
A Byte Code Compiler for R

Luke Tierney
Department of Statistics and Actuarial Science

University of Iowa

August 23, 2023

This document presents the current implementation of the byte code compiler for R. The com-
piler produces code for a virtual machine that is then executed by a virtual machine runtime system.
The virtual machine is a stack based machine. Thus instructions for the virtual machine take argu-
ments off a stack and may leave one or more results on the stack. Byte code objects consists of an
integer vector representing instruction opcodes and operands, and a generic vector representing a
constant pool. The compiler is implemented almost entirely in R, with just a few support routines
in C to manage compiled code objects.

The virtual machine instruction set is designed to allow much of the interpreter internals to be
re-used. In particular, for now the mechanism for calling functions of all types from compiled code
remains the same as the function calling mechanism for interpreted code. There are opportunities
for efficiency improvements through using a different mechanism for calls from compiled functions
to compiled functions, or changing the mechanism for both interpreted and compiled code; this will
be explored in future work.

The style used by the compiler for building up code objects is imperative: A code buffer object
is created that contains buffers for the instruction stream and the constant pool. Instructions and
constants are written to the buffer as the compiler processes an expression tree, and at the end a
code object is constructed. A more functional design in which each compiler step returns a modified
code object might be more elegant in principle, but it would be more difficult to make efficient.

A multi-pass compiler in which a first pass produces an intermediate representation, subsequent
passes optimize the intermediate representation, and a final pass produces actual code would also
be useful and might be able to produce better code. A future version of the compiler may use this
approach. But for now to keep things simple a single pass is used.

1 The compiler interface

The compiler can be used either explicitly by calling certain functions to carry out compilations,
or implicitly by enabling compilation to occur automatically at certain points.

1.1 Explicit compilation

The primary functions for explicit compilation are compile, cmpfun, and cmpfile.

1

August 23, 2023 2

The compile function compiles an expression and returns a byte code object, which can then
be passed to eval. A simple example is

> library(compiler)

> compile(quote(1+3))

<bytecode: 0x25ba070>

> eval(compile(quote(1+3)))

[1] 4

A closure can be compiled using cmpfun. If the function f is defined as

f <- function(x) {

s <- 0.0

for (y in x)

s <- s + y

s

}

then a compiled version is produced by

fc <- cmpfun(f)

We can then compare the performance of the interpreted and compiled versions:

> x <- as.double(1 : 10000000)

> system.time(f(x))

user system elapsed

6.470 0.010 6.483

> system.time(fc(x))

user system elapsed

1.870 0.000 1.865

A source file can be compiled with cmpfile. For now, the resulting file has to then be loaded
with loadcmp. In the future it may make sense to allow source to either load a pre-compiled file
or to optionally compile while sourcing.

1.2 Implicit compilation

Implicit compilation can be used to compile packages as they are installed or for just-in-time (JIT)
compilation of functions or expressions. The mechanism for enabling these is experimental and
likely to change.

For now, compilation of packages requires the use of lazy loading and can be enabled ei-
ther by calling compilePKGS with argument TRUE or by starting R with the environment variable
R COMPILE PKGS set to a positive integer value. These settings are used internally during R build
to compile the base package (and tools, utils, methods, etc) and by R CMD INSTALL. Functions are
compiled as they are written to the lazy loading database. Compilation of packages should only be
enabled for that time, because it adds noticeable time and space overhead to any serialization.

In a UNIX-like environment, for example, installing a package with

env R_COMPILE_PKGS=1 R CMD INSTALL foo.tar.gz

August 23, 2023 compiler.nw 3

will internally enable package compilation using compilePKGS.
If R is installed from source then the base and required packages can be compiled on installation

using

make bytecode

This does not require setting the R COMPILE PKGS environment variable.
JIT compilation can be enabled from within R by calling enableJIT with a non-negative integer

argument or by starting R with the environment variable R ENABLE JIT set to a non-negative
integer. The possible values of the argument to enableJIT and their meanings are

0 turn off JIT

1 compile closures before they are called the first time

2 same as 1, plus compile closures before duplicating (useful for packages that store closures in
lists, like lattice)

3 same as 2, plus compile all for(), while(), and repeat() loops before executing.

