
A Language Independent Scanner Generator

Teodor Rus and Tom Halverson

Department of Computer Science
The University of Iowa
Iowa City, Iowa 52242

(319) 335-0742, rus@herky.cs.uiowa.edu

Abstract:

This paper discusses a methodology for scanner generation that supports automatic genera-
tion of off the shelf scanners from specifications. The lexicon specification rules are layered
on two levels: rules specifying “universal” lexical constructs which are used as building
blocks by most programming languages and rules specifying customized lexical constructs of
a specific programming language, using universal lexical constructs as building blocks. The
universal lexicon is specified by regular expressions over a global alphabet used by most pro-
gramming languages, such as the character set of a keyboard, and is efficiently implemented
by deterministic finite automata. The customized lexicon is conveniently specified by regular
expressions of properties of universal lexical constructs and is implemented by nondetermin-
istic automata whose transition function is determined by the truth value of properties of
universal lexemes. Tools that transform a lexicon specification into a stand alone scanner
are developed and reported. This methodology is convenient because the user operates with
meaningful constructs and no programming is required. The lexical analyzers thus specified
are efficient and their correctness is mathematically guaranteed. Examples and experiments
that demonstrate the implementation of stand alone scanners can be found at the URL
http://www.cs.uiowa/~rus/ in the package ”component-based software development tools”.

Keywords: finite automata, lexicon specification, scanner generator.

i

Contents

1 Introduction 1

2 Lexicon specification by lexical equations 3

2.1 First level lexicon specification . 4

2.2 Second level lexicon specification . 4

2.2.1 Conditions . 5

2.2.2 Regular expressions of conditions . 6

2.2.3 Lexicon specification equations . 7

3 Implementation of the lexical analyzers 10

3.1 First level lexicon implementation . 10

3.2 Second level lexicon implementation . 12

3.2.1 LSFParser implementation . 13

3.2.2 Mapping regular expressions of conditions into finite automata 14

3.2.3 The Action Table . 21

3.2.4 Algorithm implementing a conditional NFA 21

3.2.5 The second level scanning algorithm 24

4 Integrating FLS and SLS 25

4.1 Functional integration of stand alone tools 26

4.2 Integrating FLS and SLS into a user designed scanner 27

5 Conclusions 29

A BNF specification of lexical equation language 32

B Partial Fortran 77 lexicon specification 34

C Partial C lexicon specification 35

ii

1 Introduction

For a given regular expression e, an algorithm that inputs a string x and determines whether
or not x is an element of the language specified by e is called scanner(e). That is, scanner(e)
answers the question is x ∈ L(e)? A lexical definition is an ordered set of equalities of the
form

N1 = e1

N2 = e2

. . .

Nm = em

where Ni, 1 ≤ i ≤ m, are unique names called tokens, and ei are regular expressions
constructed over the alphabet Σ(ei), 1 ≤ i ≤ m. For a given lexical definition, d, there is an
algorithm called a lexical analyzer, that inputs a string x and tokenizes it. The tokenizing
process consists of recognizing each substring of x that is a lexical element specified by the
right hand side, rhs, of some equation from d and replacing it by the left hand side, lhs,
of that equation. The character sequence forming that token is referred to as the token’s
lexeme. Further, the terms scanner and lexical analyzer will be used interchangeably.

The conventional approach to describing the lexical constructs of a programming language
relies heavily on the use of regular expressions and lexical definition [1, 5, 13]. Therefore, it
seems natural to design generators of lexical analyzers that operate on regular expressions.
But the lexicon of concrete programming languages sometimes contains constructs that are
not regular. Some lexical analyzer generators, such as Lex [10] and Rex [4], treated these
non-regular constructs as “exceptions” to be handled outside of the syntax of the lexicon
specification language, usually by requiring the user to write code in a standard programming
language. Other lexical analyzer generators, such as Alex [11], GLA [15], and Mkscan [6],
have made a move toward incorporating the non-regular features into the syntax of the
lexicon specification. Still others, have moved the entire lexical analysis process into the
parser, thus specifying them with the same BNF rules as used for the rest of the language
syntax [14]. Such scannerless parsing techniques do provide some benefits by eliminating the
scanner/parser interface, however the grammars soon become unwieldy. Thus, a separate
scanning tool is still important. The various approaches used in the above lexical analyzer
generators did not lead to a solution to the problem of developing a universal lexical analyzer
that could be easily and conveniently integrated in a compiler while at the same time being
used as a stand alone language processing component performing lexical analysis [8].

In contrast to previous generators of lexical analyzers, the lexicon specification discussed
in this paper is written in terms of primitive lexical constructs rather than using a given
character set taken as the language alphabet. These primitive lexical constructs, such as
identifier and number, are found in all programming languages and are generated by regular
expressions defined over the language alphabet. In addition, these lexical constructs have
structural properties such as the regular expression defining them, the lexemes representing

1

them, the length of their lexemes, etc., that can be used to develop a two level lexicon
specification that can be recognized by a two level scanning algorithm. Similar work was
reported about a scanning algorithms called the TwoLev [8]. A two-level scanner operates
as a scanner-within-a-scanner. The inner scanner, called the First Level Scanner (FLS), is
efficiently generated from a given set of regular expressions. The unique feature of these
regular expressions is that they do not depend on the programming language that is being
implemented, yet the tokens that are returned by the FLS have a clear meaning in virtually
every programming language. The Second Level Scanner (SLS) works exclusively with the
lexemes recognized by the FLS, thus allowing us to extend the notion of a regular language as
a lexicon specifier to that of a regular language of properties of the primitive lexical entities.
An expression of such properties will be referred to as a condition.

In this framework, a user developing a lexical analyzer can think in terms of higher level
constructs which have well-defined semantics rather than thinking about character sets. The
specification of a lexical analyzer then consists of a set of easy-to-construct equations in the
extended regular language of conditions. Formally, a lexical definition is a two level construct
of the form

N1 = e1

N2 = e2

. . .

Nm = em

T1 = P1(L(e1), . . . , L(em))

T2 = P2(L(e1), . . . , L(em))

. . .

Tn = Pn(L(e1), . . . , L(em))

where ei, 1 ≤ i ≤ m, are regular expressions over the language alphabet, Σ(ei), specify-
ing lexemes universally valid in all programming languages and Ni are token names of the
languages L(ei) specified by ei, 1 ≤ i ≤ m. Pk(L(e1), . . . , L(em)), 1 ≤ k ≤ n, are regular
expressions over a finite alphabet of conditions using properties of elements of the languages
L(e1), L(e2), . . ., L(em). Our assumption is that e1, e2, . . ., em can be efficiently implemented
by a first level scanner, FLS. Hence, replacing the languages L(ei) by their token names
Ni, 1 ≤ i ≤ m, and having in view that L(ei), 1 ≤ i ≤ m, are fixed, the lexicon specification
becomes:

T1 = P1(N1, . . . , Nm)

T2 = P2(N1, . . . , Nm)

. . .

Tn = Pn(N1, . . . , Nm)

That is, rather than layering the lexicon on syntactic levels as done by conventional approach
we use semantic properties of universal constructs to produce a layering of the lexicon.

2

Regular expressions of properties provide an increased expressive power when compared with
conventional regular expressions. This leads to the development of language independent
generators of lexical analyzers that produce stand alone lexicon processing tools to be used
as scanners in conventional compilers, as the first step of the transformations performed by
an algebraic compiler, as lexical analyzers of natural language processing tools, or in any
other application that could use a scanner.

The paper is structured as follows: Section 2 discusses the lexicon specification by regular
expressions of conditions; Section 3 presents our technology of mapping lexicon specifications
into stand alone lexical analyzers; Section 4 discusses the methodology for integrating the
scanning algorithm with other tools thus generating stand alone applications; Section 5
presents preliminary conclusions on using this methodology in various applications such as
parser generation in algebraic compilers and in teaching compiler construction.

2 Lexicon specification by lexical equations

A lexical entity in a programming language is the lowest level class of constructs in the
alphabet of the language that has meaning within the language. For example, individual
letters or digits generally do not have a specified meaning, but the class of identifiers do.
Language processing tools consider lexical entities to be the smallest constructs of interest.
A lexical entity can represent either an individual construct, as does the operator :=, or a
collection of constructs, as does the class of identifiers. Also, most lexical entities can be
described by regular expressions, but concrete programming languages may contain lexical
entities that are not regular in nature, such as recursive comments. Therefore, the lexicon
specification language must be more powerful than a conventional regular language to allow
it to specify all of the lexical constructs. On the other hand, there is a well-established
methodology for generating scanners from regular expressions [13]. Hence, our approach
is to use regular expressions over finite sets of properties called conditions rather than over
conventional alphabets. This allows us to increase the expressive power of regular expressions
while preserving much of the well-known methodology for scanner generation from regular
expressions.

We assume that each lexical entity is specified by a lexicon specification rule of the form
LHS = RHS where LHS is the token name and RHS is a pattern that specifies the
lexemes that will be tokenized to LHS. For a given programming language, PL, the lexicon
specification rules are collected in the Lexicon Specification File (PL.LSF). See PartF77.LSF
and PartC.LSF in Appendix B and C respectively.

The language specified by these lexical equations is often treated as the first level of valid
language constructs of a high-level language. This is achieved by allowing the left-hand sides
of such lexical equations to be used as terminals in the BNF rules that specify the syntactic
constructs of the high-level language.

