
Computer Integration within Problem Solving
Process

Teodor Rus
The University of Iowa

Department of Computer Science
Iowa City, IA 52242, USA

Email: rus@uiowa.edu

Abstract—In this paper we discuss a software technology
that supports computer integration within the problem solving
process, independent of problem domain. Due to space limitation
we present here a short but comprehensive version of this research
and encourage the reader to access the extended version at URL
https://www.cs.uiowa.edu/˜rus.

I. INTRODUCTION

The problem we address in this paper is the integration of
the computer as a brain assistant within the human problem
solving process. Original computers have not been developed
as problem solving tools. Rather, computers were developed
as number crunching tools to be used by mathematicians and
engineers. The computer based problem solving methodology
provided by the creators of the original computer consists of:

• Formulate the problem;

• Develop a solution algorithm;

• Encode the algorithm and its data into a program;

• Let the computer execute the program;

• Decode the result and extract the solution.

This problem solving methodology offers computer program-
ming as an “one-size-fits-all” pattern for computer use as a
problem solving tool, independent of the problem domain.
Therefore one may say that this paradigm of computer use as
a problem solving tool integrates the problem solving process
within the computer.

Difficulties of this approach of using computers as prob-
lem solving tools result from the requirement to encode the
algorithm into a program, which implies knowledge about
computer architecture and functionality. Computer science
experts diminish these difficulties by developing software tools
which raise the machine language abstraction level towards the
logical level of problem solving process. But, irrespective of
their level of abstraction, these software tools represent ma-
chine computation concepts: they do not represent the concepts
used by the human problem solving process. Therefore, in
order to use the computer during problem solving process one
needs to learn the language provided by software tools, thus
increasing the level of professionalism required to computer
user. However, by increasing the number and the complexity
of the problem domains where computer is used as a problem
solving tool, the number and the complexity of software tools

required by the translation from problem domain language
into the software tool language increases dramatically. Conse-
quently, current software complexity reached a level where it
threatens to kill the current computer technology itself (Horn,
2001). To tackle this situation pioneers of current software
technology (Markoff, 2012) suggest “Killing the Computer to
Save It”.

Successes of computer use during problem solving process
have evolved software tools at the level of information process-
ing services (SaaS, 2010). Moreover, currently the networking
technology allows software tools to be exchanged as stan-
dalone pieces of composeable tools called Web Services (WS).
A new problem solving paradigm based on WS-s emerges,
where computer based problem solving process is split be-
tween problem domain expert and computer expert according
to their expertise. The architecture of the problem solving soft-
ware resulted depends upon the problem domain and evolves as
a Service Oriented Architecture (SOA). The computer platform
that runs it is transparent to the problem solver. The problems
raised by the interoperability of WS-s components of SOA-
s are resolved using new XML standards: Standard Object
Access Protocol (SOAP), Web Service Description Language
(WSDL), Universal Description, Discovery, and Integration
(UDDI). These standards transform computer based problem
solving process into a computer business where the exchange
unit is the WS. Unfortunately this computer business is not
targeted to the computer user. By the contrary, in addition to
the language of the software tools, now computer user needs
also to learn the intricacies of Web Programming, the language
of the WS-s and SOA-s.

The recent hype about Cloud Computing (CC) promises to
bring computers as problem solving tools to the masses. How-
ever, so far the main research on CC (Srinivasan and Getov,
2011) concerns mostly cloud infrastructure management, ex-
pressed in terms of Virtual Machines (VM-s) populating the
cloud at a given time. But VM-s in the cloud are abstractions
of computer architectures not abstractions of problem domains.
Moreover, the goal of CC is stated in terms of computer
resource optimization and efficiency, not in terms of how
computer use can be addressed to masses. We believe that
populating the cloud with domain dedicated virtual machines
CC can become a problem solving tool dedicated to masses.

In this paper we show how cloud computing can be used
as a mechanism that supports computer integration within
the problem solving process, independent of problem domain.

The paper is organized as follows: Section II discusses the
domain based problem solving process; Section III presents the
domain algorithmic language, to be used by domain experts to
develop domain algorithms for solving their problems; Section
IV describes the process of computational emancipation of
problem domains, which allows computer to be integrated
within the specific problem solving process, characteristic to
the domain; Section V describes the domain dedicated virtual
machine, used to execute domain algorithms on the Internet,
as web services; Section VI sketches the CC implementation
of DAL System, the system that allows domain experts to
subscribe to the cloud for computer services required by their
problem domain solving algorithms.

