HOMEWORK BIOSTATISTICS (STAT:3510; BOGNAR)

- 1. The length of time, X (in seconds), hippopotonuses can hold their breath underwater follows a normal distribution with mean $\mu = 150$ seconds and standard deviation $\sigma = 36$ seconds, i.e. $X \sim N(\mu = 150, \sigma = 36)$.
 - (a) Find the probability that a randomly selected hippopotomus can hold its breath between 150 and 200 seconds.
 - (b) Suppose 9 hippopotomuses are randomly selected. Find the probability that the mean breath-holding time \bar{X} is more than 183 seconds.
 - (c) Suppose 9 hippopotomuses are randomly selected. Find the probability that the mean breath-holding time \bar{X} is between 160 and 183 seconds.
- 2. The expenditures (in dollars) of customers at a coffee shop has a distribution that is strongly skewed to the right with mean $\mu = 3.50$ and standard deviation $\sigma = 2.00$.
 - (a) Suppose 12 customers enter the shop (assume independence). Can you find the probability that the mean expenditure, \bar{X} , is more than \$3.75? If so, find the probability. If not, explain why.
 - (b) Suppose 100 customers are randomly selected (assume independence). Approximate the probability that the mean expenditure, \bar{X} , is more than \$3.00.
 - (c) Suppose 100 customers are randomly selected (assume independence). Approximate the 99th percentile of the sample mean \bar{X} .
- 3. The diastolic blood pressure, X, of smokers follows a normal distribution with mean μ and standard deviation $\sigma = 15$, i.e. $X \sim N(\mu, \sigma = 15)$. The diastolic blood pressure of 3 randomly selected smokers was:

125 140 125

- (a) Find a 95% CI for the population mean diastolic blood pressure μ .
- (b) Based upon your answer in (3a), does the population mean diastolic blood pressure μ significantly differ from 100? Why?
- 4. In the Iowa Driving Simulator, the number of times the center line is crossed by individuals that are under the influence of alcohol has a distribution that is skewed to the right with mean μ and standard deviation $\sigma = 7$. For the 49 participants that drove after drinking alcohol, the mean number of times the center line was crossed was $\bar{x} = 10$.
 - (a) Find an approximate 95% confidence interval for μ .
 - (b) Based upon your answer in (4a), does the population mean μ significantly differ from 5? Why?
 - (c) Based upon your answer in (4a), does the population mean μ significantly differ from 10? Why?
 - (d) What is the margin of error at (95% confidence)?
 - (e) Could we perform the above analysis if the sample size n < 30? Explain.
- 5. The amount of energy storage of certain type of capacitor (a small electronic device) has a distribution that is strongly skewed to the left with mean μ pF (pico Farad) and standard deviation $\sigma = 150$ pF. An electrical engineer randomly selected 100 capacitors and determined the CI for μ is (383, 437) pF. What percent confidence interval is this? *Hint: Find* \bar{x} , find $z_{\alpha/2}$, find α , then find the percent CI.