3

2.1 First level lexicon specification

The primitive lexical entities considered in this paper are constructed from a “universal”
character set. Lexical items constructed from characters in this set may have a universal
meaning such as number or word. The common property of all these classes of universal
lexical entities is that elements of a class can be distinguished from the elements of other
classes both syntactically and semantically by their syntactic form. In addition, the elements
within a class can be distinguished by examining properties of their components. The lex-
ical entities chosen as building blocks for the specification of a language lexicon are called
universal lexemes and form the first level lexicon.

The lexemes that seem to be universally used by all programming languages are: letter
sequences (identifiers), digit sequences (numbers), white spaces, unprintable characters, and
other characters (punctuation, operators, separators, etc.). These universal lexical entities
can be specified by the following regular expressions over the character set:

I: identifiers, defined by the regular expression L(I) = Letter Letter∗,
N: numbers, defined by the expression L(N) = Digit Digit∗,
W: white spaces and tabs,
U: unprintable characters (such as newline),
O: other characters (punctuation, separators, etc.)

These classes of constructs are universal across nearly all programming languages in the
sense that they are used as building blocks of the actual lexical constructs found in the
programming language.

In order to use these lexical items as fundamental entities in the construction of the
lexicon of a programming language, we characterize them by the attributes Token which
designates the class, i.e., Token ∈ {I, N, W, U, O}, Lex, which is the actual string of char-
acters identifying the entity of a class, and Len, which is the number of characters making
up a lexeme. Other attributes can be easily added and are obviously necessary, but will not
be described here. The symbols Token, Lex, Len are further used as metavariables whose
values are the respective properties of the universal lexemes.

The FLS is a deterministic automaton which uses as input a stream of characters in the
alphabet of the programming language, and groups them into the above five classes that
may be found in all programming languages. At each call, the FLS returns one tuple of
attributes 〈Token, Lex, Len〉 called a universal lexeme.

Example 1: If a source text contained the string var 3, the sequence of universal lexemes
returned by repeated calls to the FLS would be: 〈I, “var”, 3〉, 〈O, “ ”, 1〉, and 〈N, “3”, 1〉.

2.2 Second level lexicon specification

The second level lexicon is specified by regular expressions of conditions over first level lexical
entities, which show how to combine language independent first level lexemes to obtain valid

4

lexical constructs of a particular language.

2.2.1 Conditions

Conditions are properties of the universal lexemes expressible in terms of the fundamental
attributes Token, Lex, Len that characterize them. To formally define the concept of a
condition we observe that these attributes refer to three fundamental types of data: set,
string, and integer. Hence, we need to define set operations, string operations, and integer
operations on the universal lexeme. These operations, in turn, will allow us to construct the
lexicon of actual programming languages as regular expressions over expressions representing
properties of universal lexemes. To express such properties, we will develop a language of
fundamental properties of universal lexemes where data are tuples 〈Token, Lex, Len〉 and
operations include relations on sets, strings, and integers, and logical operators, such as ∧,
∨, and ¬.

The Token attribute of an universal lexeme is expressed by set membership, Token ∈
{I, N, W, U, O}. Therefore, the set membership predicate must be supported as a fundamen-
tal operation. However, since the number of token types is finite the membership predicate
can be expressed by the equality and logical-or operators, that is (Token = I) ∨ (Token =
N)∨ (Token = W)∨ (Token = U)∨ (Token = O). The Lex attribute of a universal lexeme
is a string. Hence, operations on strings must be supported. We allow fundamental oper-
ations of the form Lex rel string where rel ∈ {<,≤, =, >,≥} and string is a constant of
type string. However the interpretation of the relations <, ≤, =, >, and ≥, depends upon
the Token attribute. That is, if Token = N then these are relations with numbers and
if Token 6= N then these are lexicographic relations. The Len attribute of a lexeme is an
integer. Therefore, usual integer relations <, ≤, =, >, and ≥, also need to be supported.

In addition to the operations specified above, one also needs operations on the component
characters of a universal lexeme. This is because the definition of regular expressions accept
characters of the language alphabet as lexical entities and the character sets that are used
to compose lexemes of concrete programming languages are not necessarily disjoint. For
example, A, B, C, D, E, F are both letters that can be used to construct identifiers and also
digits of a hexadecimal number. Hence, to allow an easy specification of lexical entities whose
components expand over different character sets, we provide character level operations on
the Lex component of a universal lexeme. These operations are:

1. LexChar(i) is the ith character of the lexeme Lex.

2. LexChar(i) rel C where rel ∈ {<, =, >,≤,≥} checks if the alphabetic relation rel

holds between the ith character of Lex and the constant character C.

3. LexChar(i) in {C1, C2, . . . , Cn} checks if the ith character of the lexeme Lex is in
the set of characters {C1, C2, . . . , Cn}. If this set is ordered and continuous over the
character range then this operations can be expressed by LexChar(i) in [C1..Cn].

5

4. LexChar(i, j) in {C1, C2, . . . , Cn} checks if the characters in positions i through j of
the lexeme Lex are in the set {C1, C2, . . . , Cn}. Again, if the set {C1, C2, . . . , Cn} is
ordered then this can also be expressed by Lex(i, j) in [C1..Cn].

Now, conditions are recursively defined by the following rules:

1. A condition is a property of the attributes of a universal lexeme expressible in the
language of fundamental properties defined above. For example, Token = I, Len <=
8, Lex = “do”, LexChar(1) = ’d’, and LexChar(1, Len) in [′A′..′F ′] are conditions.

2. A condition is a logical expression on conditions constructed with the operators or,
and and not; for example, Token = I and (Len > 3 or Lex = “aa”), is a condition.

Notice: Since the meaning of fields and operations varies by token, we require that the
first relation occurring in a condition specifies the Token attribute. We call this relation
the class specifier. All following relations in that condition (each of which may then specify
either the Lex, Len, or other attributes), will refer to the same universal lexeme as the
class specifier. With this in mind, the term condition will be used to refer to an expression
that includes the class specifier and the term conditional property or property will refer the
subexpressions of a condition that does not include the class specifier. Thus, the condition
Token = I and (Len > 3 or Lex = “aa”) specifies an identifier which has the property
that its length is greater than three or its lexeme is the string “aa”.

2.2.2 Regular expressions of conditions

Consider the alphabet A = {I, N, W, U, O, ǫ} and the family of languages

L(A) = {L(I), L(N), L(W), L(U), L(O), ǫ}

where ǫ is the symbol that denotes the empty string. The regular expressions of conditions
and the language specified by them are constructed from conditions by the usual rules:

1. ǫ is a regular expression of conditions and the language specified by it is ∅.

2. Any valid condition c whose token Tc ∈ {I, N, W, U, O} is a regular expression of
conditions and the language specified by it is L(c) = {x ∈ L(Tc)|c(x) = true}.

3. If e1 and e2 are regular expressions of conditions then e1|e2 (where | denotes the choice
operation) is a regular expression of conditions and the language specified by e1|e2 is
L(e1) ∪ L(e2).

4. If e1 and e2 are regular expressions of conditions then e1◦e2 (where ◦ denotes the oper-
ation of concatenation) is a regular expression of conditions and the language specified
by e1 ◦ e2 is L(e1)L(e2). From now on we will denote the operation of concatenation
by juxtaposition.

6

5. If e is a regular expression of conditions then (e)∗ (where ∗ denotes the Kleene star)
is a regular expression of conditions and the language specified by (e)∗ is ∪∞

i=0L(e)i.

For a given finite set C of conditions, let Reg(C) denote the collection of regular ex-
pressions of conditions defined by rules (1) through (5) above. The language specified by
a regular expression of conditions e ∈ Reg(C) can be recognized by a nondeterministic fi-
nite automaton NFAC = 〈Q, C, δ, q0, F 〉 whose alphabet C is the set of conditions used to
construct e extended with the ǫ symbol. NFAC performs as follows:

1. For a condition c ∈ C and a state q ∈ Q the state transition function δ(q, c) = R reads:
“in state q, evaluate condition c and if true, then goto state R ∈ Q”.

2. A string c ∈ C∗, is accepted by NFAC if δ(q0, c) ∈ F where for every c1 ∈ C and
c2 ∈ C∗, δ(q, c1c2) = δ(δ(q, c1), c2).