II. PROBLEM SOLVING PROCESS

Problem and problem solving are among the few con-
cepts computer scientists use without defining them, un-
der the assumption that everybody understands them a pri-
ori. However, for different domains of activity problem and
problem solving may mean different things. For example,
for a high-school student solving the equation a ∗ x2 + b ∗
x + c = 0 means the development of the formula x1,x2 =
(−b+ |−

√
b2−4∗a∗ c)/(2∗a) which when fed with the

coefficients a,b,c of the equation evaluates to the numbers
x1,x2 that satisfy the equality a∗x2 +b∗x+c = 0. On the other
hand, for a computer expert this may mean the development
of a program that inputs the numbers a,b,c and evaluates the
expression a ∗ x2 + b ∗ x + c for all x ∈ [MinR,MaxR], where
MinR and MaxR are minimum and maximum real numbers
representable in machine memory, and outputs those x for
which the value of a∗ x2 +b∗ x+c is zero. Teaching students
the art of problem solving, Polya (Polya, 1957) has defined
the concepts of a problem and problem solving as follows:

To have a problem means to search consciously for
some action appropriate to attain a given aim. To
solve a problem means to find such an action.

Hidden here are three things: unknown, action, purpose.
These concepts are independent of problem domain, therefore
Polya’s definition is robust. Scientists solving problems ma-
nipulate the objects of their sciences whose meanings may be
different though their natural language notations may be the
same. That is, though the natural language is infinite through
the infinity of the discourse it manipulates, in any given domain
the language used by the domain expert is unambiguous and is
finitely generated by the mechanism of knowledge acquisition
and use. Consequently, the problem solving process proposed
by Polya is linguistically unambiguous and domain indepen-
dent. Focusing on mathematical objects, Polya formulates it as
the four steps problem solving methodology:

1) Formalize the problem;
2) Develop a plan (an algorithm) to solve the problem;
3) Perform the algorithm on the data characterizing the

problem;
4) Validate the solution by checking the validity of

problem conditions.

There are two kinds of difficulties involved in Polya
problem solving methodology: difficulties that pertain to the
discovery of the problem solving algorithm and difficulties

that pertain to the execution of the problem solving algo-
rithm. Algorithm discovery is characteristic to human problem
solving process and due to the diversity of human range of
problem domains and problems there is little mechanical help
for general algorithm discovery. However, computers evolved
from tools that can help performing numerical operations to
tools that can perform any kind of well-defined operations.
Hence, computer can be used to help with algorithm execution
irrespective of the problem and problem solving algorithm.
To straighten the mechanism used by computers to perform
operations during an algorithm execution, we give below an
algebraic specification of a computer (Rus and Rus, 1993):

beginSpec Computer
name Hardware System is
sort Memory, Processor, Devices, Control;
opns receive:Device x Control->Memory;

transmit:Memory x Control->Device;
store:Processor x Control->Memory;
fetch:Memory x Control->Processor;
process:

Memory x Processor x Control->Processor,
Memory x Processor x Control->Memory,
Processor x Control->Processor;

vars PC:Control;
axms PC.operation is receive|transmit|stores|fetch|process;
actn PEL: while PluggedIn and PowerOn do

l_0: Perform(PC);PC:=Next(PC):ˆl_0
endSpec Computer

The essential part is the action Program Execution Loop
(PEL) composed of the functions Perform() and Next().
Perform() takes as the argument the control register called
Program Counter (PC) and evaluates the operation encoded
as its contents; Next(PC) determines the operation of the
algorithm to be performed next. Computer Based Problem
Solving Process (CBPSP) uses Polya methodology where
problem solving algorithm is performed by a computer. This
requires that problem characteristic components unknown,
data, condition, as well as problem solving algorithm, be
encoded in computer memory. The process of this encoding
has been called the computer programming. In addition, a
mechanism for activating the computer on a given program and
for controlling computer’s actions during program execution,
must also be provided. This has been called the program
execution.

