
565

Appendix A
LOGIC PROGRAMMING
WITH PROLOG

Imperative programming languages reflect the architecture of the under-
lying von Neumann stored program computer: Programs consist of
instructions stored in memory with a program counter determining which

instruction to execute next. Programs perform their computations by updat-
ing memory locations that correspond to variables. Programs are prescrip-
tive—they dictate precisely how a result is to be computed by means of a
sequence of commands to be performed by the computer. Assignment acts
as the primary operation, updating memory locations to produce a result
obtained by incremental changes to storage using iteration and selection
commands.

An alternative approach, logic programming, allows a programmer to de-
scribe the logical structure of a problem rather than prescribe how a com-
puter is to go about solving it. Based on their essential properties, languages
for logic programming are sometimes called:

1. Descriptive or Declarative Languages : Programs are expressed as known
facts and logical relationships about a problem that hypothesize the ex-
istence of the desired result; a logic interpreter then constructs the de-
sired result by making inferences to prove its existence.

2. Nonprocedural Languages : The programmer states only what is to be
accomplished and leaves it to the interpreter to determine how it is to be
proved.

3. Relational Languages : Desired results are expressed as relations or predi-
cates instead of as functions; rather than define a function for calculat-
ing the square of a number, the programmer defines a relation, say sqr(x,y),
that is true exactly when y = x2.

Imperative programming languages have a descriptive component, namely
expressions: “3* p + 2* q” is a description of a value, not a sequence of com-
puter operations; the compiler and the run-time system handle the details.
High-level imperative languages, like Pascal, are easier to use than assembly
languages because they are more descriptive and less prescriptive.



566 APPENDIX A LOGIC PROGRAMMING WITH PROLOG

The goal of logic programming is for languages to be purely descriptive, speci-
fying only what a program computes and not how. Correct programs will be
easier to develop because the program statements will be logical descriptions
of the problem itself and not of the execution process—the assumptions made
about the problem will be directly apparent from the program text.

Prolog

Prolog, a name derived from “Programming in Logic”, is the most popular
language of this kind; it is essentially a declarative language that allows a
few control features in the interest of acceptable execution performance. Prolog
implements a subset of predicate logic using the Resolution Principle, an
efficient proof procedure for predicate logic developed by Alan Robinson (see
[Robinson65]). The first interpreter was written by Alain Colmerauer and
Philippe Roussel at Marseilles, France, in 1972.

The basic features of Prolog include a powerful pattern-matching facility, a
backtracking strategy that searches for proofs, uniform data structures from
which programs are built, and the general interchangeability of input and
output.

Prolog Syntax

Prolog programs are constructed from terms that are either constants, vari-
ables, or structures.

Constants  can be either atoms or numbers:

• Atoms  are strings of characters starting with a lowercase letter or en-
closed in apostrophes.

• Numbers  are strings of digits with or without a decimal point and a minus
sign.

Variables  are strings of characters beginning with an uppercase letter or an
underscore.

Structur es consist of a functor  or function symbol , which looks like an
atom, followed by a list of terms inside parentheses, separated by commas.
Structures can be interpreted as predicates  (relations):

likes(john,mary).

male(john).

sitsBetween(X,mary,helen).



567

Structures can also be interpreted as structur ed objects  similar to records
in Pascal:

person(name('Kilgore','Trout'),date(november,11,1922))

tree(5, tree(3,nil,nil), tree(9,tree(7,nil,nil),nil))

Figure A.1 depicts these structured objects as trees.

5

3 9

7nil nil

nil nil

nil

person

name date

november'Kilgore' 'Trout' 192211

Figure A.1: Structured objects

A Prolog program is a sequence of statements, called clauses , of the form

P0 :- P1, P2, …, Pn.

where each of P0, P1, P2, …, Pn is an atom or a structure. A period  terminates
every Prolog clause. A clause can be read declaratively as

P0 is true if P1 and P2 and … and Pn are true

or procedurally as

To satisfy goal P0, satisfy goal P1 and then P2 and then … and then Pn.

In a clause, P0 is called the head  goal, and the conjunction of goals P1, P2, …,
Pn forms the body of the clause. A clause without a body is a unit clause  or
a fact :

“P.”  means “P is true” or “goal P is satisfied”.