R may initially be somewhat sluggish if JIT is enabled and base and recommended packages have
not been pre-compiled as almost everything will initially need some compilation.

2 The basic compiler

This section presents the basic compiler for compiling R expressions to byte code objects.

2.1 The compiler top level

R expressions consist of function calls, variable references, and literal constants. To create a byte
code object representing an R expression the compiler has to walk the expression tree and emit
code for the different node types in encounters. The code emitted may depend on the environment
in which the expression will be evaluated as well as various compiler option settings.

The simplest function in the top level compiler interface is the function compile. This function
requires an expression argument and takes three optional arguments: an environment, a list of
options and source code reference. The default environment is the global environment. By default,
the source reference argument is NULL and the source reference is taken from the srcref attribute
of the expression argument.

⟨compile function⟩≡
compile <- function(e, env = .GlobalEnv, options = NULL, srcref = NULL) {

cenv <- makeCenv(env)

cntxt <- make.toplevelContext(cenv, options)

cntxt$env <- addCenvVars(cenv, findLocals(e, cntxt))

if (mayCallBrowser(e, cntxt))

NOTE: compilation will be attempted repeatedly

e

else if (is.null(srcref))

August 23, 2023 compiler.nw 4

genCode(e, cntxt)

else

genCode(e, cntxt, loc = list(expr = e, srcref = srcref))

}

The supplied environment is converted into a compilation environment data structure. This com-
pilation environment and any options provided are then used to construct a compiler context. The
function genCode is then used to generate a byte code object for the expression and the constructed
compilation context.

Compilation environments are described in Section 5 and compiler contexts in Section 4. The
genCode function is defined as

⟨genCode function⟩≡
genCode <- function(e, cntxt, gen = NULL, loc = NULL) {

cb <- make.codeBuf(e, loc)

if (is.null(gen))

cmp(e, cb, cntxt, setloc = FALSE)

else

gen(cb, cntxt)

codeBufCode(cb, cntxt)

}

genCode creates a code buffer, fills the code buffer, and then calls codeBufCode to extract and return
the byte code object. In the most common case genCode uses the low level recursive compilation
function cmp, described in Section 2.3, to generate the code. For added flexibility it can be given a
generator function that emits code into the code buffer based on the provided context. This is used
in Section 10 for compilation of loop bodies in loops that require an explicit loop context (and a
long jump in the byte-code interpreter).

2.2 Basic code buffer interface

Code buffers are used to accumulate the compiled code and related constant values. A code buffer
cb is a list containing a number of closures used to manipulate the content of the code buffer. In
this section two closures are used, putconst and putcode.

The closure cb$putconst is used to enter constants into the constant pool. It takes a single
argument, an arbitrary R object to be entered into the constant pool, and returns an integer index
into the pool. The cb$putcode closure takes an instruction opcode and any operands the opcode
requires and emits them into the code buffer. The operands are typically constant pool indices or
labels, to be introduced in Section 3.

As an example, the GETVAR instruction takes one operand, the index in the constant pool of a
symbol. The opcode for this instruction is GETVAR.OP. The instruction retrieves the symbol from
the constant pool, looks up its value in the current environment, and pushes the value on the stack.
If sym is a variable with value of a symbol, then code to enter the symbol in the constant pool and
emit an instruction to get its value would be

⟨example of emitting a GETVAR instruction⟩≡
ci <- cb$putconst(sym)

cb$putcode(GETVAR.OP, ci)

August 23, 2023 compiler.nw 5

The complete code buffer implementation is given in Section 3.

2.3 The recursive code generator

The function cmp is the basic code generation function. It recursively traverses the expression tree
and emits code as it visits each node in the tree.

Before generating code for an expression the function cmp attempts to determine the value of the
expression by constant folding using the function constantFold. If constant folding is successful
then contantFold returns a named list containing a value element. Otherwise it returns NULL. If
constant folding is successful, then the result is compiled as a constant. Otherwise, the standard
code generation process is used.

In the interpreter there are four types of objects that are not treated as constants, i.e. as
evaluating to themselves: function calls of type "language", variable references of type "symbol",
promises, and byte code objects. Neither promises nor byte code objects should appear as literals
in code so an error is signaled for those. The language, symbol, and constant cases are each handled
by their own code generators.

