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Abstract

   

To enable the gradual learning of symbolic

 

representations, a new fuzzy logical operator is

 

developed that supports the expression of nega-

 

tion to degrees.  As a result, simple fuzzy

 

propositions become instantiable in a feedfor-

 

ward network having multiplicative nodes and

 

tunable negation links.  A backpropagation

 

learning procedure has been straightforwardly

 

developed for such a network and applied to

 

effect the direct, incremental learning of fuzzy

 

propositions in a natural and satisfying manner.

 

Some results of this approach and comparisons

 

to related approaches are discussed as well as

 

directions for further extension.

   

Introduction

   

Over the past couple of decades, a wide array of

 

cognitive phenomena have been successfully

 

modeled within a fuzzy propositional theo-

 

retical framework

 

1

 

 (see Massaro, 1987; Oden,

 

1984, Oden, Rueckl, & Sanocki, 1991 for

 

reviews).  The development of this approach to

 

1

 

Hereafter referred to as FuzzyProp for short.  The

 

most common FuzzyProp model is the Fuzzy Logical

 

Model of Perception or FLMP (e.g., Massaro & Cohen,

 

1991; Oden & Massaro, 1978), which is based on the

 

hypothesis of independent evaluation of conjunctive

 

terms.

 

cognitive modeling was motivated by many of

 

the same considerations that underlie current

 

interest in neural information processing

 

systems: in particular, the attainment of robust-

 

ness and of graceful degradation under duress.

 

In each case, the desired end is achieved largely

 

through reliance on coarse coding, automatic

 

generalization, compensatory information inte-

 

gration, and other consequences of continuous

 

computation.  Thus, although the two

 

approaches lie on opposite sides of the

 

symbolic/subsymbolic boundary and might

 

thereby be supposed to be incompatible, they

 

can in fact be seen to be members of the same,

 

more general family of models.  From this

 

perspective, it is not surprising that instances of

 

each class of models can be shown to be

 

formally isomorphic under specific common

 

conditions (see Massaro & Cohen, 1987 and

 

Oden, 1988 for two such results).  Indeed, facts

 

such as these have been used to support the

 

argument that the two approaches represent

 

separate necessary levels of description of cogni-

 

tive systems (Oden, 1988; see also Clark, 1989).

  

The present paper extends this argument by

 

demonstrating how a connectionist learning

 

procedure can be directly and naturally applied

 

within the fuzzy propositional level.  This

 

speaks specifically to the common criticism

 

made of symbolic approaches that learning must

 

be an all-or-none process that would require a

 

seemingly magical, external process to wire up

 

new connections.

  

From the 

 

Proceedings of the14th annual conference of the Cognitive Science Society

 

, 1992.



 

Learnable Fuzzy Propositions

   

A fuzzy proposition is a logical expression

 

having component terms that may be more or

 

less true of an object and connectives that are

 

continuous functions of their component terms

 

reflecting the essential logical properties of

 

conjunction, negation, and so on.  As applied to

 

the modeling of cognitive processes, fuzzy prop-

 

ositions represent the knowledge that people

 

have about patterns and categories and they

 

provide a basis for evaluating stimuli in a way

 

that fully exploits the information inherent in

 

the systematic continuous variation of stimulus

 

properties.  For example, in modeling the

 

identification of handwritten words (Oden &

 

Rueckl, in preparation), the degree to which the

 

initial portion of some stimulus constitutes a

 

lower case letter ‘e’ involves an evaluation of the

 

proposition that it is a loop that is not too tall:

  

t[loop(x) 

 

∧

 

 ¬

 

  

 

tall(x)]   =

  

                        t[lo

 

op(x)] 

 

×

 

 {1 –  t[tall(x)]}       (1

  

using (as in all of our work) multiplication to

 

represent fuzzy conjunction
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.
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Multiplication is conjunctive in that (a) it yields a

 

value of true (1.0) only if both of its terms are true and

 

a value of false (0.0) if either or both are false, and (b)

 

it has many (arguably the most essential) properties

 

of conjunction such as associativity, commutativity

 

and so on.  Importantly, unlike the more common

 

fuzzy conjunction function, t[A 

 

∧

 

 B]  =  min{t[A], [B]},

 

multiplication is compensatory, meaning that it

 

allows positive and negative errors to cancel.  Much

 

of the robustness of FuzzyProp results from the use of

 

multiplicative conjunction and this is what distin-

 

guishes it from most other fuzzy approaches

 

including those that are typically used in constructing

 

fuzzy/neural systems.