A clause without a head, written

“:- P1,P2, …, Pn.”  or  “?- P1,P2, …, Pn.”

is a goal clause  or a query  and is interpreted as

“Are P1 and P2 and … and Pn true?”  or

“Satisfy goal P1 and then P2 and then … and then Pn”.

PROLOG SYNTAX



568 APPENDIX A LOGIC PROGRAMMING WITH PROLOG

To program in Prolog, one defines a database of facts about the given infor-
mation and conditional clauses or rules  about how additional information
can be deduced from the facts. A query sets the Prolog interpreter into action
to try to infer a solution using the database of clauses.

BNF Syntax for Prolog

Prolog is a relatively small programming language as evidenced by a BNF
specification of the core part of Prolog given in Figure A.2. The language
contains a large set of predefined predicates and notational variations such
as infix symbols that are not defined in this specification. In addition, Prolog
allows a special syntax for lists that will be introduced later.

<program> ::= <clause list> <query> | <query>

<clause list> ::= <clause> | <clause list> <clause>

<clause> ::= <predicate> . | <predicate> :- <predicate list> .

<predicate list> ::= <predicate> | <predicate list> , <predicate>

<predicate> ::= <atom> | <atom> ( <term list> )

<term list> ::= <term> | <term list> , <term>

<term> ::= <numeral> | <atom> | <variable> | <structure>

<structure> ::= <atom> ( <term list> )

<query> ::= ?- <predicate list> .

<atom> ::= <small atom> | ' <string> '

<small atom> ::= <lowercase letter> | <small atom> <character>

<variable> ::= <uppercase letter> | <variable> <character>

<lowercase letter> ::= a | b | c | d | … | x | y | z

<uppercase letter> ::= A | B | C | D | … | X | Y | Z | _

<numeral> ::= <digit> | <numeral> <digit>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<character> ::= <lowercase letter> | <uppercase letter>

| <digit> | <special>

<special> ::= + | - | *  | / | \ | ^  | ~ | : | . | ? | @ | # | $ | &

<string> ::= <character> | <string> <character>

Figure A.2: BNF for Prolog



569

A Prolog Example

The simple example in this section serves as an introduction to Prolog pro-
gramming for the beginner. Remember that a Prolog program consists of a
collection of facts and rules defined to constrain the logic interpreter in such
a way that when we submit a query, the resulting answers solve the prob-
lems at hand. Facts, rules, and queries can all be entered interactively, but
usually a Prolog programmer creates a file containing the facts and rules,
and then after “consulting” this file, enters only the queries interactively. See
the documentation for instructions on consulting a file with a particular imple-
mentation of Prolog.

We develop the example incrementally, adding facts and rules to the data-
base in several stages. User queries will be shown in boldface followed by the
response from the Prolog interpreter. Comments start with the symbol % and
continue to the end of the line.

Some facts: parent(chester,irvin).
parent(chester,clarence).
parent(chester,mildred).
parent(irvin,ron).
parent(irvin,ken).
parent(clarence,shirley).
parent(clarence,sharon).
parent(clarence,charlie).
parent(mildred,mary).

Some queries:

?- parent(chester,mildred).
yes

?- parent(X,ron).
X = irvin
yes

?- parent(irvin,X).
X = ron;
X = ken; % The user-typed semicolon asks the system for
no %   more solutions.

?- parent(X,Y).
X =chester
Y = irvin % System will list all of the parent pairs, one at a time,
yes %   if semicolons are entered.

Additional facts: male(chester). female(mildred).
male(irvin). female(shirley).

A PROLOG EXAMPLE



570 APPENDIX A LOGIC PROGRAMMING WITH PROLOG

male(clarence). female(sharon).
male(ron). female(mary).
male(ken).
male(charlie).

Additional queries:

?- parent(clarence,X), male(X).
X = charlie
yes

?- male(X), parent(X,ken).
X = irvin
yes

?- parent(X,ken), female(X).
no

Prolog obeys the “closed world assumption” that presumes that any predi-
cate that cannot be proved must be false.

