
1

Formal Tools for Language Specification

How to read this book?

The republication of this book, after 40 years since its first
appearance, aims, among other things, to highlight the resilience
of the evolution process of human thought through the creation of
the computer and its use in problem-solving. This process has two
stages: the first stage began with the use of the computer in
engineering and mathematics through the development of
technology for integration of the human problem-solving process
into the machine's calculation process. The second stage began with
the development of the concept of artificial intelligence, by
integrating the machine's calculation process, i.e., the technology of
using the computer, into the human brain's problem-solving
process. The first stage is characterized by the development of the
term called Information Technology, abbreviated IT, while the
second stage aims to develop and establish the term Artificial
Intelligence, abbreviated AI. In 1983, when this book was first
published, IT was in its infancy, so the book was dedicated to
discussing the formal tools that facilitated the emergence and
establishment of the term IT. Now, after 40 years, the book is still
relevant, but the concept of AI is becoming increasingly
prominent. Therefore, the republication of a revised edition of this
book is justified, but it requires new elements to justify the current
direction of research in the field of computing technology. We
have introduced these elements by adding the preamble and
chapter 8.

The preamble of the book shows the need to redirect research in
the field of IT towards simplifying the methodology of using the

2

computer so that it (the computer) becomes an assistant to the
human brain. This can be achieved by developing a methodology
for using the computer employing the natural language of the
user. Chapter 8 of the book titled The Computer as an
Instrument of the Brain. A project with unlimited potential

presents an implementation model of the methodology postulated
in the preamble. To show the continuity of the ideas discussed in
the book we reproduce in this edition the abstract of the book
published in 1983.

Chapter 8 begins with a debate justifying the need for developing a new
methodology for computer usage in handling abstractions in the human
thinking process, as it seems to be executed by the human brain. The new
methodology for computer usage is based on employing the user's natural
language in problem-solving processes, similar to how all other
methodologies for human tool usage, developed to enhance human
capability in handling physical elements (such as cars for motion, glasses
for vision, medications for pathogens, etc.), utilize natural language.
Since all other technologies for human tool usage employ natural
language, the computer should be used in the same way. Thus, a
methodology for computer usage employing natural language must be
developed, parallel to the current methodology, in which the computer is
used through programming languages. The use of programming
languages was necessary because natural languages are ambiguous and
therefore cannot be accurately translated into machine language.

Our observation is that the ambiguity of natural language is transparent to
the computer user. This is because the computer user employs a language
specific to the domain in which she is using the computer. We have
named this language the Domain Algorithmic Language, or DAL for
short. Manipulating domain terms also requires a formal representation of
domain knowledge. This is achieved by representing the domain of
computer usage using an ontology of the domain, where knowledge is
stored in the form of pairs (Term, Meaning), where Term is the term
from DAL (the natural language used) and Meaning is a Web Service

3

representing the knowledge denoted by Term. Thus, the problem domain
can be maintained in a file accessible to both the computer and its user.

The process of representing the computer application domain as an
ontology is actually a formalization process of the domain, discussed in
Chapter 8 under the name Computational Emancipation of the Domain.
Therefore, there is a need for a virtual machine whose memory is the
domain ontology and whose instructions are Web Services. The brain can
handle this machine by executing algorithms on the internet, thus making
the computer essentially an assistant to the brain. Chapter 8 illustrates the
development of this computer usage methodology, describing its
implementation for the domain of computer usage in learning algebra in a
high school class.

The reader's question of how to read this 600 pages book has
several answers. We, in view with the content of the book and the
potential use of the material presented, give the following answer.
A reader simply interested in using the computer in the problem-
solving process, ignoring the myriad of software, known as
Software Tools, used for transforming the problem and its solution
into executable programs, should read the preamble and chapter
8.

If the reader is interested in computer science, that is, in the
science of problem-solving with the computer, then she should
read and understand chapter 1 first. This chapter discusses a
global concept of language that is intended to be used during
communication between different communicators. To our
knowledge, this concept is unique and original. Its merit is that it
represents a synthesis of the language concept used in the field of
computer science, and that both human natural language and
various other artificial languages, such as programming languages,
are seen in this chapter as particular cases of the language concept

4

discussed in this chapter. Therefore, the language concept
presented in chapter 1 is robust and provides a solid foundation
for manipulating language as a computational object in various
aspects of this problem.

Depending on the reader's interest, he can continue by addressing
either chapter 2 or chapter 6. Chapter 2 discusses the concept of
grammar as a mechanism for specifying a language by generating
its elements, as well as the Turing Machine as a mechanism for
specifying a language by recognizing its elements. Algorithmically
speaking, grammar is seen as an algorithm for generating the
elements of a language through a rewriting process of a given
syntactic category using rewriting rules similar to the rules for
rewriting sentences of a natural language from the symbol called a
phrase using syntactic categories such as noun, verb, adjective,
adverb, etc. On the other hand, the Turing Machine appears as an
algorithm for recognizing the strings of a language using
recognition rules that reduce these strings using simple
substitution operations of substrings of a string similar to the
simple calculation rules. Furthermore, depending on his interest,
the reader can continue with chapter 3, which discusses algorithms
for analyzing a language, based on the grammar that specifies that
language. These algorithms constitute the foundation of the
current technology of computing techniques. The data of these
algorithms are:

• A string to be analyzed.
• A set of grammar rules of the form LeftPart = RightPart,

where LeftPart is a symbol called a syntactic category, and
RightPart is a combination of syntactic categories and given
strings called terminals.