If c1c1 . . . cn ∈ C∗, 1 ≤ i ≤ n, is accepted by NFAC then for all xi ∈ L(Token(ci)), xi ∈ Σ∗,
x1x2 . . . xn is also recognized by NFAC . To simplify notation, without loss of generality,
we may use L(ci) instead of L(Token(ci)). Then the language specified by NFAC over the
initial alphabet Σ is

L(NFAC) = {x1 . . . xn ∈ Σ∗|∃c1 . . . cn ∈ C∗ ∧ δ(q0, c1 . . . cn) ∈ F ∧ xi ∈ L(ci), 1 ≤ i ≤ n}

2.2.3 Lexicon specification equations

The lexicon of a programming language is specified by equations of the form LHS = RHS

where LHS is a string used as a token name and RHS is a regular expression of conditions
on the universal lexemes. A collection of these equations is used to build an automaton that
will recognize the constructs specified by them. This automaton consumes universal lexemes
from the FLS and constructs tokenized lexemes of the source language. Such a lexeme is a
triple: 〈Name, Lexeme, Length〉, where Name is the LHS string of an equation, Lexeme is
the string resulting from the concatenation of the Lex attributes of the universal lexemes
consumed by the automaton before entering a final state, and Length is the length of Lexeme.
As before, there will certainly be more information required in a second level lexeme, but
we present here a simplified view. We have developed formal rules for lexicon specification
by regular expressions of conditions that are equations of the form:

Name = 〈Descriptor〉 [[| 〈Descriptor〉] . . .] [〈Context〉] 〈Semantics〉 | self ;

where [| 〈Descriptor〉] . . . denotes any number of optional choices of 〈Descriptor〉. The
informal specifcation of the Descriptor, Context, and Semantics is given by the following
BNF rules:

〈Descriptor〉 ::= body: 〈E〉 | begin: 〈E〉 body: 〈E〉 end: 〈E〉 |
begin: 〈E〉 body: any until end end: 〈E〉 |

7

begin: 〈E〉 body: 〈E〉 end: 〈E〉 recursive
〈E〉 ::= 〈Condition〉 | 〈E〉 〈E〉 | 〈E〉 “|” 〈E〉 | “(” 〈E〉“)” “ ∗” | “[” 〈E〉 “]”
〈Context〉 ::= context: {〈〈E〉, 〈E〉〉} | noncontext: {〈〈E〉, 〈E〉〉}
〈Semantics〉 ::= [action : 〈ActList〉];

〈Condition〉 is a conditional expression and 〈E〉 is a regular expression of conditions as
described earlier. The operator any until end used in this specification is a notational
convenience which denotes a condition which is satisfied by all tokens which do not satisfy
the conditional expression specified by the 〈E〉 in the clause end : 〈E〉. Similarly, a condi-
tion represented by any tok can be used to refer to any single, arbitrary universal lexeme.
The clause context: {〈〈E〉, 〈E〉〉} denotes a list of pairs of regular expressions of conditions
specifying the context in which lexical item Name can be found and the clause noncontext:
{〈〈E〉, 〈E〉〉} denotes a list of pairs of regular expressions of conditions specifying the context
in which Name cannot be found. 〈ActList〉 represents the list of actions to be performed
when a lexical construct specified by this equation is recognized. The components using
the keywords begin, body, end, context, and noncontext define the syntactical portion
of a lexical specification rule, while the keyword action defines the semantic portion. The
keyword recursive will allow nested begin and end sequences. The brackets [] are essen-
tially used as a keyword and indicates that the first level tokens recognized by the enclosed
expression should not be included in the constructed second level lexeme.

Many terminals, such as reserved words and punctuation symbols, would be specified by
equations defining precisely that terminal. Thus, we allow them to be specified by lexical
equations of the form TokName = self where self is a regular expression of conditions that
recognizes as valid only the string TokName. For example, the Pascal assignment operator
:= is specified by the lexical equation

“ := ” = self

in which case self represents the regular expression of conditions

Token = O and Lex = “ : ” Token = O and Lex = “ = ”

Example 2: The lexical equation defining the usual form of an identifier is:

“id” = body: Token = I (Token = I | Token = N | Token = O and Lex = “ ”)∗

Then, given the sequence of first level tokens from Example 1, the SLS algorithm could use
this equation to allow the construction of the second level token: 〈id, “var 3”, 5〉.

Some lexical constructs are more easily defined by specifying a beginning and an ending
sequence. Comments and strings can be defined in this manner. In order to specify such
constructs, we can use the two keywords begin and end. These keywords must be paired.

Example 3: Comments in many languages such as C or JavaScript could be defined by the
following equation using the begin-end pairs.

8

c style com= begin: Token = O and Lex = “/” Token = O and Lex = ”*”
body: any until end
end: Token = O and Lex = “*” Token = O and Lex = ”/”

Another feature that is necessary in a scanner is the ability to recognize “syntactic sugar”
in a construct which does not appear in the final tokenized lexeme. An example of this is the
way special characters in strings are treated in many languages. Since a string is delimited
by quotes, in order to place a quote in the string itself, the usual convention is to place two
quotes together. However, the resulting string should only contain one quote. This feature
is implemented by placing square brackets, [], around an expression. This indicates that
the enclosed expression must be matched by some universal lexeme(s) from the FLS, but
these lexemes will not be included in the lexeme being constructed. In Example 4 below,
the second quote in the body of the string will not appear in the result.

Example 4: A partial specification for Modula-2 strings would be:

string= begin: Token = O and Lex = “””
body: (any tok | Token = O and Lex = “”” [Token = O and Lex = “””])∗

end: Token = O and Lex = “””

The keyword recursive will allow nested begin and end sequences, as in the definition
of a Modula-2 comment given in the Example 5 below.

Example 5: A specification for Modula-2 comment would be:

mod com= begin: Token = O and Lex = “(” Token = O and Lex = ”*”
body: any until end
end: Token = O and Lex = “*” Token = O and Lex = ”)” recursive

Example 6: the specification of lexical entities whose character sets are not disjoint is
illustrated by the following regular expression of conditions that specifies C hex numbers:

c hex num = body: Token=N and Lex=0
(Token = I and Lex=”x” |
Token=I and LexChar(0)=’x’ and LexChar(1,len) in [’A’..’F’])

(Token = N | Token = I and LexChar(0,len) in [’A’..’F’])*

The information associated with a lexical equation by the keyword context signifies that
in order to be recognized by that lexical equation a lexical construct must be matched by the
regular expression of conditions from the right-hand side of the lexical equation and must be
discovered in the given context. The information associated with a lexical equation by the
keyword noncontext signifies that if a lexical construct is matched by the regular expression

9

of conditions in the right-hand side of the lexical equation and is discovered in that context
then this lexical construct should not be recognized by this equation. Only one or the other
can be specified, since context and noncontext must be mutually exclusive. Following the
keywords context and noncontext is a list of pairs of conditional expressions defining the
left and right context or noncontext. The special keyword none can appear as the only left
or right context, indicating no context checking, while the keywords bof (beginning of file)
can be included as the first constant of the left context, and eof (end of file) can be the last
constant of the right context.

Example 7: Suppose two constructs called label and number must be recognized, where
label must be an integer with the context consisting of a colon following it, whereas number

is an integer not followed by colon. Then the specifications would be:

label = body: Token=N
context: 〈 none , Token=O and Lex=“:” 〉;

number = body: Token=N
noncontext: 〈 none, Token=O and Lex=“:” 〉;

This provides discrimination of identically defined constructs based on the context only.

3 Implementation of the lexical analyzers

The lexical analyzer reads the input text, tokenizes it according to the lexicon specification,
and performs specific actions whenever a lexical item is discovered. The input text is read
by the first level scanner, FLS, which is a conventional DFA generated from the regular
expressions specifying the universal lexemes. The tokenizing function is implemented by the
second level scanner, SLS, which is a non-conventional NFA. This NFA reads and evaluates
conditions on universal lexemes returned by the FLS rather than reading symbols of a char-
acter alphabet. This section describes the implementation of FLS and SLS. The integration
of FLS and SLS into a user customized lexical analyzer is discussed more thoroughly in
Section 4

3.1 First level lexicon implementation

The FLS is automatically generated from the specification of the first level lexical entities
by the conventional technology of mapping regular expressions into finite automata which
recognize the language specified by these expressions [7]. This technology consists of the
following rules:

1. Let the implementation of the algorithm in [7] be ScanGen.

10

2. Let the specification of the first level lexical entities

I = Letter Letter∗

N = Digit Digit∗

W = white spaces and tabs

O = punctuation, operators, and other characters

U = unprintable characters

be given in a file with suffix .FLS, such as f.FLS.

3. ScanGen takes as the input f.FLS and generates a scan table, ST.h, that controls
the finite automaton DFA(f.FLS) = < Q, Σ, δ : Q × Σ → Q, 0, F > where Q =
{0, 1, 2, 3, 4, 5, }, F = {1, 2, 3, 4, 5}, shown in Figure 1. DFA(f.FLS) recognizes the

m0

mj5
mj4
mj3
mj2
mj1

@
@

@@R

HHHHj

-����*
�

�
���

Letter
Letter

W

U

O

Digit
Digit

�

�

Figure 1: DFA for the First Level Scanner

language generated by the regular expressions provided in f.FLS. The entries of the
scan table ST.h are tuples ST [i][j] = < state, char > where state ∈ Q and char is a
character of the language alphabet.

4. The scanner FLS reads characters from an input text file and behaves according to an
implementation of the DFA in Figure 1.

This methodology for first level scanner generation is shown in Figure 2. Note that
FLToken is a data type designed by the scanner implementor. We assume here that FLToken
is defined by the following data structure:

char TokenClass char Lexeme[MaxLength] int Len

In reality, we also keep syntactic details such as start-line, start-column, end-line, and end-
column. Furthermore, it is also necessary to collect any information that may be needed for
later processing and to pass it on so that it is not lost.

11

Input ∈ L(f.FLS) - FLS - FLToken
?

ST.h
?

ScanGen
?

f.FLS

Figure 2: First Level Scanner generation

3.2 Second level lexicon implementation

In a conventional NFA, the transition table is indexed by the current state and an alphabet
symbol [3, 5, 13]. The modified NFA implementing SLS uses conditions rather than symbols
as the alphabet. The set of conditions C that make up the alphabet is given in the second
level scanner specification, called the lexicon specification file, in the form of a file with suffix
.LSF, such as g.LSF. It is impractical to use the conditions in C as indices. However, the
token class attribute of any condition in a regular expression of conditions is constant over
that condition. Thus, the class specifier of the conditions can be used as the column index in
the transition table controlling the NFA. Hence, the state transition of the NFA(g.LSF) =
< Q, C, δ : Q×C → Q, s0, F > implementing SLS is controlled by a two-level table structured
as follows:

1. The Transition Table, TT, is a two dimensional table whose rows are labeled by the
states of the NFA(g.LSF) and the columns are labeled by the elements of the set
{I, N, W, U, O, ǫ} that are the tokens (i.e., class specifiers) of the first level lexicon.