?- parent(X,Y), parent(Y,sharon).
X = chester
Y = clarence
yes

These queries suggest definitions of several family relationships.

Some rules: father(X,Y) :- parent(X,Y), male(X).

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

paternalgrandfather(X,Y) :- father(X,Z), father(Z,Y).

sibling(X,Y) :- parent(Z,X), parent(Z,Y).

The scope of a variable in Prolog is solely the clause in which it occurs.

Additional queries:

?- paternalgrandfather(X,ken).
X = chester
yes

?- paternalgrandfather(chester,X).
X = ron;
X = ken;
X = shirley; % Note the reversal of the roles of input and output.
X = sharon;
X = charlie;
no



571

?- sibling(ken,X).
X = ron;
X = ken;
no

The inference engine concludes that ken is a sibling of ken since parent(irvin,ken)
and parent(irvin,ken) both hold. To avoid this consequence, the description of
sibling needs to be more carefully constructed.

Predefined Predicates

1. The equality predicate = permits infix notation as well as prefix.

?- ken = ken.
yes

?- =(ken,ron).
no

?- ken = X. % Can a value be found for X to make it the same as ken?
X = ken
yes % The equal operator represents the notion of unification.

2. “not” is a unary predicate:
not(P) is true if P cannot be proved and false if it can.

?- not(ken=ron).
yes

?- not(mary=mary).
no

The closed world assumption governs the way the predicate “not” works since
any goal that cannot be proved using the current set of facts and rules is
assumed to be false and its negation is assumed to be true. The closed world
assumption presumes that any property not recorded in the database is not
true. Some Prolog implementations omit the predefined predicate not because
its behavoir diverges from the logical not of predicate calculus in the pres-
ence of variables (see [Sterling86]). We have avoided using not in the labora-
tory exercises in this text.

The following is a new sibling rule (the previous rule must be removed):

sibling(X,Y) :- parent(Z,X), parent(Z,Y), not(X=Y).

Queries:

?- sibling(ken,X) .
X = ron;
no

PREDEFINED PREDICATES



572 APPENDIX A LOGIC PROGRAMMING WITH PROLOG

?- sibling(X,Y).
X = irvin
Y = clarence; % Predicate sibling defines a symmetric relation.
X = irvin % Three sets of siblings produce six answers.
Y = mildred;
X = clarence % The current database allows 14 answers.
Y = irvin;
X = clarence
Y = mildred;
X = mildred
Y = irvin;
Y = mildred
X = clarence % No semicolon here.
yes

A relation may be defined with several clauses:

closeRelative(X,Y) :- parent(X,Y).
closeRelative(X,Y) :- parent(Y,X).
closeRelative(X,Y) :- sibling(X,Y).

There is an implicit or between the three definitions of the relation closeRelative.
This disjunction may be abbreviated using semicolons as

closeRelative(X,Y) :- parent(X,Y) ; parent(Y,X) ; sibling(X,Y).

We say that the three clauses (or single abbreviated clause) define(s) a “pro-
cedure” named closeRelative with arity two (closeRelative takes two param-
eters). The identifier closeRelative may be used as a different predicate with
other arities.

Recursion in Prolog

We want to define a predicate for “X is an ancestor of Y”. This is true if

parent(X,Y) or
parent(X,Z) and parent(Z,Y) or
parent(X,Z), parent(Z,Z1), and parent(Z1,Y) or

: :

Since the length of the chain of parents cannot be predicted, a recursive
definition is required to allow an arbitrary depth for the definition. The first
possibility above serves as the basis for the recursive definition, and the rest
of the cases are handled by an inductive step.

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).



573

Add some more facts:

parent(ken,nora). female(nora).
parent(ken,elizabeth). female(elizabeth).

Since the family tree defined by the Prolog clauses is becoming fairly large,
Figure A.3 shows the parent relation between the twelve people defined in
the database of facts.

chester

irvin clarence

shirleyken ron charlie

sharon

mildred 

nora elizabeth

mary

Figure A.3: A Family Tree

Some queries:

?- ancestor(mildred,mary).
yes % because parent(mildred,mary).

?- ancestor(irvin,nora).
yes % because

% parent(irvin,ken)
% and ancestor(ken,nora) because parent(ken,nora).