⟨generate code for expression e⟩≡
if (typeof(e) == "language")

cmpCall(e, cb, cntxt)

else if (typeof(e) == "symbol")

cmpSym(e, cb, cntxt, missingOK)

else if (typeof(e) == "bytecode")

cntxt$stop(gettext("cannot compile byte code literals in code"),

cntxt, loc = cb$savecurloc())

else if (typeof(e) == "promise")

cntxt$stop(gettext("cannot compile promise literals in code"),

cntxt, loc = cb$savecurloc())

else

cmpConst(e, cb, cntxt)

The function cmp is then defined as

⟨cmp function⟩≡
cmp <- function(e, cb, cntxt, missingOK = FALSE, setloc = TRUE) {

if (setloc) {

sloc <- cb$savecurloc()

cb$setcurexpr(e)

}

ce <- constantFold(e, cntxt, loc = cb$savecurloc())

if (is.null(ce)) {

⟨generate code for expression e⟩
}

else

cmpConst(ce$value, cb, cntxt)

if (setloc)

cb$restorecurloc(sloc)

}

The call code generator cmpCall will recursively call cmp.

August 23, 2023 compiler.nw 6

2.4 Compiling constant expressions

The constant code generator cmpConst is the simplest of the three generators. A simplified generator
can be defined as

⟨simplified cmpConst function⟩≡
cmpConst <- function(val, cb, cntxt) {

ci <- cb$putconst(val)

cb$putcode(LDCONST.OP, ci)

if (cntxt$tailcall) cb$putcode(RETURN.OP)

}

This function enters the constant in the constant pool using the closure cb$putconst. The value
returned by this closure is an index for the constant in the constant pool. Then the code generator
emits an instruction to load the constant at the specified constant pool index and push it onto the
stack. If the expression appears in tail position then a RETURN instruction is emitted as well.

Certain constant values, such as TRUE, FALSE, and NULL appear very often in code. It may be
useful to provide and use special instructions for loading these. The resulting code will have slightly
smaller constant pools and may be a little faster, though the difference is likely to be small. A
revised definition of cmpConst that makes use of instructions for loading these particular values is
given by

⟨cmpConst function⟩≡
cmpConst <- function(val, cb, cntxt) {

if (identical(val, NULL))

cb$putcode(LDNULL.OP)

else if (identical(val, TRUE))

cb$putcode(LDTRUE.OP)

else if (identical(val, FALSE))

cb$putcode(LDFALSE.OP)

else {

ci <- cb$putconst(val)

cb$putcode(LDCONST.OP, ci)

}

if (cntxt$tailcall) cb$putcode(RETURN.OP)

}

It might be useful to handle other constants in a similar way, such as NA or small integer values;
this may be done in the future.

The implementation marks values in the constant pool as read-only after they are loaded. In
the past, all values were duplicated as they were retrieved from the constant pool as a precaution
against bad package code: several packages in the wild assumed that an expression TRUE, for
example, appearing in code would result in a freshly allocated value that could be freely modified
in .C calls.

2.5 Compiling variable references

The function cmpSym handles compilation of variable references. For standard variables this involves
entering the symbol in the constant pool, emitting code to look up the value of the variable at the

August 23, 2023 compiler.nw 7

specified constant pool location in the current environment, and, if necessary, emitting a RETURN

instruction.
In addition to standard variables there is the ellipsis variable ... and the accessors ..1, ..2,

and so on that need to be considered. The ellipsis variable can only appear as an argument in
function calls, so cmp, like the interpreter eval itself, should not encounter it. The interpreter
signals an error if it does encounter a ... variable, and the compiler emits code that does the same
at runtime. The compiler also emits a warning at compile time. Variables representing formal
parameters may not have values provided in their calls, i.e. may have missing values. In some
cases this should signal an error; in others the missing value can be passed on (for example in
expressions of the form x[]). To support this, cmpSym takes an optional argument for allowing
missing argument values.