2. Each entry TT [q][t], q ∈ Q, t ∈ {I, N, W, U, O, ǫ} is a list of transitions {T1, T2, . . . , Tk}.
Each Ti, 1 ≤ i ≤ k, is a tuple of the form 〈condi, statei〉 where condi is an index to
a condition in the Condition Table, CT. This condition is to be evaluated when the
automaton is in state q and the current FLS lexeme, ulex, is in class t. Statei shows
the destination state of the transition performed by the NFA, i.e.,

δ(q, condi, ulex) =
{

statei, if V(CT [condi](ulex)) = true;
undefined, otherwise.

where V : C → {true, false} is a mapping that evaluate conditions. If δ(q, condi, ulex)
is undefined the automaton remains in state q and performs δ(q, condi+1, ulex), for
i = 1, 2, . . . , k.

We have developed an automatic implementation of the second level lexical analyzer,
SLS, Figure 3. This implementation contains three phases and is performed by three tools
as follows:

12

Phase 1: develop the BNF rules that specify the language of the lexical equations used as
lexical specification mechanism. These rules define a grammar, LexGram, which is the same
for every lexicon that one needs to specify with our system and is given in the Appendix A.
However, it certainly can be modified if necessary.

Phase 2: develop the lexicon specification file, PL.LSF , which contains an element of the
language specified by the BNF rules in LexGram at Phase 1. An example of such a file is the
Fortran 77 lexicon specification given in the Appendix B.

Phase 3: a constructor algorithm called LSFParser reads the lexical equations from
PL.LSF file and constructs the NFA that recognizes the lexical constructs specified by
them (see Section3.2.1).

L(PL.LSF) - SLS - SLToken

TT
PPPPPq

AT

?

CT
�����)

LSFParser
�����) ?

PPPPPq

PL.LSF�

PT.h

?

IPC2

?

LexGram

?

Figure 3: Methodology for SLS construction

The default grammar, LexGram, is usually sufficient so the user activity is commonly
limited to the steps that begin with the modification or creation of PL.LSF.

3.2.1 LSFParser implementation

The specification language used to write the lexical equations in PL.LSF is defined by
the LALR-grammar [2] LexGram given in Appendix A. To provide for customization of
the lexical analyzer to a particular language we allow each specification rule in LexGram to
be augmented with one or more functions that are to be performed by the algorithm that
constructs the lexical analyzer. That is, each specification rule in LexGram may have the form
LHS = RHS ; Function. These rules are mapped by IPC2 [9, 12] into an extended parse
table whose entries are tuples 〈Action, Function〉 where Action is the usual LALR-action
and Function is a reference to the corresponding function provided in the specification.
Only the function name is provided in LexGram and stored in the parse table. The function
definitions are provided separately. This function will be called when the parser makes a

13

reduction. That is, the LSFParser is an LALR parser controlled by the extended parse
table constructed by IPC2 which reads the equations in PL.LSF , checks their syntactic
validity, and maps them into the TT and CT tables required by SLS, and the AT table
required by further applications.

3.2.2 Mapping regular expressions of conditions into finite automata

Every regular expression of conditions recognized by LSFParser is composed of four kind
of elements: conditions expressing properties of the universal lexemes, keywords (such
as recursive, context, begin, end,[], etc.) which may indicate non-regular features of
the lexeme specification, regular operators (|, ◦, ∗), and semantic actions. The regular
operators are used by LSFParser to generate the automaton recognizing lexemes; conditions
are mapped by LSFParser into postfix form and then are stored in the condition table, CT;
keywords are mapped into predefined programs; semantic actions are mapped into records in
the action table allowing future processors to perform the desired functions on the lexemes
discovered by SLS.

Each equation from the lexicon specification file will correspond to an NFA. The automa-
ton for the equation, LHSi = RHSi, will recognize the language described by the regular
expression of conditions in RHSi in order to construct a token from the language identified
by LHSi. Thus NFAi will be constructed for LHSi = RHSi for each conditional equation,
as seen in Figure 4.

NFA1

- ms1
- ;- m��

��
f1

NFA2

- ms2
- ;- m��

��
f2

. . .
NFAi

- msi - ;
- m��

��
fi

Figure 4: Collection of NFAs

Each NFAi, i = 1, 2, . . . , is characterized by the following information: the start state,
which is an index in TT where the state si is stored, the final state, which is the index in TT
where the state fi is stored, token name, which is LHSi, lexeme rule, which is RHSi, the
action to be performed when LHSi is recognized, which is the function associated with the
rule LHSi = RHSi used to construct NFAi, and the context in which the token specified by
RHSi is found. As was described, each transition of such an NFA is labeled by a property.
If this property is a condition, then the transition to the next state is made only if the
condition is satisfied by the current universal lexeme. Each condition is converted into a
CT (condition table) entry when the lexicon specification file is processed. Following the

14

explanation of this process, the creation of the transition table will be presented to complete
the NFA construction.

An entry in the CT represents a condition used in the second level lexicon specification
equations recognized by LSFParser. For implementation reasons, each condition is mapped
first into a postfix form and then is stored into CT as a record of the form:

〈n : Entry1, Entry2, . . . , Entryn〉

where n is the number of elements in the expression and Entryk, k = 1, 2, . . . , n, is a
meta-variable, a constant value from the domain of some meta-variable, or an operator.
Meta-variables, such as LEX, or LEN , denote attributes of lexemes returned by the FLS.
Operators are relations and logical connectors. Relational operators REL are comparison
operators used to construct conditions, i.e., REL ∈ {EQ, NE, GE, LE, GT, LT}; logical
connectors AND, OR, or NOT allow conditions to be combined.

Example 8: The specification rule

dumb = body: Token = I and Len <= 8 (Token=O and Lex = “@” |
Token = O and Lex = “=” or Lex = “>”)

describes a language with elements such as ab@, cdef=, and ghi> and is a regular expression
over three conditions:

c1 : Token = I and Len <= 8
c2 : Token = O and Lex = “@”
c3 : Token = O and Lex = “ = ” or Lex = “ > ”

The names ci, 1 ≤ i ≤ 3, will be used further to refer to these conditions. Figure 5
shows NFA(dumb.LSF) = 〈{q, r, s, t}, {c1, c2, c3}, δ, q, {s, t}〉 that recognizes the language
specified by this regular expression of conditions. Recognizing an element of class dumb would
consume exactly two FLTokens.

��
��
q -

c1

��
��
r

��
��ms

���1c2

��
��mtPPPq

c3

Figure 5: Conditional NFA for Example 8

For the NFA in Figure 5, the transition from state q to state r can be made only if con-
dition c1 is satisfied by the current universal lexeme. As noted earlier, in the implementation
of NFA(dumb.LSF) the class specifier of each condition is factored out leaving only the
properties over the other attributes of the FLS lexemes. For the above example this leads
to the three properties of the universal lexemes:

15

p1 : Len <= 8
p2 : Lex = “@”
p3 : Lex = “ = ” or Lex = “ > ”

The names pi, 1 ≤ i ≤ 3, will be used further to refer to these properties. This means
that the transition from q to r is allowed if the FLS lexeme is in class I and satisfies the
property p1; transition from r to s is allowed if FLS lexeme is in class O and satisfies the
property p2; transition from r to t is allowed if FLS lexeme is in class O and satisfies the
property p3. To test if a property p is satisfied by the current universal lexeme, ulex, the
algorithm EvalCond(Ip,ulex) defined below, that operates on a stack of strings, is applied
to the condition p identified by the index Ip in CT.

1 Boolean EvalCond(int index, FLToken ulex)

2 Cond = CT[index]

3 Len = Cond[0]

4 for (i = 1; i <= Len; ++i)

5 if (Cond[i] in {LEX, LEN})

6 val = ulex.Cond[i]; Push(val, Stack)

7 else if (Cond[i] in ConstantValues)

8 Push(Cond[i],Stack)

9 else if (Cond[i] in {AND, OR, LT, LE, EQ, GE, GT, NE})

10 val2 = Pop(Stack); val1 = Pop(Stack); res = Cond[i](val1,val2);

11 Push(res,Stack)

12 else if (Cond[i] in {NOT})

13 val1 = Pop(Stack); res = Cond[i](val1); Push(res,Stack)

14 else return SystemError;

15 return Top(Stack)

The Boolean value on top of the stack when the algorithm terminates is the result of eval-
uating the condition found in the condition table at CT [index] on the current input token,
ulex. Demonstrations of EvalCond() evaluating the properties p1, p2, p3 are presented in
Example 9.