?- ancestor(chester,elizabeth).

yes % because
% parent(chester,irvin)
% and ancestor(irvin,elizabeth)
% because parent(irvin,ken)
% and ancestor(ken,elizabeth) because parent(ken,elizabeth).

?- ancestor(irvin,clarence).
no % because parent(irvin,clarence) is not provable and

% whoever is substituted for Z it is impossible to
% prove parent(irvin,Z) and ancestor(Z,clarence).

All possibilities for Z are tried that make parent(irvin,Z) true, namely Z=ron
and Z=ken, and both ancestor(ron,clarence) and ancestor(ken,clarence) fail.

RECURSION IN PROLOG



574 APPENDIX A LOGIC PROGRAMMING WITH PROLOG

The reader is encouraged to write Prolog definitions for other predicates deal-
ing with family relationships—for example, mother, child, uncle, niece, ma-
ternal grandfather, first cousin, and descendant.

Control Aspects of Prolog

In pure logic programming, the predicates in a goal question may be consid-
ered in any order or in parallel since logical conjunction (and) is commuta-
tive and associative. Furthermore, alternate rules defining a particular predi-
cate (procedure) may be considered in any order or in parallel since logical
disjunction (or) is commutative and associative.

Since Prolog has been implemented with a concern for efficiency, its inter-
preters act with a deterministic strategy for discovering proofs.

1. In defining a predicate, the order in which clauses are presented to the
system (the rule or der or clause or der) is the order in which the inter-
preter tests them—namely, from top to bottom. Here the term “rule” in-
cludes any clause, including facts (clauses without bodies).

Rule order determines the order in which answers are found. Observe
the difference when the two clauses in ancestor are reversed.

ancestor2(X,Y) :- parent(X,Z), ancestor2(Z,Y).
ancestor2(X,Y) :- parent(X,Y).

?- ancestor(irvin,Y).
Y = ron, ken, nora, elizabeth % Four answers returned separately.

?- ancestor2(irvin,Y).
Y = nora, elizabeth, ron, ken % Four answers returned separately.

Depending on the nature of the query, different rule orders may have
different execution speeds when only a yes or no, or only one solution is
desired.

2. In defining a rule with a clause, the order in which terms (subgoals) are
listed on the right-hand side (the goal or der) is the order in which the
interpreter will try to satisfy them—namely, from left to right.

Goal order determines the shape of the search tree that the interpreter
explores in its reasoning. In particular, a poor choice of goal order may
permit a search tree with an infinite branch in which the inference en-
gine will become lost. The version below is ancestor2 with the subgoals in
the body of the first clause interchanged.

ancestor3(X,Y) :- ancestor3(Z,Y), parent(X,Z).

ancestor3(X,Y) :- parent(X,Y).



575

?- ancestor(irvin,elizabeth).
yes

?- ancestor3(irvin,elizabeth).

This query invokes a new query
ancestor3(Z,elizabeth), parent(irvin,Z).

which invokes
ancestor3(Z1,elizabeth), parent(Z,Z1), parent(irvin,Z).

which invokes
ancestor3(Z2,elizabeth), parent(Z1,Z2), parent(Z,Z1), parent(irvin,Z).

which invokes …

The eventual result is a message such as

“Out of local stack during execution; execution aborted.”

The problem with this last definition of the ancestor relation is the left recur-
sion with uninstantiated variables in the first clause. If possible, the leftmost
goal in the body of a clause should be nonrecursive so that a pattern match
occurs and some variables are instantiated before a recursive call is made.

Lists in Prolog

As a special notational convention, a list of terms in Prolog can be repre-
sented between brackets: [a, b, c, d]. As in Lisp, the head of this list is a, and
its tail is [b, c, d]. The tail of [a] is [ ], the empty list. Lists may contain lists: [5,
2, [a, 8, 2], [x], 9] is a list of five items.

Prolog list notation allows a special form to direct pattern matching. The
term [H | T] matches any list with at least one element:

H matches the head of the list, and

T matches the tail.

