HOMEWORK BIOSTATISTICS (STAT:3510; BOGNAR)

- 1. Suppose a 6-sided die (with sides labeled 1, 2, 3, 4, 5, 6) is rolled 2 times.
 - (a) Let A denote the event that a 1 is obtained on the first roll, and let B denote the event that an even is obtained on the second roll. Find the probability that events A and B both occur. In other words, find $P(A \cap B)$.
 - (b) Let A denote the event that a 1 is obtained on the first roll, and let B denote the event that an even is obtained on the second roll. Find the probability that A occurs, B occurs, or both A and B occur. In other words, find $P(A \cup B)$.
- 2. Suppose you randomly select 2 chips with replacement from a bowl containing 3 red (R) and 5 white (W) chips. Let R_1 denote the event that a red chip is obtained on the first draw, let R_2 denote the event that a red chip is obtained on the second draw. Find $P(R_1 \cap R_2)$.
- 3. Based on long-run relative frequencies, approximately 51% of all births in the U.S. are boys (i.e. P(B) = 0.51, P(G) = 0.49). Assume independence.
 - (a) If a woman has 3 children, find the probability that she has all boys.
 - (b) If a woman has 3 children, find the probability that she does not have all boys. Use complement rule.
 - (c) If a woman has 3 children, find the probability that the first child is a boy, while the last 2 children are girls.
 - (d) If a woman has 3 children, find the probability that she has exactly 1 boy. *Hint:* $P[(B_1 \cap G_2 \cap G_3) \cup (...) \cup (...)]$.
 - (e) If a woman has 3 children, find the probability that she has 1 or more boys. Use the complement rule.
- 4. Suppose that 4% of desktop computers in a large hospital run the Linux operating system (L).
 - (a) Suppose 2 computers are randomly selected (assume independence). Find the probability that neither computer is running Linux, i.e. find $P(L_1^c \cap L_2^c)$.
 - (b) Suppose 2 computers are randomly selected (assume independence). Find the probability that the first computer runs Linux (L_1) , the second computer runs linux (L_2) , or both run Linux. In other words, find $P(L_1 \cup L_2)$.
 - (c) Suppose 2 computers are randomly selected (assume independence). Find the probability that exactly one of the computers runs Linux. Hint: $P[(L_1 \cap L_2^c) \cup (...)]$.
 - (d) Suppose computers are repeatedly selected (assume independence). Find the probability that the 4th selected computer is the first one running Linux. In other words, find $P(L_1^c \cap L_2^c \cap L_3^c \cap L_4)$.
 - (e) Suppose 5 computers are randomly selected (assume independence). Find the probability that 1 or more run linux. Use the complement rule.
- 5. Suppose a die is repeatedly rolled. Find the probability that a 1 is obtained for the first time on the 10th roll. *Hint:* To get a 1 for the first time on the 10th roll, you must get a non-one on the 1st roll (1_1^c) , a non-one on the second roll (1_2^c) ,..., a non-one on the 9th roll (1_9^c) , and a one on the 10th roll (1_{10}) .