Computer programming and program execution are tedious
and error prone tasks, and they require problem solver to
be a computer expert. So, to make computers usable by the
human problem solving process, an evolving collection of
programming tools have been developed as the system soft-
ware. The CBPSP actually embeds problem solving process
into the computer language, irrespective of the problem it
solves. To bring computers to masses it means to reverse
this process, i.e., to embed the computer into the problem
solving process. This is achievable by letting computer user
employ the computer during the algorithm evaluation as a
brain assistant that performs operations required by the control
flow of the algorithm evaluation process. Current computer
technology makes this task feasible by developing software
tools that allow domain expert and computer expert to share
the problem solving process according to their domains of
expertise. Problem domain experts formulate problems and
develop solution algorithms using problem domain logics.
Computer experts develop software tools and provide them to
computer users as WS-s. Computer network experts develop
tools that allow problem solvers to ask computer networks to
perform the tasks involved in their problem solving processes.

The new software tools required by this computer based
problem solving methodology are:

• The Domain Algorithmic Language (DAL) a compu-
tational language to be used by the problem solver to
express problem solving algorithms.

• Computational Emancipation of the Application Do-
main (CEAD), which provides a data-representation
of the problem domain that automates algorithm eval-
uation using a Domain Dedicated Virtual Machine
(DDVM);

• The DAL System that implements the DDVM (in the
cloud) and offers computer services to the computer
user by subscription, without asking computer knowl-
edge in order to consume these services.

III. COMPUTATIONAL LANGUAGE OF THE PROBLEM
DOMAIN

Polya’s problem solving methodology is centered around
problem formalization and problem solving algorithm devel-
opment, using problem domain concepts. This is easily done
for mathematical problems because mathematical well defined
concepts are implicitly formalized. But for other problem
domains, problem formalization and algorithm development
may not be so obvious. However, whatever problem domain
may be, problem formalization means define problem concepts
and methods in terms of well-understood concepts and meth-
ods. Our conjecture is that solvable problems of any problem
domain are expressible in terms of a finite number of well
defined concepts. This is trivially true for the common sense
problems raised by the usual real-life. A formal proof of this
conjecture can actually be sought using decidability theory
(Sipser, 2006).

We assume further that for a problem solver, the problem
domain consists of a set of well defined domain characteristic
concepts, and is modeled by a tree as shown in Figure 1.

Primitive Defined Primitive Defined

Data Concepts

�� HH
Action Concepts

�� HH

Concept

1

. . .
Concept

i

. . .
�� HH

Concept

n

Domain Tree Modeling

⇠⇠⇠⇠⇠⇠
XXXXXX

Figure 1: Tree modeling of a problem domain

1

Fig. 1. Tree modeling of a problem domain

The Primitive
leaves of the modeling
tree represent
domain characteristic
concepts that are
common to all domain
experts. Primitive data
are expressed by the
concepts of variable
and value. Primitive
actions are expressed

by the simple phrases of the form: Sub ject Action−→ Ob ject,
Sub ject

Property−→ Ob ject where Sub ject and Ob ject are data or
actions (as appropriate), and Action−→ and

Property−→ are operations
to perform or predicates to check, expressed by the common
linguistic jargon of the domain. The Defined leaves of the
modeling tree represent concepts created by problem solving
process and are specific to the problem solver. However, the
mechanisms used to define new data and action concepts
during problem solving process are specific to the domain. We
assume here that data definition mechanisms are formalized

by mathematical concepts of pair, vector, table, list, set,
function. Linguistic expressions of these definitions are
domain characteristic and are tailored to the problem and, as
appropriate, are formulated by the problem solver. The action
definition mechanisms are formalized by mathematical rules
that define the action-composition operations by expression-
well-formation, concatenation, choice, iteration. The linguistic
expressions of these definitions are domain specific phrases.
These are valid expressions in the natural language of the
problem solvers, which are understood by all domain experts
because they use only concepts familiar to the domain experts.

This domain modeling implies that the solution (algorithm)
of any domain problem defines a new characteristic concept
of the problem domain. Consequently, by problem solving,
a problem domain becomes a potentially infinite collection
of concepts usable to solve other potential problems of that
domain.

The specification of the Domain Algorithmic Language
(DAL) can be done using a vocabulary that contains language
terms used for few characteristic concepts of the domain,
and very simple rules for sentence formation. The potential
ambiguity of these terms is eliminated by their meaning in
the domain. In other words, though phrases containing these
terms may be ambiguous as natural language expressions, these
ambiguities are transparent for a domain expert. That is, for
a problem domain D, DAL(D) is the language spoken by an
expert of the domain D.