A list of terms is permitted to the left of the vertical bar. For example, the
term [X,a,Y | T] matches any list with at least three elements whose second
element is the atom a:

X matches the first element,

Y matches the third element, and

T matches the rest of the list, possibly empty, after the third item.

Using these pattern matching facilities, values can be specified as the inter-
section of constraints on terms instead of by direct assignment.

LISTS IN PROLOG



576 APPENDIX A LOGIC PROGRAMMING WITH PROLOG

Although it may appear that lists form a new data type in Prolog, in fact they
are ordinary structures with a bit of “syntactic sugar” added to make them
easier to use. The list notation is simply an abbreviation for terms constructed
with the predefined “.” function symbol and with [ ] considered as a special
atom representing the empty list. For example,

[a, b, c] is an abbreviation for .(a, .(b, .(c, [ ])))

[H | T] is an abbreviation for .(H, T)

[a, b | X] is an abbreviation for .(a, .(b, X))

Note the analogy with the relationship between lists and S-expressions in
Lisp. In particular, the “list” object [a | b] really represents an object corre-
sponding to a dotted pair in Lisp—namely, .(a,b).

List Processing

Many problems can be solved in Prolog by expressing the data as lists and
defining constraints on those lists using patterns with Prolog’s list represen-
tation. We provide a number of examples to illustrate the process of pro-
gramming in Prolog.

1. Define last(L,X) to mean “X is the last element of the list L”.

The last element of a singleton list is its only element.

last([X], X).

The last element of a list with two or more elements is the last item in
its tail.

last([H|T], X) :- last(T, X).

?- last([a,b,c], X).
X = c
yes

?- last([ ], X).
no

Observe that the “illegal” operation of requesting the last element of an empty
list simply fails. With imperative languages a programmer must test for ex-
ceptional conditions to avoid the run-time failure of a program. With logic
programming, an exception causes the query to fail, so that a calling pro-
gram can respond by trying alternate subgoals. The predicate last acts as a
generator when run “backward”.



577

?- last(L, a).
L = [a];
L = [_5, a]; % The underline indicates system-generated variables.
L = [_5, _9, a];
L = [_5, _9, _13, a] …

The variable H in the definition of last plays no role in the condition part (the
body) of the rule; it really needs no name. Prolog allows anonymous vari-
ables , denoted by an underscore:

last([ _ |T], X) :- last(T, X).

Another example of an anonymous variable can be seen in the definition of a
father relation:

father(F) :- parent(F, _ ), male(F).

The scope of an anonymous variable is its single occurrence. Generally, we
prefer using named variables for documentation rather than anonymous
variables, although anonymous variables can be slightly more efficient since
they do not require that bindings be made.

2. Define member(X,L) to mean “X is a member of the list L”.

For this predicate we need two clauses, one as a basis case and the second
to define the recursion that corresponds to an inductive specification.

The predicate succeeds if X is the first element of L.

member(X, [X|T]).

If the first clause fails, check if X is a member of the tail of L.

member(X, [H|T]) :- member(X,T).

If the item is not in the list, the recursion eventually tries a query of the
form member(X,[ ]), which fails since the head of no clause for member
has an empty list as its second parameter.

3. Define delete(X,List,NewList) to mean
“The variable NewList is to be bound to a copy of List with all
  instances of X removed”.

When X is removed from an empty list, we get the same empty list.

delete(X,[ ],[ ]).

When an item is removed from a list with that item as its head, we get the
list that results from removing the item from the tail of the list (ignoring
the head).

delete(H,[H|T],R) :- delete(H,T,R).

LIST PROCESSING



578 APPENDIX A LOGIC PROGRAMMING WITH PROLOG

If the previous clause fails, X is not the head of the list, so we retain the
head of L and take the tail that results from removing X from the tail of
the original list.

delete(X,[H|T],[H|R]) :- delete(X,T,R).

4. Define union(L1,L2,U) to mean
“The variable U is to be bound to the list that contains the union
  of the elements of L1 and L2”.

If the first list is empty, the result is the second list.

union([ ],L2,L2). % clause 1

If the head of L1 is a member of L2, it may be ignored since a union does
not retain duplicate elements.

union([H|T],L2,U) :- member(H,L2), union(T,L2,U). % clause 2

If the head of L1 is a not member of L2 (clause 2 fails), it must be included
in the result.

union([H|T],L2,[H|U]) :- union(T,L2,U). % clause 3

In the last two clauses, recursion is used to find the union of the tail of L1
and the list L2.