⟨cmpSym function⟩≡
cmpSym <- function(sym, cb, cntxt, missingOK = FALSE) {

if (sym == "...") {

notifyWrongDotsUse("...", cntxt, loc = cb$savecurloc())

cb$putcode(DOTSERR.OP)

}

else if (is.ddsym(sym)) {

⟨emit code for ..n variable references⟩
}

else {

⟨emit code for standard variable references⟩
}

}

References to ..n variables are also only appropriate when a ... variable is available, so a
warning is given if that is not the case. The virtual machine provides instructions DDVAL and
DDVAL MISSOK for the case where missing arguments are not allowed and for the case where they
are, and the appropriate instruction is used based on the missingOK argument to cmpSym.

⟨emit code for ..n variable references⟩≡
if (! findLocVar("...", cntxt))

notifyWrongDotsUse(sym, cntxt, loc = cb$savecurloc())

ci <- cb$putconst(sym)

if (missingOK)

cb$putcode(DDVAL_MISSOK.OP, ci)

else

cb$putcode(DDVAL.OP, ci)

if (cntxt$tailcall) cb$putcode(RETURN.OP)

There are also two instructions available for obtaining the value of a general variable from the
current environment, one that allows missing values and one that does not.

⟨emit code for standard variable references⟩≡
if (! findVar(sym, cntxt))

notifyUndefVar(sym, cntxt, loc = cb$savecurloc())

ci <- cb$putconst(sym)

if (missingOK)

cb$putcode(GETVAR_MISSOK.OP, ci)

August 23, 2023 compiler.nw 8

else

cb$putcode(GETVAR.OP, ci)

if (cntxt$tailcall) cb$putcode(RETURN.OP)

For now, these instructions only take an index in the constant pool for the symbol as operands,
not any information about where the variable can be found within the environment. This approach
to obtaining the value of variables requires a search of the current environment for every variable
reference. In a less dynamic language it would be possible to compute locations of variable bindings
within an environment at compile time and to choose environment representations that allow con-
stant time access to any variable’s value. Since bindings in R can be added or removed at runtime
this would require a semantic change that would need some form of declaration to make legitimate.
Another approach that may be worth exploring is some sort of caching mechanism in which the
location of each variable is stored when it is first found by a full search, and that cached location is
used until an event occurs that forces flushing of the cache. If such events are rare, as they typically
are, then this may be effective.

2.6 Compiling function calls

Conceptually, the R function calling mechanism uses lazy evaluation of arguments. Thus calling a
function involves three steps:

� finding the function to call

� packaging up the argument expressions into deferred evaluation objects, or promises

� executing the call

Code for this process is generated by the function cmpCall. A simplified version is defined as

⟨simplified cmpCall function⟩≡
cmpCall <- function(call, cb, cntxt) {

cntxt <- make.callContext(cntxt, call)

fun <- call[[1]]

args <- call[-1]

if (typeof(fun) == "symbol")

cmpCallSymFun(fun, args, call, cb, cntxt)

else

cmpCallExprFun(fun, args, call, cb, cntxt)

}

Call expressions in which the function is represented by a symbol are compiled by cmpCallSymFun.
This function emits a GETFUN instruction and then compiles the arguments.

⟨cmpCallSymFun function⟩≡
maybeNSESymbols <- c("bquote")

cmpCallSymFun <- function(fun, args, call, cb, cntxt) {

ci <- cb$putconst(fun)

cb$putcode(GETFUN.OP, ci)

nse <- as.character(fun) %in% maybeNSESymbols

⟨compile arguments and emit CALL instruction⟩
}

August 23, 2023 compiler.nw 9

The GETFUN instruction takes a constant pool index of the symbol as an operand, looks for a function
binding to the symbol in the current environment, places it on the stack, and prepares the stack
for handling function call arguments.

Argument compilation is carried out by the function cmpCallArgs, presented in Section 2.7, and
is followed by emitting code to execute the call and, if necessary, return a result. Calls to functions
listed in maybeNSESymbols get their arguments uncompiled. Currently this is only the case of
bquote, which does not evaluate its argument expr normally, but modifies the expression first (non-
standard evaluation). Compiling such argument could result in warnings, because the argument
may not be a valid R expression (e.g. when it contains .() subexpressions in complex assignments),
and the generated code would be irrelevant (yet not used). Not compiling an argument that will in
fact be evaluated normally is safe, hence the code is not differentiating between individual function
arguments nor is it checking whether bquote is the one from the base package.