The problem solving process expands the vocabulary of
DAL(D) with the terms used to name problem solutions. In
addition, problem solution expressions (algorithms) expand
the sentence formation rules with the rules provided by the
solution expression. This mimics the natural learning process
that characterizes the problem domain.

Formally DAL may be specified using a pattern similar to
the pattern used to specify computer languages, which consists
of given a finite set of BNF rules specifying terms denoting
domain characteristic concepts and few simple BNF rules
for statement formation. Further, DAL specification mecha-
nism allows both its vocabulary and formation rules to grow
dynamically with domain learning process. We call this the
process of DAL’s evolution. Since DAL terms and algorithms
are natural language concepts (though they may have ma-
chine representations) domain experts can freely reuse them
as components of the new concepts and solution algorithms
developed during problem solving process. Grammatically, the
initial terms of the DAL vocabulary would be categorized as
nouns, verbs, adjectives, and adverbs. The statement formation
rules are chosen to fit the Resource Description Framework
(RDF) used by the Semantic Web (Kline and Caroll, 2004),
Sub ject Action−→ Ob ject, Sub ject

Property−→ Ob ject, where Sub ject,
Ob ject, Action, Property are elements of the DAL vocabulary.
Of course, solution algorithms developed by the problem
solving process are seen as statement formation rules expressed
in terms of the already defined statement formation rules.
The evolving DAL specification defined above could be best
illustrated by any of the formal systems provided by the
axiomatic specification of set theory (Takeuti and Zaring,
1971).

Computational nature of DAL is obtained by DAL’s se-

mantics specification using a description logic (Badder et al.,
2005) whose model is defined as follows:

• Implement every concept C of the DAL terminology
as a WS(C). Let URI(C) be the URL of the WS(C).

• Implement formation rules Sub ject Action−→ Ob ject by
WS(Action) whose input and output are elements of
Sub ject×Ob ject.

• Implement formation rules Sub ject
Property−→ Ob ject by

WS(Property) that input tuples of Sub ject ×Ob ject
and return true or false.

• Implement every solution algorithm by a WS obtained
by the composition of the web services employed in
the algorithm.

Further, structure DAL and its model using a domain ontology
represented by a file in the Web Ontology Language, (OWL)
(McGuinness and van Harmelen, 2003). For a problem domain
D, let OWL(D) be the OWL file representing the DAL(D).
A solution algorithm in the domain D is then executed by
the problem solver using an approach similar to the usage
of a calculator to evaluate an expression. However, data and
operations of the DAL algorithm are evaluated using computers
available on the Internet and the OWL(D).

IV. COMPUTATIONAL EMANCIPATION OF A PROBLEM
DOMAIN

The DAL algorithm execution discussed in Section III
demonstrates that current software technology allows computer
integration within the problem solving process, as a brain
assistant. But this integration lacks the efficiency because
computer user spends all the time searching for web services
in the OWL(D). In addition, it imposes new complexities
during problem solving process determined by the structure
of the OWL(D) and by the web service calling mechanism.
Therefore, in order to be effective, this integration must be
automated. How can this be done?

CEAD is the process that transforms the DAL from a
fragment of natural language used by the problem solver
during problem solving process into a computational language
used to automate the problem solving process. Therefore
CEAD can actually be seen as a new step towards domain
formalization described in Section III and can be achieved by:

1) Software tools to automate the process of domain
ontology creation and implementations using the
OWL(D);

2) Software tools that automate WS generation and
optimize the search for the concept implementation
in OWL(D) during the DAL algorithm execution;

3) Software tools that automate the process of WS
evaluation during DAL algorithm execution;

4) Software tools that expand domain ontology with
the terms denoting new algorithms developed during
problem solving process and with the formation rules
provided by these algorithms.

Many such software tools are already provided by current
software technology. However, these tools have not been

designed with this goal in mind. Therefore, while computer
research creates tools dedicated to the goal set forth by the
CEAD process, the challenge is to use the existing software
as appropriate, in the context of the new problem solving
methodology, which integrate the computer in the human
problem solving process, further referred to as the Web Based
Problem Solving Process (WBPSP). In the extended version of
this paper (Rus, 2012) we show how few of such tools (Axis,
Metro, Protégé, RDF, OWL, etc.) are used.

