax Tree

It can be argued that when designing a new programming language, we need
to formulate the abstract syntax along with the semantics so that the mean-
ing of a program emanates from a mapping

meaning : Abstract Syntax Trees → Semantic Objects
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where the semantic objects provide meaning for the various language con-
structs. Different approaches to semantics depend on the disparate kinds of
objects used to define meaning. Later we will see that this discussion is skewed
to the denotational approach to semantics, but viewing meaning as a func-
tion from syntactic phrases to some sort of semantic objects can be a useful
way of organizing formal semantics.

Given the abstract syntax of a programming language, the concrete syntax
can be defined by an operation

unparse : Abstract Syntax Trees → Concrete Syntax

where Concrete Syntax refers to derivation trees, to lists of tokens, or to lists
of characters representing program texts. Since two different phrases follow-
ing the concrete syntax may produce the same abstract syntax tree, unparse
may not be a function at all. To ensure that unparse is a well-defined func-
tion, some canonical representation of concrete phrases must be specified—
for example, taking expressions having the fewest parentheses. The correct-
ness of a parsing algorithm can be demonstrated by showing that it is the
inverse, in some sense, of the unparse function.

Exercises

1. Construct a derivation tree and an abstract syntax tree for the Wren com-
mand

“if n>0 then a := 3 else skip end if ”.

Also write the abstract tree as a Prolog structure.

2. Parse the following token list to produce an abstract syntax tree:
[while, not, lparen, ide(done), rparen, do, ide(n), assign,
 ide(n), minus, num(1), semicolon, ide(done), assign,
 ide(n), greater, num(0), end, while]

3. Draw an abstract syntax tree for the following Wren program:

program  binary is
var n,p : integer ;

begin
read n; p := 2;
while  p<=n do p := 2* p end while ;
p := p/2;
while  p>0 do

if n>= p then write  1; n := n–p else write  0 end if ;
p := p/2

end while
end

1.4  ABSTRACT SYNTAX
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4. Using the concrete syntax of Wren, draw abstract syntax trees or record-
like structures following the definition in Figure 1.19 for these language
constructs:

a) (a+7)* (n/2)

b) while  n>=0 do s:=s+(n* n); n:= n–1 end while

c) if a and b or c then r ead m; write  m else  a:=not(b and c) end if

1.5  FURTHER READING

The concepts and terminology for describing the syntax of languages derives
from Noam Chomsky’s seminal work in the 1950s—for example, [Chomsky56]
and [Chomsky59]. His classification of grammars and the related theory has
been adopted for the study of programming languages. Most of this material
falls into the area of the theory of computation. For additional material, see
[Hopcroft79] and [Martin91]. These books and many others contain results
on the expressiveness and limitations of the classes of grammars and on
derivations, derivation trees, and syntactic ambiguity.

John Backus and Peter Naur defined BNF in conjunction with the group that
developed Algol60. The report [Naur63] describing Algol syntax using BNF is
still one of the clearest presentations of a programming language, although
the semantics is given informally.

Most books on compiler writing contain extensive discussions of syntax speci-
fication, derivation trees, and parsing. These books sometimes confuse the
notions of concrete and abstract syntax, but they usually contain extensive
examples of lexical and syntactic analysis. We recommend [Aho86] and [Par-
sons92]. Compiler writers typically disagree with our distinction between syn-
tax and semantics, putting context constraints with semantics under the
name static semantics. Our view that static semantics is an oxymoron is
supported by [Meek90].

Abstract syntax was first described by John McCarthy in the context of Lisp
[McCarthy65a]. More material on abstract syntax and other issues pertain-
ing to the syntax of programming languages can be found in various text-
books on formal syntax and semantics, including [Watt91] and [Meyer90].
The book by Roland Backhouse concentrates exclusively on the syntax of
programming languages [Backhouse79].