  

It would be advantageous if the knowledge

 

respesented by such propositions could be

 

learned in a gradual or incremental fashion over

 

the course of experience with instances of the

 

concept or relation.  To make such propositions

 

incrementally learnable requires some mech-

 

anism for gradually converting conjunctions

 

into disjunctions and vice versa.  There are

 

many possible ways to do this, but most seem

 

ungainly and ad hoc (e.g., by defining a tunable

 

generic connective as the weighted average of

 

conjunctive and disjunctive expressions).  The

 

present approach is to rely on the expressability

 

of disjunctions in conjunctive form through

 

DeMorgan's Law:  A 

 

∨

 

 B  =  ¬

 

  

 

(¬

 

 

 

A 

 

∧

 

  ¬

 

 

 

B).   This

 

converts the problem into one of devising a

 

tunable negation operator: a variable connective

 

that allows any term to be negated to some

 

degree.  Again, there are many possibilities.  For

 

reasons outlined below, the present work makes

 

use of the following rule

   

t[

 

N

 

v

 

 A(x)]   =        

  

where a = t[A(x)], the degree to which predicate

 

A is true of object x.  This operator has a number

 

of attractive properties.  The most critical prop-

 

erties, of course, are that of reducing to the

 

identity function for v = 1, to standard fuzzy

 

negation for v = –1, to a nulling value

 

 

 

—

 

 

 

a value

 

not dependent on t[A(x)]

 

 

 

—

 

 

 

for v = 0, and to

 

reasonable intermediate functions in between.

 

In addition, as a bonus, the operator yields

 

contrast intensified functions for v values

 

beyond ±1.   Thus, the operator can better be

 

thought of as a generalized transfer function

 

that remaps input truth values onto output truth

 

values.  Figure 1 plots this function for several

 

representative values of v.

    

a v

a v + (1 –  a)v

  

(2

–4 –1 –.25 v = 0 +.25 +1 +4

  

Figure 1.  The 

 

 

 

N

 

v

 

 operator function for various values of v.

 



 

The operator is a natural extension of the

 

version of fuzzy logic employed here (see foot-

 

note 2) in the sense that its algebraic structure

 

has a direct natural interpretation in terms of

 

basic fuzzy components (Oden, 1984)
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.

    

Backprop in FuzzyProp

   

So far, we have established the instantiability of

 

arbitrary simple fuzzy propositions in a multi-

 

layer feedforward network having conjunctive

 

(multiplicative) nodes with tunable generalized

 

(negatable) links connecting nodes of successive

 

layers.  Such networks are directly analogous to

 

standard feedforward networks (Rumelhart,

 

Hinton, & Williams, 1986) with the v parameters

 

of the tunable links corresponding to the

 

weights (including those serving as node bias

 

terms) of the standard model.  Accordingly, the

 

backward error propagation learning procedure

 

for fuzzy propositions directly follows the form

 

of that laid out by Rumelhart et al:  Given a

 

training set of tuples of input and desired

 

output values,

 

1.  evaluate the propositions on the input

 

2.  compute a measure of error between

 

obtained and desired output

 

3.  adjust each v in proportion to the deriv-

 

ative of the error measure with respect to

 

that v, recursively computed.

 

The calculation of the derivatives is just

 

slightly more complicated in the present case

 

compared to the standard case, in essence

 

because the nonlinearity in the fuzzy proposi-

 

tional system occurs between every pair of

 

nodes from successive layers whereas in stan-

 

dard backprop it occurs just once for each node

 

in the form of the squashing function applied to

 

the output for that node.

  

Initial tests of this learning procedure

 

demonstrate that it, indeed, performs as it

 

should.  For example, when applied to the ever

 

popular test case, XOR, it learns the function

 

forthrightly as indicated by the average learning

 

curve for a representative sample of runs shown

 

in Figure 2.

 

  

  

Figure 2.  The course of learning XOR for 10 test

 

runs.  The root mean squared error is plotted against

 

the number of learning epochs.

   

The overall form of this curve primarily

 

reflects the fact that most of the test runs in this

 

particular sample resulted in complete learning

 

within a few hundred training epochs or so, a

 

couple required around 800 epochs and one did

 

not complete the learning until 3700 epochs (but

 

then did learn it exactly).  The median number

 

of training epochs required to reach a criterion

 

root mean squared error less than .01 was about

 

250 and the median root mean squared error

 

after 300 epochs was .008.  For the sake of

 

comparison, note that these numbers are close to

 

the same number of epochs reported (Rumel-

 

hart, Hinton, & Williams, 1986) to be required

 

by standard back propagation to reach a root

 

mean squared error of about .1  The present

 

system needed only about 150 epochs to reach .1

 

root mean squared deviation.

 

In these tests, the system is provided with

 

two input nodes, one output node and two inter-

 

mediate layers having two and one node

 

respectively (2-2-1-1).  Thus, altogether the

 

system is allowed seven v values to adjust,

 

precisely the same as the minimum number

 

(and two fewer than the typical number) of free
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As discussed in Oden (1992), it is also algebraically

 

natural in the sense that it is the powering operation

 

for the Abelian (commutative) group defined on [0..1]

 

by the mapping x 

 

→

 

 x/(x + 1) from the multiplicative

 

group on [0..