⟨compile arguments and emit CALL instruction⟩≡
cmpCallArgs(args, cb, cntxt, nse)

ci <- cb$putconst(call)

cb$putcode(CALL.OP, ci)

if (cntxt$tailcall) cb$putcode(RETURN.OP)

The call expression itself is stored in the constant pool and is available to the CALL instruction.
Calls in which the function is represented by an expression other than a symbol are handled by

cmpCallExprFun. This emits code to evaluate the expression, leaving the value in the stack, and
then emits a CHECKFUN instruction. This instruction checks that the value on top of the stack is
a function and prepares the stack for receiving call arguments. Generation of argument code and
the CALL instruction are handled as for symbol function calls.

⟨cmpCallExprFun function⟩≡
cmpCallExprFun <- function(fun, args, call, cb, cntxt) {

ncntxt <- make.nonTailCallContext(cntxt)

cmp(fun, cb, ncntxt)

cb$putcode(CHECKFUN.OP)

nse <- FALSE

⟨compile arguments and emit CALL instruction⟩
}

The actual definition of cmpCall is a bit more complex than the simplified one given above:

⟨cmpCall function⟩≡
cmpCall <- function(call, cb, cntxt, inlineOK = TRUE) {

sloc <- cb$savecurloc()

cb$setcurexpr(call)

cntxt <- make.callContext(cntxt, call)

fun <- call[[1]]

args <- call[-1]

if (typeof(fun) == "symbol") {

if (! (inlineOK && tryInline(call, cb, cntxt))) {

⟨check the call to a symbol function⟩
cmpCallSymFun(fun, args, call, cb, cntxt)

}

August 23, 2023 compiler.nw 10

}

else {

⟨hack for handling break() and next() expressions⟩
cmpCallExprFun(fun, args, call, cb, cntxt)

}

cb$restorecurloc(sloc)

}

The main addition is the use of a tryInline function which tries to generate more efficient code
for particular functions. The inlineOK argument can be used to disable inlining. This function
returns TRUE if it has handled code generation and FALSE if it has not. Code will be generated by
the inline mechanism if inline handlers for the particular function are available and the optimization
level permits their use. Details of the inlining mechanism are given in Section 6.

In addition to the inlining mechanism, some checking of the call is carried out for symbol calls.
The checking code is

⟨check the call to a symbol function⟩≡
if (findLocVar(fun, cntxt))

notifyLocalFun(fun, cntxt, loc = cb$savecurloc())

else {

def <- findFunDef(fun, cntxt)

if (is.null(def))

notifyUndefFun(fun, cntxt, loc = cb$savecurloc())

else

checkCall(def, call,

function(w) notifyBadCall(w, cntxt, loc = cb$savecurloc()))

}

and checkCall is defined as

⟨checkCall function⟩≡
**** figure out how to handle multi-line deparses

**** e.g. checkCall(‘{‘, quote({}))

**** better design would capture error object, wrap it up, and pass it on

**** use approach from codetools to capture partial argument match

**** warnings if enabled?

checkCall <- function(def, call, signal = warning) {

if (typeof(def) %in% c("builtin", "special"))

def <- args(def)

if (typeof(def) != "closure" || anyDots(call))

NA

else {

msg <- tryCatch({match.call(def, call); NULL},

error = function(e) conditionMessage(e))

if (! is.null(msg)) {

emsg <- gettextf("possible error in ’%s’: %s",

deparse(call, 20)[1], msg)

if (! is.null(signal)) signal(emsg)

FALSE

}

August 23, 2023 compiler.nw 11

else TRUE

}

}

Finally, for calls where the function is an expression a hack is currently needed for dealing with
the way the parser currently parses expressions of the form break() and next(). To be able to
compile as many break and next calls as possible as simple GOTO instructions these need to be
handled specially to avoid placing things on the stack. A better solution would probably be to
modify the parser to make expressions of the form break() be syntax errors.

⟨hack for handling break() and next() expressions⟩≡
**** this hack is needed for now because of the way the

**** parser handles break() and next() calls

if (typeof(fun) == "language" && typeof(fun[[1]]) == "symbol" &&

as.character(fun[[1]]) %in% c("break", "next"))

return(cmp(fun, cb, cntxt))

2.7 Compiling call arguments

Function calls can contain four kinds of arguments:

� missing arguments

� ... arguments

� general expressions

In the first and third cases the arguments can also be named. The argument compilation function
cmpCallArgs loops over the argument lists and handles each of the three cases, in addition to
signaling errors for arguments that are literal bytecode or promise objects. When nse is TRUE

(non-standard evaluation), promises will only get uncompiled expressions.