Example 9: the LSFParser stores the properties p1, p2, p3 into the CT as shown in Table 1.
The algorithm EvalCond() used by the NFA evaluates these properties as follows:

Ip1
3 LEN 8 LE

Ip2
3 LEX “@” EQ

Ip3
7 LEX “ = ” EQ LEX “ > ” EQ OR

Table 1: Condition table for example 8

16

1. if ulex = 〈I, “sam”, 3〉 and index = Ip1
then the algorithm performs the following

stack operations:

i Cond[i] Stack (Top on right)
1 LEN 3
2 8 3 8
3 LE LE(3,8)=true

true

2. if ulex = 〈O, “ < ”, 1〉 and index = Ip2
then the algorithm performs the following stack

operations:

i Cond[i] Stack (Top on right)
1 LEX “<”
2 “@” “<” “@”
3 EQ EQ(“@”,“<”)=false

false

3. if ulex = 〈O, “ > ”, 1〉 and index = Ip3
then this algorithm performs the following

stack operations:

i Cond[i] Stack (Top on right)
1 LEX “>”
2 “=” “>” “”=”
3 EQ EQ(“>”,“=”)=false

4 LEX false “>”
5 “>” false “>” “>”
6 EQ false EQ(“>”,“>”)=true

7 OR OR(false,true)=true
true

The NFAs constructed by LSFParser to recognize properties pi, 1 ≤ i ≤ 3 are shown in
Figure 6. The meaning of the first NFA, for example, is: in state 1, if the current FLS

��
��
1 -

p1 m��
��
2 ��

��
3 -

p2 m��
��
4 ��

��
5 -

p3 m��
��
6

Figure 6: Building blocks for Example 8

lexeme, ulex, is of class I and satisfies the property p1 : Len <= 8 then the automaton may

17

perform a transition to state 2. In other words, given a universal lexeme from class I which is
a string of no more than 8 characters, the NFA may make the transition from state 1 to state
2. Note that the difference between the algorithm used in [7] to construct a common NFA
that recognizes regular expressions and our algorithm used to construct a conditional NFA
that recognizes regular expression of conditions: NFAs constructed by [7] make transitions
when they read the characters from the alphabet while conditional NFAs make transitions
when they evaluate conditions on the lexemes returned by the FLS.

Now, in order to construct an NFA that recognizes regular expression of conditions we
make the following assumptions:

a. The fundamental automata are of the structure shown in Figure 7 where ǫ is the

-�

��
s -ǫ �

��jf -�

��
s -p �

��jf
Figure 7: Fundamental automata for making up conditional NFA

empty conditional expression that evaluates a True condition and does not consume a
token and p is an conditional expression that contains no regular operators (|, ◦.∗) and
evaluates to true or false.

b. Every conditional NFA has exactly one start node and exactly one final node.

With these assumptions the algorithm that constructs a conditional NFA consists of the
following rules:

1. If a regular expression of condition consists of only one condition, p, (that is, it contains
no regular operators |, ◦, ∗) then construct the conditional NFA that recognizes it as
shown in Figure 7.

a2

�

��
s2 �

��jf2;-

a1

�

��
s1 �

��jf1;-

�

��
s2 �

��
f2;

�

��
s1 �

��
f1;

�

��
s

@
@R
ǫ

ǫ
�

��
- �

��jf
�

��

@
@Rǫ

ǫ

�

��
f2;

�

��
f1

;

;

-
�
�

�
�s1, s2 �
��

C
CW

�

��jf

�
��

@
@Rǫ

ǫ

Figure 8: Mapping two automata a1, a2 into a1|a2

2. If the regular expression of conditions is of the form e1|e2 where e1 is recognized by the
conditional automaton a1 and e2 is recognized by the conditional automaton a2 then

18

construct the automaton a1|a2 as shown if Figure 8. The node f is a new final state
and the node labeled s1, s2 is the result of merging s1 and s2. Since merged nodes will
be referred to by the first name, this one will be s1.

3. If the regular expression of conditions is of the form e1 ◦ e2 where e1 is recognized by
the conditional automaton a1 and e2 is recognized by the conditional automaton a2

then construct the automaton a1 ◦ a2 as shown if Figure 9

a2

�

��
s2 �

��jf2;-

a1

�

��
s1 �

��jf1;-

�

��
s1 �

��
f1;- �

��
s2 �

��jf2;-ǫ �

��
s1 ;- �

��jf2;

�
�

�
�f1, s2

Figure 9: Mapping two automata a1, a2 into a1 ◦ a2

4. If the regular expression of conditions is of the form e∗ where e is recognized by the
conditional automaton a then construct the automaton a∗ as shown if Figure 10.

a

�

��
s1 �

��jf1;- -�

��
s

ǫ 6

-ǫ �

��jf

?

ǫ

�

��
s1 �

��
f1;-ǫ -�

��
s

ǫ 6
�

��jf

?

ǫ

�

��
s1 �

��
f1;-ǫ

Figure 10: Mapping the automata a into the automata a∗

Observations:

• The conventional, post-construction optimization methodology does not easily apply
to a conditional NFA because its transitions are determined by the truth values of
some predicates.

• Optimization with the goal of eliminating nondeterminism, or otherwise simplifying
an automaton, usually works by grouping states into equivalence classes, i.e., states
reachable by an equivalent sequence of input. However, the question of deciding if two
elements of a character alphabet are equivalent is much different from deciding if two
conditions are equivalent. Thus we found that the usual optimization methodology
can not be applied. However, to reduce the number of states and ǫ-transitions in the
constructed NFA, we modified the construction rules by grouping states and eliminating
ǫ-transitions at rule application rather then on a post-construction basis. If the NFA
thus constructed is optimum or not is an open question.

19

• All construction rules maintain the property of a single start state with no in-coming
transitions and a single final state with no out-going transitions. This restriction
prevents the need to work inside the NFA.

Example 10: For the conditional expression from Example 8, and the conditions and
properties previously labeled ci and pi, 1 ≤ i ≤ 3, the construction algorithm will produce
the intermediate stages shown in Figures 6 and 11. Compare this to the hand built NFA in
Figure 5 or the one that would be build by the conventional rules (left as an exercise).

c2|c3

��
��
3, 5

��
��
4

���
p2

��
��
6

@@Rp3

m��
��
7

���

ǫ
@@R

ǫ

c1 ◦ (c2|c3)

��
��
1 -

p1

��
��
2, 3
5

��
��
4

���
p2

��
��
6

@@Rp3

m��
��
7

���

ǫ
@@R

ǫ

Figure 11: Compositional construction for Example 8

Recall that the table that controls the behavior of a conditional NFA is a transition table,
TT [s][c], where s is a state and c an first level token class. TT [s][c] indicates the possible
transitions that the NFA may make when in state s and given a universal lexeme, ulex, of
class c is discovered in the input. Since this is an NFA, TT [s][c] contains a list of transitions.
Each transition indicates, by referring to a CT entry, the additional properties that ulex

must satisfy in order to allow the state transition to be made. It is important to note that
entries representing ǫ-transitions will not consume the universal lexeme. The transition will
be made on a constant true condition and the current token will be available to be used on
the next transition as needed.

Example 11: Figure 12 and Table 2 displays the TT and CT tables that controls the NFA
in Figure 11.

Keywords in the regular expression of conditions are mapped by LSFParser into tran-
sitions in TT labeled by predefined programs. Actually, the constant true condition is a
simple example of such a program. The records in TT supplied by the keywords implement
the non-regular features of the lexicon specification. When LSFParser discovers a keyword
in a regular expression of conditions it may change the automaton constructed so far, intro-
ducing new states and generating predefined programs to be evaluated by the NFA when
it reaches these states, see [8] for the example of such a change when recursive keyword is
discovered. When a program representing a keyword is evaluated, it may generate a side-
effect (such as incrementing or decrementing a counter, testing the value of a variable and

20

I N O U W ǫ

1
2
4
6
7

{T1}
{T2, T3}

{T4}
{T5}

Figure 12: Transition table of the automaton in Figure 11

Name CT[index] NextState
T1 Ip1

2
T2 Ip2

4
T3 Ip3

6
T4 True 7
T5 True 7

Table 2: Condition table of automaton in Figure 11

making a decision depending upon the result of this test, not including a portion of the
text in the lexeme, etc) and returns a predefined Boolean value specific to the interpreted
program. These commands provide the power to recognize virtually any construct in any
programming language but are invisible to the user. The user only has to be concerned with
knowing the keywords that can be used in the specification of the lexicon and what they
mean. Thus, the goals of flexibility and ease of specification are achieved.

3.2.3 The Action Table

The purpose of the Action Table, AT, is to direct an algorithm as to how to construct
entries in the database using a tokenized lexeme once SLS has recognized it. This processing,
however, is beyond the scope of this paper. It takes place on tokens returned by SLS to later
applications for further processing. An example of such a processing application would be a
parser that uses such actions to construct a symbol table.

3.2.4 Algorithm implementing a conditional NFA

The algorithm ConditionalNFA() that implements a conditional NFA takes as input uni-
versal lexemes from the FLS, each of which is defined by the triple 〈Token, Lex, Len〉, and
produces as output a tokenized lexeme of the language specified by a specification rule
of the form N = REC; Action where N is the token name, REC is a regular expres-
sion of conditions, and Action is to be performed by the application program that uses

21

ConditionalNFA() to recognize lexemes specified by REC. This output is described here
by the triple 〈N, Lexeme, Length〉 where Lexeme is specified by REC and has the length
Length. This algorithm is controlled by the tuple nfa = 〈TT, CT, AT 〉 constructed by
the LSFParser when it processes the specification rule N = REC; Action as seen in Sec-
tion 3.2.2. However, each specification rule LHSi = RHSi; Action discovered in a lexicon
specification file, .LSF, is mapped by the LSFParser into a tuple nfai = 〈TTi, CTi, ATi〉.
Thus, the algorithm ConditionalNFA() is customized to perform the actions of NFAi

specified by the regular expression of conditions RHSi by parameterizing it in terms of
nfai = 〈TTi, CTi, ATi〉 and the universal lexemes returned by the FLS. Hence, the imple-
mentation of the ConditionalNFA() algorithm employs the following:

• A buffer of universal lexemes, UniBuf, used to store the lexemes read from the FLS.
The location of the current lexeme in UniBuf is marked by a buffer pointer, bp.