Domain ontology is a mechanism that facilitates the goal
of domain algorithm execution, by the domain expert, em-
ploying the computer as a brain assistant, which uses web
services to perform algorithm’s operations. Therefore, while
much of current work on ontology focuses on development
and modeling (Guarino and Welty, 2002; Welty and Guarino,
2001) we concentrate on a Domain Ontology structuring
and representation that supports the automation of concept
identification in the domain ontology and the execution of the
web services implementing domain concepts. Since WBPSP
ensures domain evolution by the problem solving process, our
ontology structuring must be automatically updated with the
new concepts representing problems and solution algorithms.
Hence, the ontology structuring we assume here is similar to
that described in (Rector, 2003). Domain ontology construction
is a two-step process performed by a collaboration between
domain expert and computer expert. First, a Domain Expert
Ontology (DEO) is built (in the cloud) which represents the
primitive concepts of the domain available to all domain
experts. Second, each problem solver inherits DEO and extends
it automatically with the domain concepts she learns during her
own problem solving process, thus developing a User Own
Ontology (UOO). The process is performed by appropriate
tools, as explained in (Rus, 2012).

V. DOMAIN DEDICATED VIRTUAL MACHINE

The efficiency of the DAL algorithm execution by problem
solver using the computer as a brain assistant is improved
by associating each concept used in the DAL algorithm with
the WS that implements it. This can be easily done by hand,
by the problem solver, or by an appropriate automaton that
operates on DAL algorithm and the domain ontology. The
result can be seen as a “program” in the language of the brain
assistant used by problem solver to execute the DAL algorithm.
Since the operations performed by this automaton are WS-s
implementing the concepts of the problem domain, we call it
the Domain Dedicated Virtual Machine (DDVM).

Formally, DDVM can be seen as a tuple DDVM =
〈ConceptC,Execute,Next〉 where:

• ConceptC is a Concept Counter, that, for a given DAL
algorithm A , points to the web service in the OWL(D),
that implements the concept.

• Execute() is the process that execute the computations
in the WS pointed to by ConceptC;

• Next() is a function which determines the next concept
of the DAL algorithm A to be performed by Execute()
during algorithm execution.

The DDVM performs similarly with the PEL (see Section
II) and therefore the algorithm execution by DDVM can be

described by the following Domain Algorithm Execution Loop
(DAEL):

ConceptC = FirstDALConcept(DAL algorithm)
while (ConceptC is not End)

Execute (ConceptC);
ConceptC = Next(ConceptC, DAL algorithn)

Extract result + dysplay it to the user

Once an application domain is CEAD-ed, the automation of
DAL algorithm execution is based on two main software
components:

1) A translator that maps a DAL algorithm A into an
expression tree ET (A) whose nodes are labeled by
domain concepts associated with the URL of the WS-
s implementing them, and

2) An interpreter operating on the expression tree gen-
erated by the translator, executing WS-s encountered
at the tree nodes.

The translator is implemented by the conventional compiler
construction tools and the interpretor is implemented by a stack
machine similar to Java Virtual Machine (JVM).

The automation of the DAL algorithm execution using
the WS-s available on the Internet requires the ET (A) to be
transformed into an appropriate language that has WS-s as
operations performed by DDVM. For this purpose we use the
Software Architecture Description Language (SADL) (Rus and
Curtis, 2007; Rus, 2008).

SADL has been conceived as a language suitable to de-
scribe functional behavior of component-based software archi-
tectures, where components are standalone and composeable
pieces of software.

SADL syntax has a three layer structure: vocabulary, sim-
ple constructs, and composed constructs. SADL vocabulary
is a dynamic collection of terms used to denote problem
domain concepts. Since SADL is meant as the target for any
DAL implementation, it needs to be implemented as a domain
dedicated namespace where each terms is associated with the
collection of semantic properties that defines it in the respective
domain.

The simple constructs of the SADL are simple XML
elements: <tag attributes /> where tag is a term in
the SADL namespace and each attribute is a tuples of the
form property = "value" where property is a property of
the process (data are considered here as nulary operations)
represented by the term tag. For example, the process that per-
form the addition of two integers is specified by: <ari:addI
input = "x, y" output = "z"/> where ari is the prefix
of the namespace implementing the ontology of an arithmetic
domain.