5. Define concat(X,Y,Z) to mean “the concatenation of lists X and Y is Z”.
In the Prolog literature, this predicate is frequently called append.

concat([ ], L, L). % clause α

concat([H|T], L, [H|M]) :- concat(T, L, M). % clause β

?- concat([a,b,c], [d,e], R).
R = [a,b,c,d,e]
yes

The inference that produced this answer is illustrated by the search tree
in Figure A.4. When the last query succeeds, the answer is constructed
by unwinding the bindings:

R = [a | M] = [a | [b | M1]] = [a,b | M1] = [a,b | [c | M2]]
= [a,b,c | M2] = [a,b,c | [d,e]] = [a,b,c,d,e].

Figure A.5 shows the search tree for another application of concat using
semicolons to generate all the solutions.

To concatenate more than two lists, use a predicate that joins the lists in
parts.

concat(L,M,N,R) :- concat(M,N,Temp), concat(L,Temp,R).



579

concat([a,b,c],[d,e],R).

fail

H = a
T = [b,c]
R = [a | M]

α β

concat([b,c],[d,e],M).

α β H1 = b
T1 =[c]
M = [b | M1]

fail concat([c],[d,e],M1).

fail

α β H2 = c
T2 = [ ]
M1 = [c | M2]

concat([ ],[d,e],M2).

succeed with M2 = [d,e]

α

Figure A.4: A Search Tree for concat

No confusion results from using the same name for this predicate, since
the two versions are distinguished by the number of parameters they
take (the arities of the predicates).

6. Define reverse(L,R) to mean “the reverse of list L is R”.

reverse([ ], [ ]).
reverse([H|T], L) :- reverse(T, M), concat(M, [H], L).

In executing concat, the depth of recursion corresponds to the number of
times that items from the first list are attached (cons) to the front of the
second list. Taken as a measure of complexity, it suggests that the work
done by concat is proportional to the length of the first list. When reverse
is applied to a list of length n, the executions of concat have first argu-
ment of lengths, n-1, n-2, …, 2, 1, which means that the complexity of
reverse is proportional to n2.

LIST PROCESSING



580 APPENDIX A LOGIC PROGRAMMING WITH PROLOG

concat(X,Y,[a,b,c]).

success

X = [ ]

Y = [a,b,c];

H = a
M = [b,c]
X = [a | T]
Y = L

α β
X = [ ]
Y = [a,b,c]

concat(T,L,[b,c]).

success

X = [a]

Y = [b,c];

H1 = b
M1 = [c]
T = [b | T1]
L = L1

α β
T = [ ]
L = [b,c]

concat(T1,L1,[c]).

success

X = [a,b]

Y = [c];

H2 = c
M2 = [ ]
T1 = [c | T2]
L1 = L2

α β
T1 = [ ]
L1 = [c]

success

X = [a,b,c]

Y = [ ];

concat(T2,L2,[]).

α β
T2 = [ ]
L2 = [ ]

fail

Figure A.5: Another Search Tree for concat

7. An improved reverse using an accumulator:

rev(L, R) :- help(L, [ ], R).

help([ ], R, R).
help([H|T], A, R) :- help(T, [H|A], R).

The predicate help is called n times if the original list is of length n, so the
complexity of rev is proportional to n. Observe that the predicat help is
tail recursive.



581

Sorting in Prolog

A few relations are needed for comparing numbers when sorting a list of
numbers (equal and not equal are described later):

M < N, M =< N, M > N, M >= N.

These relations demand that both operands be numeric atoms or arithmetic
expressions whose variables are bound to numbers.

Insertion Sort

If a list consists of head H and tail T, the idea with the insertion sort is to sort
the tail T (recursively) and then insert the item H into its proper place in the tail.

insertSort([ ], [ ]).
insertSort([X|T], M) :- insertSort(T, L), insert(X, L, M).

insert(X, [H|L], [H|M]) :- H<X, insert(X, L, M).
insert(X, L, [X|L]).