• A transition stack, TranStack, upon which to store tuples of the form 〈state, alt, bp〉
where state is the current NFA state, alt is the next alternative transition from state,
and bp is the buffer pointer locating the current FLS in the UniBuf.

Backtracking is implemented on this transition stack and is used to allow the trial of alternate
paths in the NFA. The TranStack and UniBuf allow the NFA to back up in the input
stream and to try other transitions from a given state when the current path fails. The
algorithm ConditionalNFA() uses the TranStack to record potential backtracking locations
by pushing and popping tuples 〈state, alt, bp〉 at each node which has alternative transitions.
For that we introduce the transition type transtype = (CT index cond, TT index state,

transtype next) as the type of alt. If backtracking returns to this node, the information
found on the top of TranStack allows the next alternative transition to be attempted. This
way the implementation technique of using sets of states at each transition is avoided.

Note that since an ǫ-transition consumes no universal lexeme, the presence of an ǫ-
transition in a state of an automaton is an alternative to any non-ǫ transition from that state.
This alternative is taken by the algorithm when all others fail. Hence, the ǫ-transition from
a state must be pushed first on the transition stack TranStack. To simplify presentation,
the two push operations performed when the automaton moves to a new state are called
here GoToState which is described by:

GoToState:

if ((tran = TT[state][epsilon].first) != NULL)

push_TS(state, tran, ulex);

if ((tran = TT[state][ulex.class].first) != NULL)

push_TS(state, tran, ulex);

We use push TS(), pop TS(), and empty TS() functions to operate on TranStack in the
following description of the ConditionalNFA():

1 ConditionalNFA (NFA_type nfa, UniBuf_pointer ulex)

22

2 TT_index state; CT_index cond; transtype tran;

3 state = nfa.start;

4 marker = ulex ;

5 GoToState;

6 while (state != nfa.final && !is_empty_TS())

7 (state, tran, ulex) = pop_TS();

8 if (tran.next != NULL)

9 push_TS(state, tran.next, ulex);

10 cond = tran.cond;

11 if (cond is a CT_index)

12 if (EvalCond(CT[cond], ulex) == true)

13 state = tran.state; ulex = ulex.next; GoToState;

14 else cond is a program

15 if (predefined program action)

16 state = tran.state; GoToState

17 end while

18 if (state == nfa.final) return true

19 else ulex = marker; return false

Observation: to decrease nondeterminism we remove the useless attempts by looking at
the class specifier of the ulex before moving to the next state thus making sure that the
current state has a viable transition.

Example 12: Consider the input text . . . sam > 34 . . . and the conditional automaton
specified in Example 8, whose condition table is Table 2, whose transition table is in Fig-
ure 12, and whose graphical representation can be seen in Figure 11. Assume that this text
has been consumed by the FLS and the portion sam > 34 is still available in UniBuf as
shown in Figure 13. Further, assume that the algorithm ConditionalNFA() operates in

ulex1 ulex2 ulex3

6 6 6
I “sam” 3 O “>” 1 N “34” 2

Figure 13: Text representation in UniBuf

.

this configuration where nfa.start = 1, nfa.final = 7. Here we examine the behavior of this
algorithm by looking at the content of its TranStack during the algorithm operation:

• The algorithm pushes the tuple (1, T1, ulex1) on the TranStack at line 5 and and enters
the while loop at line 6.

• In the first iteration of the while loop, at line 7, the only item on the stack is popped
out, giving state = 1, tran = T1, and ulex = ulex1. Since TT[1][I] = {T1}, the

23

only transition from state 1 on class I is T1, therefor tran.next = NULL and the
stack is left empty. At line 11 the algorithm find T1.cond to be CT the index Ip1

. It
was shown in Example 9 that EvalCond(CT[Ip1

], ulex1) = true. The transition T1

to state 2 is performed and ulex1 is consumed. Since TT[2][O] = {T2, T3} and there
is no ǫ transitions from state 2, (2, T2, ulex2) is pushed onto TranStack at line 13 and
the algorithm returns to the while loop.

• In the second iteration of the while loop, at line 7, the top stack item is popped out,
giving state = 2, tran = T2, and ulex=ulex2. T2.next = T3 is another alternative
at this state, so (2, T3, ulex2) is pushed on the stack at line 9 for later examination. At
line 11 the algorithm finds T2.cond to be the CT index Ip2

. As seen at (2) in Example
9, EvalCond(CT[Ip2

], ulex2) = false, and the loop is re-executed.

• In the third iteration of the while loop, at the line 7, the stack is popped again, state =

2, tran=T3, and ulex=ulex2. So a different transition from state 2 is attempted with
ulex2. At line 8 there are no other transitions from state 2 so the stack is left empty.
At line 11 the algorithm finds T3.cond to be the CT index Ip3

. EvalCond(CT[Ip3
,

ulex2) = true, as seen in Example 9. Thus, a transition to to state 6 on ulex3 in the
UniBuf can be made. At line 13 the algorithm finds TT[6][ǫ] = {T5} and TT[6][N] =
NULL. Thus, it pushes (6, T5, ulex3) on the stack. and returns to the loop.

• In the fourth iteration of the while loop, at line 7 the top item stack is popped out,
giving state = 6, tran=T5, and ulex=ulex3. There are no other transitions from
state 6, so the stack is left empty. Now, at line 11 the algorithm finds that T5.cond is
not a CT index; at line 14 it finds that T5.cond is the keyword true, which represents
a predefined program. This program returns true for any universal lexeme. However,
it does not consume input, so ulex3 is left in the buffer. The destination for T5 is state
7 which now becomes the current state for the algorithm.

• In the fifth iteration of the while loop, the algorithm finds state = 7 to be final and
the stack to be empty. At line 18, the successful true result is returned and the
algorithm terminates.

The algorithm which calls ConditionalNFA(nfa, ulex 1) determines that no context was
associated with the specification rule generating this nfa. Thus the information from ulex1

and ulex2 can be collected to construct 〈“dumb”, “sam > ”, 4〉. as the outgoing second level
token. The next section will examine how the input tokens produced by the FLS are made
available to the calling algorithm and also what will be done with these output tokens.

3.2.5 The second level scanning algorithm

The second level scanning algorithm, SLS, recognizes a second level lexeme, SLL, of a lex-
ical language specified by the specification rules LHSi = RHSi; Action1, i = 1, 2, . . . , n,
where RHSi, i = 1, 2, . . . , n, are regular expression of conditions. The input of SLS is a

24

sequence of first level lexemes, FLL = 〈Token, String, Length〉. To simplify the descrip-
tion we will assume that these FLLs are provided in the buffer UniBuf and are acces-
sible by the pointers UniBuf.current and UniBuf.next. Thus, SLS takes two parame-
ters: the buffer UniBuf where a sequence of FLLs are found and the list of tuples nfa =

(TT1, CT1, AT1), (TT2, CT2, AT2), . . . , (TTn, CTn, ATn) that represent the nondeterministic
conditional automata specified by equations LHSi = RHSi; Actioni, i = 1, 2, . . . , n, that
specify the second level lexicon. The algorithm SLS performs two major actions: first it
uses ConditionalNFA(nfa, UniBuf.current) to determine if there is a sequence of FLLs
beginning at UniBuf.current that may belong to SLL associated with nfa, and then, if
context or noncontext is provided in the RHS it determines if the context of SLL in the
UniBuf matches the context specified with RHS. If both tasks are successful, the recognized
section of UniBuf is collected into a SLL structure and the UniBuf is advanced.

The algorithm ConditionalNFA() discussed in Section 3.2.4 is used by SLS as the com-
putation engine to recognize the SLL as well as to recognize its context, if necessary. The
right context is recognized by ConditionalNFA(nfa rc, UniBuf.current) where nfa rc is
the NFA specified by the regular expression of conditions used in the right context of the
specification rule; the left context is recognized by ConditionalNFA(nfa lc, UniBuf.mark)

where nfa lc is the NFA specified by the regular expression of conditions used in the left
context of the specification rule. When testing nfa lc, the NFA consumes the FLLs moving
to the left in the input. Hence, SLS can be informally specified as follows:

1 SecondLevelLexeme SLS (List_of_NFA_type nfa, UniBuf_pointer mark)

2 UniBuf_pointer ulex; Boolean result; SecondLevelLexeme SLL;

4 for each (nfa_i in nfa)

4 ulex = UniBuf.mark;

5 result = ConditionalNFA(nfa_i, ulex);

7 if (((result == true) and (not(context)) and (not(noncontext)))

8 or

9 ((result == true) and (context) and

10 (ConditionalNFA(nfa_rc, UniBuf.current) and

11 (ConditionalNFA(nfa_lc, UniBuf.mark))

12 or

13 ((result == true) and (noncontext) and

14 (not(ConditionalNFA(nfa_rc, UniBuf.current)) or

15 (not(ConditionalNFA(nfa_lc, UniBuf.mark))

16)

18 SLL = (LHS_i, UniBuf.mark..UniBuf.current, Length); return SLL;

19 if (UniBuf.mark == UniBuf.current) return error; all nfa_i failed

4 Integrating FLS and SLS

The first level scanner, FLS, and the second level scanner, SLS, have been designed and
implemented in Section 3 as stand alone tools. That is, these tools should be usable directly

25

in a language processing application where the user is required only to customize them to
a particular language, say mylang. The customization of FLS and SLS to the language
mylang is achieved by developing the lexicon specification of mylang. This can be done
by first customizing FLS by developing the specification of the first level lexicon, i.e., by
developing the file mylang.FLS and then by developing the specification of the second level
lexicon, i.e., by developing the file mylang.LSF. One can also accept the universal lexemes
as defined in this paper and use the implementation package we provide, developing only
the file mylang.LSF. This is the usual course of action. However, in both cases one needs to
join FLS and SLS together into a new tool, say MyScan. We have developed a methodology
that allows the user to achieve this goal without special knowledge of what FLS and SLS
are actually doing other than their input/output types. That is, given two stand alone
tools, Input1 → TOOL1 → Output1 and Input2 → TOOL2 → Output2 that operate as
input/output devices we provide a methodology to integrate these tools into a new tool
Input3 → TOOL3 → Output3. TOOL3 is composed from TOOL1 and TOOL2 without
knowledge of their internal functioning other than types of Input1, Output1, Input2, and
Output2. This methodology provides the fundamentals for compositional development of
language processing tools.