The composed constructs of the SADL language are XML
constructs composed with the terms: foreach, if, ifthen,
next, etc. Example, the SDAL expression of the formula:
x1 = (−b−

√
b2−4∗a∗ c)/(2 ∗ a) is represented by the fol-

lowing XML code:

<ari:delta input="a, b, c" output="delta" />;
<ari:sqrt input="delta" output="tmp1" />;
<ari:unaryMinus input="b" output="tmp2" />;

<ari:subtract input="tmp2, tmp1" output="tmp3" />;
<ari:multiply input="2, a" output="tmp4" />;
<ari:divide input="tmp3, tmp4" output="x1" />;

SADL interpreter inputs a SADL expression and interpret
it on a stack, in a manner similar to the byte-code interpretation
of a Java code. Since each SADL simple element composing
a SADL expression represents a process executed on Internet,
the flow of control during a SADL expression evaluation
requires the synchronization of these processes. Thus, the
SADL interpreter performs a distributed implementation of
the the DAL algorithm. The simplest synchronization mech-
anism used to control the flow of processes performing a
DAL algorithm is provided by a (wait, signal) inserted
in the SADL expression, after each SADL simple element.
While this SADL implementation performs DAL algorithm
distributed, on Internet, the algorithm execution is restricted to
being sequential, where the computation unit is the WS. This
mechanism can be extended to allow the processes executing
a DAL algorithm to perform in parallel.

VI. DAL SYSTEM

Cloud-implementation of the DAL
System is described in Figure 2.

"!
bb

Cloud

?
Install DAL System

??

'

&

$

%DDVM: SADL -Execute Network

DALalgorithm - DALtranslator � DALspecs

DomainOntology

?

⌥⌃ ⌅⇧User1

?Evolve DAL

6
Use DAL

-Publish
ontology

-Subscribe for DAL
UOO = DEO

. . .
⌥⌃ ⌅⇧Userk

?Evolve DAL

6
Use DAL

� Publish
ontology

� Subscribe for DAL
UOO = DEO

User1’s own
ontology

Userk’s own
ontology

Figure 1: Architecture of an DAL System

1

Fig. 2. Architecture of DAL System

The
as-
sump-
tion
is
that
CC
that
ac-
com-
mo-
dates
the
DAL
Sys-
tem
would
have
an
ad-
min-
is-
tra-
tor
that
man-
age
the system allowing various users to register for DAL System
use on a given problem domain. For that the CC maintains
a data base where all DEO-s of the CEADed domains
are maintained. The user subscription for a domain D is
performed by an installation procedure that activates DAL
System with the domain ontology required. Further, as shown
in Figure 2, the user customizes the system to her personal
use, evolving the problem domain she subscribed for with the
concepts she learned and/or created during her own problem
solving process. When the user decides to leave the system
and cancel her subscription, the DAL System’s manager my

buy the knowledge developed by the user and update the
domain, thus ensuring domain evolution with the concepts
developed by the respective user. This ensures a domain
evolution with the knowledge developed by problem solving
process of all domain experts.

A user doesn’t need a computer to interact with the DAL
System. An iPad which provides a two-way communication
using a command language can be used in this purpose.

VII. CONCLUSION

The research reported in this paper shows that software
development for non-expert computer user open an unlimited
area for computer technology development. This has the po-
tential to empower human being with the computer as a brain
tool (oracle). To achieve this potential computer use needs to
be freed from its one-size-fits-all pattern, and let it be,
as it has proven to be, a problem solving tool that may act in
any problem domain as a domain oracle.

ACKNOWLEDGMENT

The author thanks here generations of graduate students
at the University of Iowa, Department of Computer Science,
who developed the TICS software tools used in the design
and implementation of DAL System. Special thanks are due
to Cuong Bui who implemented the proof of concept for
arithmetic domain, that is available (upon request) at URL
bula1.cs.uiowa.edu.

REFERENCES

Aho, A., Sethi, R., and Ullman, J. (January 1, 1986). Compil-
ers: Principles, Techniques, and Tools. Addison Wesley.

ApacheCXF (2011). http://cxf.apache.org/.
Axis/Java (2011). http://axis.apache.org/axis2/java/core/.
Badder, F., Calvanese, D., McGuinnes, D., Nardi, D., and

Patel-Schneider, P., editors (2005). The Description Logic
Handbook. Cambridge University Press.