Observe that the clauses for insert are order dependent. The second clause is
executed when the first goal of the first clause fails—namely, when H>=X. If
these clauses are switched, the definition of insert is no longer correct.

Although this dependence on the rule order of Prolog is common in Prolog
programming and may be slightly more efficient, a more logical program is
constructed by making the clauses that define insert independent of each other:

insert(X, [ ], [X]).
insert(X, [H|L], [X,H|L]) :- X=<H.
insert(X, [H|L], [H|M]) :- X>H, insert(X,L,M).

Now only one clause applies to a given list. The original clause insert(X, L,
[X|L]). must be split into two cases depending on whether L is empty or not.

Quick Sort

The quick sort works by splitting the list into those items less than or equal
to a particular element, called the pivot , and the list of those items greater
than the pivot. The first number in the list can be chosen as the pivot. After
the two sublists are sorted (recursively), they are concatenated with the pivot
in the middle to form a sorted list.

The splitting operation is performed by the predicate partition(P, List, Left,
Right), which means P is a pivot value for the list List, Left = { X∈List | X≤P },
and Right = { X∈List | X>P }.

SORTING IN PROLOG



582 APPENDIX A LOGIC PROGRAMMING WITH PROLOG

partition(P, [ ], [ ], [ ]).
partition(P, [A|X], [A|Y], Z) :- A=<P, partition(P, X, Y, Z).
partition(P, [A|X], Y, [A|Z]) :- A>P, partition(P, X, Y, Z).

quickSort([ ], [ ]).
quickSort([H|T], S) :- partition(H, T, Left, Right),

quickSort(Left, NewLeft),

quickSort(Right, NewRight),

concat(NewLeft, [H|NewRight], S).

The clauses for both partition and quickSort can be entered in any order since
they are made mutually exclusive either by the patterns in their head terms
or by the “guard” goals at the beginning of their bodies. The goals in the
definition of partition may be turned around without affecting correctness but
with a severe penalty of diminished efficiency since the recursive call will be
made whether it is needed or not. An empirical test showed the sorting of 18
integers took 100 times longer with the goals switched than with the original
order.

The Logical Variable

A variable in an imperative language is not the same concept as a variable in
mathematics:

1. A program variable refers to a memory location that may have changes in
its contents; consider an assignment N := N+1.

2. A variable in mathematics simply stands for a value that once deter-
mined will not change. The equations x + 3y = 11 and 2x – 3y = 4 specify
values for x and y—namely, x=5 and y=2—which will not be changed in
this context. A variable in Prolog is called a logical variable  and acts in
the manner of a mathematical variable.

3. Once a logical variable is bound to a particular value, called an
instantiation  of the variable, that binding cannot be altered unless the
pattern matching that caused the binding is undone because of back-
tracking.

4. The destructive assignment of imperative languages, where a variable
with a value binding is changed, cannot be performed in logic program-
ming.

5. Terms in a query change only by having variables filled in for the first
time, never by having a new value replace an existing value.

6. An iterative accumulation of a value is obtained by having each instance
of a recursive rule take the values passed to it and perform computations
of values for new variables that are then passed to another call.



583

7. Since a logical variable is “write-once”, it is more like a constant identifier
with a dynamic defining expression as in Ada (or Pelican) than a variable
in an imperative language.

The power of logic programming and Prolog comes from using the logical
variable in structures to direct the pattern matching. Results are constructed
by binding values to variables according to the constraints imposed by the
structures of the arguments in the goal term and the head of the clause
being matched. The order that variables are constrained is generally not criti-
cal, and the construction of complex values can be postponed as long as
logical variables hold their places in the structure being constructed.

Equality and Comparison in Prolog

Prolog provides a number of different ways to compare terms and construct
structures. Since beginning Prolog programmers often confuse the various
notions of equality and related predicates, we provide a brief overview of
these predicates.