4.1 Functional integration of stand alone tools

A stand alone tool is a software package that takes a well defined input and produces a well
defined output and can be used in an application without knowledge of its internal function-
ing. An example of a stand alone tool is FLS. The FLS takes as input a text file and produces
as output an FLL object of type described by the data structure FirstLevelLexeme. The
FLS can be offered to its users as a stand alone tool i.e., as a package of programs and docu-
mentation where the user is asked to know only that the input is a text file, the output is FLL
of type FirstLevelLexeme, and the calling mechanism is FLL = FLS(Text). An application
in which this tool can be used as stand-alone component would have the form:

FLSApplication(Input Text, Output DataBase);

FirstLevelLexeme FLL;

Open (Text);

FLL = FLS(Text);

while (FLL.Token != EOF)

{

switch (mytoken.Token)

{

case I: { Result = process identifier }

case N: { Result = process number }

case W: { Result = process white space }

case O: { Result = process other characters }

case U: { Result = process unprintable character }

}

Update(DataBase, Result);

26

FLL = FLS (Text);

}

An obvious example of an application that would like to use FLS as a component would
be SLS. Integrating FLS into the SLS defines a user-customized scanner. Theoretically this
means that we need to compose two functions f1 : I1 → O1 and f2 : I2 → O2 where O1 6= I2.
This can be achieved by a third function, which will be called a filter, that performs the
conversion of O1 to I2, i.e., FO1,I2 : O1 → I2, as seen in Figure 14.

-I2 TOOL2

6call
-O2

-I1 TOOL1
-O1

��
��
F

6call
� -I1 TOOL3

-O2⇒

Figure 14: Functional integration of stand alone software tools

4.2 Integrating FLS and SLS into a user designed scanner

In order to apply the idea presented in Figure 14 for the integration of the FLS() and
SLS() thus generating a user customized scanner, MyScan(), we observe that FLS() inputs
a text file and returns FirstLevelLexemes, i.e., FLS : Text → FirstLevelLexeme, and
SLS() inputs FirstLevelLexemes and outputs SecondLevelLexemes. In general, however,
the output of the first tool may be different from the input of the second tool that make
up the integrated tool. Therefore, to preserve the generality we assume that SLS() inputs
tokens of type SLInLexeme and outputs SecondLevelLexeme, i.e., SLS : SLInLexeme →
SecondLevelLexeme. A filter that would achieve the integration gets FirstLevelLexemes
from FLS() and maps them into the SLInLexemes. The pseudo-code implementing this filter
is:

SLInLexeme Filter (Text)

{

FirstLevelLexeme FLL;

SLInLexeme SLLin;

FLL = FLS(Text)

SLLin = map(FLL)

return(SLLin)

}

where map() performs the mapping of a FirstLevelLexeme into a SLInLexeme.

27

The SLS() algorithm discussed in Section 3.2.5 uses an input buffer to feed its compu-
tation engine, ConditionalNFA(). This buffer receives its content by calling such a filter
function. In this way, the actual source of the input is irrelevant to the SLS(), as long as it
is returned in the correct form. Hence, MyScan() obtained by the integration of FLS() and
SLS() as discussed above has the following pseudo-code:

SecondLevelLexeme MyScan (Text)

{

Filter(Input Text);

SLInLexeme SLLin;

SecondLevelLexeme SLLout;

SLLin = Filter (Text);

SLLout = SLS (SLLin);

}

One can use MyScan() in an application that inputs a text file Text, breaks it into second
level lexemes, and processes each second level lexeme appropriately. MyScan() function will
pass Text along on its call to a filter and wait for its input. The pseudo code of such an
application would be:

ApplicationSLS (Input Text, Output DataBase)

{

SecondLevelLexeme SLL;

Open(Text);

SLL = MyScan(Text);

while (SLL.Token != EOF)

{

switch (SLL.Token)

{

case LHS1 : { Result = process(LHS1) }

case LHS2 : { Result = process(LHS2) }

. . .

case LHSk : { Result = process(LHSk) }

default: process error

}

Update(DataBase, Result);

SLL = MyScan (Text);

}

}

Note, LHS1, LHS2, . . ., LHSk are the left-hand sides of the conditional equations specifying
the second level lexicon using properties of the lexical elements of the first level lexicon.
That is, the left hand sides of the equations in PL.LSF.

28

5 Conclusions

This paper reports on the effort to design a stand-alone lexical analyzer that is based on
a specification written in terms of regular expressions of conditions. This is contrasted to
the conventional approach of using regular expressions over a finite alphabet of a terminal
characters. The major goals of this work are convenience of specification methodology for
tool customization, flexibility provided by the language processing tools derived from this
specification, and correctness of the tools developed in this way.

Implementing the scanner over two processing layers provides both advantages and disad-
vantages. The measurable advantages result from breaking the effort into two parts, each of
which can be more easily understood. Regular expressions of conditions allow the definition
of the lexicon over more abstract objects. The language designer can reason about higher-
level constructs. Another important advantage is support for non-regular language features
provided by keyword programs which may influence automaton construction or behavior.
More importantly, the keyword facility is designed in a way which will allow extension by
adding other features as they become necessary. On the other hand, this two level approach
requires an additional level of interaction between the tools. The output of the first level
scanner is usually passed on as the input to the second level scanner. The disadvantages we
observed result from the additional processing step in the scanner which doesn’t help the
efficiency.

A major point requiring further study is the optimization of the conditional NFAs im-
plementing the lexicon specification equations. The ultimate goal would be to construct a
deterministic conditional automaton which would eliminate any worry about the effect that
backtracking may have on the efficiency of the algorithm. However, at this time, we are
unsure how to proceed with this optimization. To help alleviate concern over efficiency, it
has been observed that in most cases very little backtracking actually occurs. Also, due
to the structure of the specification expressions there are not that may places that would
allow backtracking. An important optimization is obtained by the elimination of epsilon
transitions and removing some states during the automaton construction rather than as a
post construction operation. It is an open problem whether or not this kind of optimization
may lead to a deterministic conditional NFA. But the goal to this point has been only the
development of the specification rules, the extensibility of the tools, and the correctness of
the resulting algorithms.

It is our belief that the first applications of our tools will be for prototype projects rather
then large scale languages. Our methodologies provide for easy description of language
processing tools. This will allow the language designer to specify and implement the language
using convenient tools. The focus has been on designing the specification language and the
techniques to generate tools from these specifications. Future work must certainly aim to
make these tools more efficient. In the scope of this paper, we believe that most applications
of a scanner will be over fairly small source constructs. Thus, the level of efficiency provided
may not be terribly important, since nearly instantaneous results are not really discernible
over such a small time frame. Another niche we envision for these tools is for the modular
compiler designer.

29

There are many provisions to allow for the modification of the scanner generator. These
include the formal specification of the language of conditions, the mechanical construction of
the recognizing NFAs based on this specification, and the functional form of this specification.
Adding new features to the conditions in the specification is an incremental process. Thus,
a new feature can be added in a convenient manner. As alluded to earlier, this may include
adding new non-regular construction rules.

Measurements of program performance are also intentionally left out of this paper. Test
results can be construed in many ways and a fair trial is difficult to come by. This is especially
true when comparing results of recent research projects to tools which have been evolving
over several years. Also, as the implementor of the programs described in this project, it
has been more important to produce understandable code that can be modified by future
participants in the project rather than trying to squeeze out all of the possible efficiency.
It is also hoped that compiler designers using these tools will be able to add capabilities
as needed. A very important facility, which is almost impossible to measure, is the ease of
specification development. Though [8] does provide some numbers for interested readers.
However this too is easy to slant to particular views.

Overall, this work demonstrates the potential usefulness of this scanner technology. The
specification over regular expressions of conditions has been demonstrated by many students
to be quite understandable. The tools generated from these specifications have been used in
several other projects and have performed well. Finally, the generation tools have evolved
several times to add new features to the specifications language, and each time it has been
a straight forward task. Though further work is undoubtedly needed, these methodologies
demonstrate the basis of the work and hopefully provide a bit of insight into the potential
we see for them.

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman. COMPILERS Principles, Techniques, and Tools.
Addison–Wesley Publishing Company, Reading, Massachusetts, 1986.

[2] F. DeRemer and T. Penello. Efficient computation of lalr(1) look–ahead sets. ACM
Transactions on Programming Languages and Systems, 4:615–649, 1981.