Guarino, N. and Welty, C. (2000). A formal ontology of
properties. In Dieng, R., editor, Proceedings of 12-th
International Conference on Knowledge Engineering and
Knowledge Management, Berlin. Springer Verlag.

Guarino, N. and Welty, C. (2002). Evaluating ontological
decisions with ontoclean. CACM, 45(2):61–65.

Hernandez, N., Mothe, J., Chrisment, C., and Egret, D. (2007).
Modeling context through domain ontology. Inf Retrieval,
10:143–172.

Horn, P. (2001). Autonomic computing: IBM’s per-
spective on the state of the information technology.
http://www.research.ibm.com/autonomic/manifesto.

Horridge, M. (2011). Protègè-owl tutorial.
http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/.

Hruby, P. (2005). Ontology-based domain-driven design. In
OOPSLA05 Workshop on Best Practices for Model Driven
Software Development, San Diego, CA.

Kline, G. and Caroll, J. (2004). W3C, Resource Descrip-
tion Framework (RDF): Concepts and abstract syntax.
http://www.w3.org/TR/rdf-concepts/.

Markoff, J. (2012). Killing the computer to save it. ACM
TechNews, October(31).

McBride, B. (2004). The Resource Description Framework
(RDF) and its Vocabulary Description Language RDFS,
pages 51–65. Springer.

McGuinness, D. and van Harmelen, F. (2003). OWL
Overview, OWL Web Ontology Language Overview.
W3C Proposed Recommendation 15 December 2003.
http://www.w3.org/TR/2003/PR-owl-features-20031215/.

Metro (2008). Web services for java platform.
http://java.sun.com/webservices/reference/-/
tutorials/index.jsp.

Monroe, R. (2001). Capturing software architecture design
with armani. Technical Report CMU-CS-163, Carnegie
Mellon University.

OpenStructs, TechWiki (2011). Lightweight,
domain ontology development methodology.
http://techwiki.openstructs.org/index.php/

OWL2 (2009). OWL2 Web Ontol-
ogy Language Manchester Syntax.
http://www.w3.org/TR/owl2-manchester-syntax/ .

OWL2 Primer (2009). OWL2 Web Ontology Language Primer.
http://www.w3.org/TR/owl2-primer/ .

Polya, G. (1957). How To Solve It. Princeton University Press,
second edition.

Popek, G. and Goldberg, R. (1974). Formal requirements
for virtualizable third generation architectures. CACM,
17(7):412–421.

Rector, A. (2003). Modularization of domain ontologies
implemented in description logics and related formalism
including owl. In Proceedings, K-CAP-03, pages 121–
128. ACM 1–5811-583–1/03/0010.

Rus, T. (2008). Liberate computer user from programming.
In Meseguer, J. and G., R., editors, 12-th International
Conference, AMAST 2008, Proceedings, volume LNCS
5140, pages 16–35. Springer.

Rus, T. (2012). Computer Intergration within Problem Solving
Process. https://www.cs.uiowa.edu/˜rus.

Rus, T. and Curtis, D. (2007). Towards an application driven
software technology. In The proceedings of the 2007 In-
ternational Conference on Software Engineering Research
& Practice, page 282288, Las Vegas, NV, USA.

Rus, T. and Rus, D. (1993). System Software and Software
Systems: Concepts and Methodology. World Scientific.

SaaS (2010). Software as a Service (SaaS).
http://en.wikipedia.org/wiki/Software_as_a_service.

Sipser, M. (2006). Introduction to the Theory of Computation.
Thomson Course Technology, second edition.

Srinivasan, N. and Getov, V. (2011). Navigating the cloud com-
puting landscape – technologies, services, and adopters.
Computer, 44(3). IBM and University of Westminster:
Cloud Computing: Infrastructure-As-A-Service, Platform-
As-A-Service, Software-As-A-Service.

Takeuti, G. and Zaring, W. (1971). Introduction to Axiomatic
Set Theory. Springer-Verlag.

Welty, C. and Guarino, N. (2001). Supporting ontological
analysis of taxonomic relationship. Data & Knowledge
Engineering, 39:51–74.

Wikipedia, T. F. E. (2011). Enterprise javabean.
http://en.wikipedia.org/wiki/Enterprise_JavaBean.