Unification

“T1 = T2” Succeed if term T1 can be unified with term T2.

| ?- f(X,b) = f(g(a),Y).
X = g(a)

      Y = b
yes

Numerical Comparisons

“=:=”, “=\=”, “<”, “>”, “=<”, “>=”

Evaluate both expressions and compare the results.

| ?- 5<8.
yes

| ?- 5 =< 2.
no

| ?- N =:= 5.
! Error in arithmetic expression: not a number (N not instantiated to a number)
no

| ?- N = 5, N+1 =< 12.
N = 5 % The unification N = 5 causes a binding of N to 5.
yes

EQUALITY AND COMPARISON IN PROLOG



584 APPENDIX A LOGIC PROGRAMMING WITH PROLOG

Forcing Arithmetic Evaluation  (is)

“N is Exp” Evaluate the arithmetic expression Exp and try to unify
the resulting number with N, a variable or a number.

| ?- M is 5+8.
M = 13
yes

| ?- 13 is 5+8.
yes

| ?- M is 9, N is M+1.
M = 9
N = 10
yes

| ?- N is 9, N is N+1.
no % N is N+1 can never succeed.

| ?- 6 is 2* K.
! Error in arithmetic expression: not a number (K not instantiated to a number)
no

The infix predicate is provides the computational mechanism to carry out
arithmetic in Prolog. Consider the following predicate that computes the
factorial function:

The factorial of 0 is 1.
fac(0,1).

The factorial of N>0 is N times the factorial of N-1.

fac(N,F) :- N>0, N1 is N-1, fac(N1,R), F is N* R.

| ?- fac(5,F).

F = 120
yes

Identity

“X == Y” Succeed if the terms currently instantiated to X and Y are
literally identical, including variable names.

| ?- X=g(X,U), X==g(X,U).
yes

| ?- X=g(a,U), X==g(V,b).
no

| ?- X\==X. % “X \== X” is the negation of “X == X”

no



585

Term Comparison (Lexicographic)

“T1 @< T2”, “T1 @> T2”, “T1 @=< T2”, “T1 @>= T2”

| ?- ant @< bat.
yes

| ?- @<(f(ant),f(bat)). % infix predicates may also be entered
yes %   as prefix

Term Construction

“T =.. L” L is a list whose head is the atom corresponding to the
principal functor of term T and whose tail is the argument
list of that functor in T.

| ?- T =.. [@<,ant,bat], call(T).
T = ant@<bat
yes

| ?- T =.. [@<,bat,bat],call(T).
no

| ?- T =.. [is,N,5], call(T).
N = 5,
T = (5 is 5)
yes

| ?- member(X,[1,2,3,4]) =.. L.
L = [member,X,[1,2,3,4]]
yes

Input and Output Predicates

Several input and output predicates are used in the laboratory exercises. We
describe them below together with a couple of special predicates.

get0(N) N is bound to the ascii code of the next character from the current
input stream (normally the terminal keyboard). When the current
input stream reaches its end of file, a special value is bound to N
and the stream is closed. The special value depends on the Prolog
system, but two possibilities are:

26, the code for control-Z or

-1, a special end of file value.

put(N) The character whose ascii code is the value of N is printed on the
current output stream (normally the terminal screen).

INPUT AND OUTPUT PREDICATES



586 APPENDIX A LOGIC PROGRAMMING WITH PROLOG

see(F) The file whose name is the value of F becomes the current input
stream.

seen Close the current input stream.

tell(F) The file whose name is the value of F becomes the current output
stream.

told Close the current output stream.

read(T) The next Prolog term in the current input stream is bound to T.
The term in the input stream must be followed by a period.

write(T) The Prolog term bound to T is displayed on the current output
stream.

tab(N) N spaces are printed on the output stream.

nl Newline prints a linefeed character on the current output stream.

abort Immediately terminate the attempt to satisfy the original query
and return control to the top level.

name(A,L) A is a literal atom or a number, and L is a list of the ascii codes of
the characters comprising the name of A.

| ?- name(A,[116,104,101]).
A = the

| ?- name(1994,L).
L = [49, 57, 57, 52]

call(T) Assuming T is instantiated to a term that can be interpreted as a
goal, call(T) succeeds if and only if T succeeds as a query.

This Appendix has not covered all of Prolog, but we have introduced enough
Prolog to support the laboratory exercises in the text. See the further read-
ings at the end of Chapter 2 for references to more material on Prolog.