• A syntactic category called an axiom or start symbol.

5

The hypothesis of these algorithms is that the string to be
analyzed is an element of the language specified by the given
specification rules. This means that the string to be analyzed can
be regenerated using the given grammar rules. The regeneration
process consists of constructing the derivation tree of the analyzed
string from a syntactic category C identified by a specification rule
C = RightPart. The symbol C can be replaced with RightPart, or
the substring identified by RightPart can be replaced with the
symbol C. Thus, the algorithm for constructing the derivation tree
of the given string consumes this string sequentially, symbol by
symbol, reading it from left to right or from right to left, while
building its derivation tree. This operation can be driven by one of
two strategies: top-down, starting with the root of this tree marked
by the axiom, or bottom-up, starting with its frontier of the tree
whose nodes are marked by the words (i.e., the symbols)
components of the given string. Because these two strategies are
uniquely determined by the data of the problem, the process of
constructing the derivation tree of the given string is well-defined,
and the string thus generated is obtained by concatenating the
leaves of this tree.

If the reader is more interested in approaching the language to be
analyzed based on algorithms for recognizing its elements of the
Turing Machine type, then the reader should continue to chapter
4.

Chapter 4 is dedicated to discussing algorithms similar to those discussed
in Chapter 3 but based on a computational mechanism rooted in the
Turing Machine. The basic operation of these algorithms is the process
known as pattern matching in strings. This type of algorithms is less
discussed in literature. Therefore this may be a fertile field for research
and development for students and researchers. The author and his

6

students at the University of Iowa, Iowa City, USA, have initiated a
methodology for software development using similar algorithms whose
implementation is based on "pattern matching". The advantage of these
algorithms is that they are more efficient because they can utilize all the
rules in the specification package and all symbols of the given string in
parallel, eliminating the assumption of sequential operation. Of course,
this is an original research in which the rules in the package specifying
the language are ordered into hierarchy classes, as explained in Chapter
4. The information on which these algorithms are based is known as
contexts and non-contexts. Contexts are pairs of strings that if they
include the RightPart of a specification rule then this RightPart specifies
the LeftPart of this rule. Non-contexts are pairs of strings that if they
include the RightPart of a specification rule then this RightPart does not
specify the LeftPart of this rule. Chapter 5 of the book contains a
collection of algorithms used to compute the contexts and non-contexts
of the specification rules.

Chapter 6 of the book contains an original methodology for manipulating
abstractions of computation. The fundamental idea of this methodology is
considering abstractions of computation as a reflection of the physical
world. The physical universe is considered as an open list of hierarchical
models, where a physical model is constructed by taking another physical
model as its base. The current algebraic model for manipulating
abstractions does not distinguish hierarchical levels of models. That is,
the current algebraic structures used as models of abstractions of
computation are not hierarchized like the physical ones. The connection
between the algebras used as models for manipulating abstractions is a
functional connection, which preserves algebraic operations, without
considering the representation of a model in terms of another given
model. Heterogeneous algebra models generalize the functional
relationship between algebras but do not discuss the representation of
elements of a heterogeneous algebra as elements of another
heterogeneous algebra, which does not necessarily belong to the same
class of similarity. However, algorithms used by different computer
systems, such as programming language translation algorithms, require
such a relationship between manipulated abstractions of computation.

7

The methodology of manipulating abstractions discussed in Chapter 6 of
this book lays the foundation for such a relationship between the models
of abstractions manipulated by computer science, in which abstractions
are systematically constructed based on other abstractions, as the physical
universe is built based on a hierarchic model. For example, to construct a
house as a physical model, other physical models such as the foundation,
walls, roof, etc., are used, each of these models being treated similarly.
The fundamental relationship underlying the hierarchy of physical
models is abstraction. This means that to build a physical model uing
other physical models as components, through abstraction, all properties
of the component used are ignored except for being a component of the
built model. To use a physical model for a specific purpose, the
properties of the model to be used are remembered in the context in
which it is used. These forgetting and remembering relationships are
formalized in this book using the Heterogeneous Algebraic Structures
(HAS) hierarchy. In Chapters 6 and 7, the HAS hierarchy is used as the
basis for constructing abstract computation models. The properties of
these models are studied using derived operations from heterogeneous
algebras, represented in computation abstractions using macro-operations
from programming languages. This study, being a premiere, offers an
open field for both theoretical research and practical applications. In
particular, the use of the computer as a tool of the human brain becomes
the basis for the unlimited evolution of software in the process of human
evolution.

Prof. Teodor Rus, August 29, 2023

4