 

∞

 

].
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parameters required for this problem in the orig-

 

inal Rumelhart et al (1986) paper including both

 

weights and bias terms.  This fuzzy proposi-

 

tional network is sufficient for representing XOR

 

as (A  

 

∧ 

 

  ¬

 

 

 

B)  

 

∨ 

 

 ( ¬

 

 

 

A

 

 

 

 

 

∧

 

   

 

B).  Sometimes, however,

 

XOR is learnt as (A  

 

∨ 

 

 B)

 

   

 

∧ 

 

 

 

¬

 

 

 

(A  

 

∧ 

 

 B) by the

 

system. This is equivalent to the former expres-

 

sion with respect to the input and output values

 

used, which are all (close to) zero and one, but

 

would not be exactly equivalent for intermediate

 

truth values.  This form of XOR is actually more

 

compact and only really needs six parameters.

   

Comparisons and Extensions

   

The main distinctive feature of the current

 

approach is learned representations that are

 

directly interpretable logical functions of the

 

input variables.  In addition, as with other

 

models having multiplicative units such as

 

sigma-pi networks (Rumelhart, Hinton, &

 

McClelland, 1986) or the product unit nets of

 

Durbin and Rumelhart (1989), learning of logical

 

functions may be faster in the present system

 

than with standard backprop.  This is due in

 

part to the fact that the v parameters do not have

 

to approach ±

 

∞

 

 in order to yield outputs close

 

to 0 and 1.  Indeed, with respect to feedforward

 

processing in the system, inputs and outputs can

 

take on the values of 0 and 1 exactly.  (During

 

the error backpropagation phase, these extreme

 

values must be avoided because the relevant

 

derivatives would be undefined.)

 

On theoretical grounds, the present approach

 

is interestingly similar to and different from

 

each of the approaches mentioned above in a

 

number of ways.  For now, let's just consider the

 

representation of a conjunction of inputs by the

 

standard backpropagation feedforward network

 

in comparison with that of the present system.

 

Figure 3 portrays this relationship in a couple of

 

ways.  On the left is a 3D plot and a contour

 

map showing how the standard approach

 

manages to be conjunctive, basically by apply-

 

ing a one dimensional nonlinear cut across the

 

axis corresponding to the sum of the inputs (the

 

diagonal of the ‘floor’ in the 3D plot).  On the

 

right are the corresponding representations for

 

the fuzzy propositional system, which reveal

 

that this approach more directly captures the

 

notion of conjunction as encompassing the vicin-

 

ity of the (1, 1) corner.  This is a direct result of

 

the fact that, as noted above, nonlinearity is

 

more thoroughly ingrained in this system.  It is,

 

of course, no accident that the fuzzy proposi-

 

tional system is more naturally conjunctive in

 

this sense, since it is fundamentally logic-based

 

Figure 3.  Plots and contour maps of conjunctive functions of two inputs for standard backprop networks (left

 

panels) and the present fuzzy propositional system (right panels).

 



 

in structure by design.  In contrast, the standard

 

network could be thought of as only emulating

 

the logical functions within a system that does

 

not have an inherently logic-based structure.

 

The current work is related in quite a differ-

 

ent fashion to approaches to the learning of

 

associative relations between fuzzy terms (e.g.,

 

Jenison & Oden, 1989; Kosko, 1992).  Such tech-

 

niques 

 

are complementary to the one developed

 

here and might serve, for example, to set up the

 

analyses necessary for the evaluation of the

 

primitive terms in the propositions of the

 

present system.

 

The scheme described here can be variously

 

extended.  Inertial terms and other factors anal-

 

ogous to those used with standard backprop can

 

clearly be added and other learning methods

 

from the connectionist literature could be simi-

 

larly imported into this system.  More

 

interestingly, the 

 

N

 

v

 

 operator (Equation 2) can

 

be generalized in at least two reasonable ways:

 

(a) by allowing separate v values for the positive

 

and negative components of 

 

the relative ratio

 

expression, and (b) by including an overall expo-

 

nential weighting factor.  Both of these

 

generalizations have natural interpretations in

 

fuzzy terms and yield a significant enrichment

 

of the expressiveness of the resulting fuzzy

 

calculus.  Both can be incorporated in the back-

 

prop learning scheme with very little

 

complication.  Yet another straightforward

 

extension of 

 

N

 

v

 

 (see Oden, 1992) enables it to

 

perform a kind of running average of inputs in

 

order to account for processing dynamics as in

 

Massaro and Cohen (1991).

   

Conclusion

   

The overarching moral of this work is that one

 

can have it all.  That is, it is not necessary to

 

choose between having symbolic expressions

 

and direct, incremental learning procedures.

 

The two can be combined in a natural and

 

harmonious fashion.
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