[3] F.L. DeRemer. Lexical analysis. In F Bauer, , and Eickel, editors, Compiler Construc-
tion, pages 109–145, Berlin Heidelberg New Yrok, 1976. Springer–Verlag.

[4] J. Grosch. Generators for high-speed front-ends. Lecture Notes in Computer Science,
321:80–92, 1989.

[5] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and
Computations. Addison–Wesley Publishing Company, Reading, Massachusetts, 1979.

[6] R.N. Horspool and M.R. Levy. Mkscan – an interactive scanner generator. Software –
Practice and Experience, 17(6):369–378, 1987.

30

[7] W.L. Johnson, J.H. Porter, S.I. Ackley, and D.T. Ross. Automatic generation of efficient
lexical analyzers using finite state techniques. Communications of the ACM, 11(12):805–
813, 1968.

[8] J. Knaack and T. Rus. Twolev: A two level scanning algorithms. In Proceedings of the
Second International Conference on Algebraic Methodology and Software Technology,
AMAST’91, pages 175–179, Iowa City, IA, 52242, 22–25 May 1991.

[9] J.P. LePeau and T. Rus. Interactive parser construction. Technical Report 88–02, The
University of Iowa, Department of Computer Science, Iowa City, IA 52242, 1988.

[10] M.E. Lesk. Lex – a lexical analyzer generator. Technical Report 39, Bell Telephone
Laboratories, Computing Science, Murray Hill, NJ, 1975.

[11] H. Mössenböck. Alex – a simple and efficient scanner generator. SIGPLAN Notices,
21(5):69–78, 1986.

[12] T. Rus. Interactive parser generato. Avalilable at
http://www.cs.uiowa.edu/~rus/Courses/Compiler, 1996.

[13] K. Thompson. Regular expression search algorithm. Communications of the ACM,
11(6):419–422, 1968.

[14] E. Visser. Multi-level specifications. In Language Prototyping – an algebraic specification
approach, AMAST Series in Computing, Vol. 5, pages 105–197. World Scientific, 1996.

[15] W.M. Waite, V.P. Heuring, and R.W. Gray. Gla – a generator for lexical analyzers.
Technical Report 86–1–1, University of Colorado at Boulder, Department of Electrical
and Computer Engineering, Boulder, CO, 1986.

31

A BNF specification of lexical equation language

Rules that have the same left hand side and are associated with the same semantics processing
function are written in the form LHS = RHS1|RHS2| . . . |RHSk; Function

LHS = RHS Function

LSF = Specs ;

Specs = Properties Eqs ;

Properties = Property | Properties Property ;

Property = "keyword case sensitive" "=" YesNo ";"; keyword sensitive

Property = "name case sensitive" "=" YesNo ";"; case sensitive

Property = "space separator" "=" YesNo ";"; space separator

Property = "tab separator" "=" YesNo ";"; tab separator

Property = "newline separator" "=" YesNo ";"; newline separator

YesNo = "yes"; answer yes

YesNo = "no"; answer no

Eqs = Eq | Eqs Eq ;

Eq = LHS "=" Desc Semantics

| LHS "=" Desc

| LHS "=" Desc Context Semantics

| LHS "=" Desc Context ;

LHS = "string" ; hold lhs name

Desc = Delims | Body ; end rec

Desc = "self" ; do self split

Delims = Delim | Delims "|" Delim ;

Delim = Begin Body End ; begin end

Delim = Begin AnyToEnd End ; begin any end

Delim = Begin Body End "recursive"; not yet

AnyToEnd = "body" ":" "any until end" ; do any tok

Begin = "begin" ":" REC ;

Body = "body" ":" REC ;

End = "end" ":" REC ";" ;

REC = REC "|" REC1 ; do choice

REC = REC1 ;

REC1 = REC1 REC2 ; do compose

REC1 = REC2 ;

REC2 = REC3 "*"; do star

REC2 = REC3 ;

REC3 = Cond ; do cond

REC3 = NCond ;

REC3 = "any tok"; do any tok

REC3 = "(" REC ")";

REC3 = "[" REC "]"; discard lex

32

Cond = ClSpec | ClSpec "and" Expr ;

NCond = "not" "(" Cond ")"; not cond

ClSpec = Class | "token" "=" Class ;

Class = "i" | "n" | "f" | "w" | "u" | "o" ; hold class

Expr = Expr1 ;

Expr = Expr "or" Expr1 ; do cond or

Expr1 = Expr2 ;

Expr1 = Expr1 "and" Expr2 ; do cond and

Expr2 = "not" Expr2 ; do cond not

Expr2 = "lex" Rel "int"; lex int

Expr2 = "len" Rel "int"; len int

Expr2 = "lin" Rel "int"; line int

Expr2 = "col" Rel "int"; column int

Expr2 = "(" Expr ")";

Expr2 = "lexchar" "(" Index ")" Rel Elem ; lexch1e

Expr2 = "lexchar" "(" Index ")" "in" Set ; lexch1s

Expr2 = "lexchar" "(" Index ")" "in" Range ; lexch1r

Expr2 = "lexchar" "(" Index "," Index ")" Rel Elem ; lexch2e

Expr2 = "lexchar" "(" Index "," Index ")" "in" Set ; lexch2s

Expr2 = "lexchar" "(" Index "," Index ")" "in" Range ; lexch2r

Set = "{" ElList "}" ; set

ElList = ElList "," Elem ; set add

ElList = Elem ; set init

Range = "[" Elem ".." Elem "]" ; range

Index = "int" ; index int

Index = "len" ; index len

Elem = "int" | "char" ; element

Rel = "=" | "!=" | ">" | ">=" | "<" | "<="; relation

Context = C or N ":" CList ; new machine

C or N = "context"; context

C or N = "noncontext"; noncontext

CList = LElem ; add con pair

CList = LElem "," CList ; add con list

LElem = "<" LE "," RE ">"; make con pair

LE = "none" | "bof" | REC ; collect left

RE = "none" | "eof" | REC ; collect right

Semantics = "action" ":" Actions ;

Actions = Action | Actions "," Action ;

Action = "addns" ; addns

Action = "nofif" ; nofif

33

B Partial Fortran 77 lexicon specification

case_sensitive=yes;

"comment" = begin: Token = I and Lex = "C" and Col = 1

body: any_until_end

end: Token=U and Lex="\n";

action: nofif

"continuation" = body: (Token=I and Col = 6 and Len = 1)

| (Token=N and Col = 6 and Len = 1)

| (Token=O and Col = 6 and Len = 1)

action: nofif

"sequence_number" = body: Token=N and Col > 72

action: nofif

"label" = body: Token=N and Col<6

action: addns

"power_op" = body: Token=O and Lex="*" Token=O and Lex="*"

"concat_op" = body: Token=O and Lex="/" Token=O and Lex="/"

"rel_op" = body:(Token=O and Lex="."Token=I and Lex="EQ"Token=O and Lex=".")

| (Token=O and Lex="." Token=I and Lex="NE" Token=O and Lex=".")

| (Token=O and Lex="." Token=I and Lex="LT" Token=O and Lex=".")

| (Token=O and Lex="." Token=I and Lex="LE" Token=O and Lex=".")

action: addns

"and_op" = body: Token=O and Lex="." Token=I and Lex="AND" Token=O and Lex="."

"equiv_op" = body:(Token=O and Lex="." Token=I and Lex="EQV" Token=O and Lex=".")

| (Token=O and Lex="." Token=I and Lex="NEQV" Token=O and Lex=".")

"string_constant" = begin: [Token = O and Lex = "’"]

body: (any | Token = O and Lex = "’" [Token = O and Lex = "’"])*

end: [Token = O and Lex = "’"];

action: addns

"id_name" = body: Token=I (Token=I | Token=N | Token=O and Lex="_")*

action: addns

"(/" = self

"/)" = self

"(" = self

")" = self

"*" = self

"+" = self

"=>" = self

" =" = self

"allocate" = self

"call" = self

"close" = self

"write" = self

34

C Partial C lexicon specification

keyword_case_sensitive=no;

name_case_sensitive=yes;

space_separator = yes;

tab_separator = no;

newline_separator = yes;

"%" = self

"&" = self

"(" = self

")" = self

"*" = self

"+" = self

"," = self

"-" = self

"/" = self

":" = self

";" = self

"->" = self

"==" = self

"char" = self

"do" = self

"else" = self

"for" = self

"if" = self

"int" = self

"while" = self

"LEFT_SHIFT" = body: Token=O and Lex="<" Token=O and Lex="<"

"RIGHT_SHIFT" = body: Token=O and Lex=">" Token=O and Lex=">"

"IDENTIFIER" = body: Token=I (Token=I | Token=N | Token=O and Lex="_")*

action: addns

"FLOATLITERAL" = body: Token=N Token=O and Lex="." Token=N

action: addns

"INTEGER" = body: Token=N

noncontext: <none, Token=O and Lex = ".">, <none,Token=I and LexChar(0)=’x’>

action: addns

"STRING" = begin:Token=O and Lex=""" body:any_until_end end:Token=O and Lex=""" ;

action: addns

"COMMENT" = begin: Token=O and Lex="/" Token=O and Lex="*"

body: any_until_end end:Token=O and Lex="*" Token=O and Lex="/" ;

action: nofif, addns

"HEXA_LITERAL" = body: Token=N and Lex=0 (Token=I and Lex="x" |

Token=I and LexChar(0)=’x’ and LexChar(1,len) in [’A’..’F’])

((Token=N) | (Token=I and LexChar(0,len) in [’A’..’F’]))*

action: addns

35

