HOMEWORK BIOSTATISTICS (STAT:3510; BOGNAR)

- 1. In the Iowa Driving Simulator, the number of times the center line is crossed by individuals that are under the influence of alcohol has a distribution that is skewed to the right with mean μ and standard deviation $\sigma = 7$. For the 49 participants that drove after drinking alcohol, the mean number of times the center line was crossed was $\bar{x} = 10$. Suppose we wish to perform the one-sided test $H_0: \mu = 9$ versus $H_a: \mu > 9$ at the $\alpha = 0.01$ significance level.
 - (a) Perform this test. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
 - (b) Based upon your answer in (1a), will the p-value for the test be less than α or greater than α ? Why?
 - (c) Find the p-value for the test in (1a).
 - (d) Based upon your answer in (1c), is the mean number of crossings μ significantly higher than 9? Why?
- 2. Suppose the weight of bags of M&M's, X (in ounces), follow a normal distribution with mean μ ounces and standard deviation $\sigma = 0.10$ ounces, i.e. $X \sim N(\mu, \sigma = 0.10)$. A random sample of 4 bags had an average weight $\bar{x} = 15.9$ ounces. Suppose we wish to test $H_0: \mu = 16$ vs $H_a: \mu < 16$ at the $\alpha = 0.05$ significance level.
 - (a) What is the p-value for this test?
 - (b) Is the mean weight μ significantly less than 16 ounces? Why?
 - (c) Suppose the significance level $\alpha = 0.01$. Is the mean weight μ significantly less than 16 ounces? Why?
 - (d) Could we perform the above analysis if the weights did *not* have a normal distribution? Why?
- 3. The amount of time per day, X (in hours), office workers spend working on a computer can be modeled by a normal distribution with mean μ and standard deviation σ , i.e. $X \sim N(\mu, \sigma)$. A manager wants to infer about the population mean μ , so he randomly selects 5 employees and observes their computer time over the course of a day. The raw data is:
 - 6.5, 7.1, 5.9, 6.2, 6.3

Hint: n = 5, $\bar{x} = 6.4$, s = 0.4472.

- (a) Test $H_0: \mu = 6$ vs. $H_a: \mu \neq 6$ at the $\alpha = 0.01$ significance level. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
- (b) Based upon your answer in (3a), does the population mean computer time μ significantly differ from 6 hours? Why?
- (c) Find the p-value for the test in (3a).
- (d) Based upon your answer in (3c), does the population mean computer time μ significantly differ from 6 hours? Why?
- (e) Find a 99% confidence interval for μ .
- (f) Based upon your answer in (3e), does the population mean computer time μ significantly differ from 6 hours? Why?
- (g) Another manager wants to do the one-sided test $H_0: \mu = 6.8$ vs. $H_a: \mu < 6.8$ at the $\alpha = 0.10$ significance level. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
- (h) Could we perform the above analysis if the computer times did *not* have a normal distribution? Why?
- 4. Wood et. al (1988) studied the efficacy of diet for losing weight. The study, which lasted one year, involved only men. The weight loss for dieting men follows a normal distribution with mean μ and standard deviation σ . A group of n = 16 dieting men lost an average of $\bar{x} = 7.2$ pounds with standard deviation s = 4.4 pounds.
 - (a) Find a 90% confidence interval for μ .
 - (b) Test $H_0: \mu = 5.5$ vs. $H_a: \mu \neq 5.5$ at the $\alpha = 0.10$ significance level. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
 - (c) Approximate the p-value for the test in (4b).

- (d) Based upon your answer in (4c), does the population mean weight loss μ significantly differ from 5.5 pounds? Why?
- (e) Test $H_0: \mu = 5.5$ vs. $H_a: \mu > 5.5$ at the $\alpha = 0.10$ significance level. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
- (f) Approximate the p-value for the test in (4e).
- (g) Based upon your answer in (4f), is the population mean weight loss μ significantly more than 5.5 pounds? Why?
- (h) Could we perform the above analysis if weight loss did not have a normal distribution? Why?