⟨cmpCallArgs function⟩≡
cmpCallArgs <- function(args, cb, cntxt, nse = FALSE) {

names <- names(args)

pcntxt <- make.promiseContext(cntxt)

for (i in seq_along(args)) {

a <- args[[i]]

n <- names[[i]]

⟨compile missing argument⟩
⟨compile ... argument⟩
⟨signal an error for promise or bytecode argument⟩
⟨compile a general argument⟩

}

}

The missing argument case is handled by

⟨compile missing argument⟩≡
if (missing(a)) { ## better test for missing??

cb$putcode(DOMISSING.OP)

cmpTag(n, cb)

}

August 23, 2023 compiler.nw 12

Computations on the language related to missing arguments are tricky. The use of missing is a
little odd, but for now at least it does work.

An ellipsis argument ... is handled by the DODOTS instruction:

⟨compile ... argument⟩≡
else if (is.symbol(a) && a == "...") {

if (! findLocVar("...", cntxt))

notifyWrongDotsUse("...", cntxt, loc = cb$savecurloc())

cb$putcode(DODOTS.OP)

}

A warning is issued if no ... argument is visible.
As in cmp, errors are signaled for literal bytecode or promise values as arguments.

⟨signal an error for promise or bytecode argument⟩≡
else if (typeof(a) == "bytecode")

cntxt$stop(gettext("cannot compile byte code literals in code"),

cntxt, loc = cb$savecurloc())

else if (typeof(a) == "promise")

cntxt$stop(gettext("cannot compile promise literals in code"),

cntxt, loc = cb$savecurloc())

A general non-constant argument expression is compiled to a separate byte code object which
is stored in the constant pool. The compiler then emits a MAKEPROM instruction that uses the stored
code object. Promises are not needed for literal constant arguments as these are self-evaluating.
Within the current implementation both the evaluation process and use of substitute will work
properly if constants are placed directly in the argument list rather than being wrapped in promises.
This could also be done in the interpreter, though the benefit is less clear as a runtime determination
of whether an argument is a constant would be needed. This may still be cheap enough compared
to the cost of allocating a promise to be worth doing. Constant folding in cmp may also produce
more constants, but promises are needed in this case in order for substitute to work properly.
These promises could be created as evaluated promises, though it is not clean how much this would
gain.

⟨compile a general argument⟩≡
else {

if (is.symbol(a) || typeof(a) == "language") {

if (nse)

ci <- cb$putconst(a)

else

ci <- cb$putconst(genCode(a, pcntxt, loc = cb$savecurloc()))

cb$putcode(MAKEPROM.OP, ci)

}

else

cmpConstArg(a, cb, cntxt)

cmpTag(n, cb)

}

For calls to closures the MAKEPROM instruction retrieves the code object, creates a promise from
the code object and the current environment, and pushes the promise on the argument stack. For
calls to functions of type BULTIN the MAKEPROM instruction actually executes the code object in the

August 23, 2023 compiler.nw 13

current environment and pushes the resulting value on the stack. For calls to functions of type
SPECIAL the MAKEPROM instruction does nothing as these calls use only the call expression.

Constant arguments are compiled by cmpConstArg. Again there are special instructions for the
common special constants NULL, TRUE, and FALSE.

⟨cmpConstArg⟩≡
cmpConstArg <- function(a, cb, cntxt) {

if (identical(a, NULL))

cb$putcode(PUSHNULLARG.OP)

else if (identical(a, TRUE))

cb$putcode(PUSHTRUEARG.OP)

else if (identical(a, FALSE))

cb$putcode(PUSHFALSEARG.OP)

else {

ci <- cb$putconst(a)

cb$putcode(PUSHCONSTARG.OP, ci)

}

}

Code to install names for named arguments is generated by cmpTag:

⟨cmpTag function⟩≡
cmpTag <- function(n, cb) {

if (! is.null(n) && n != "") {

ci <- cb$putconst(as.name(n))

cb$putcode(SETTAG.OP, ci)

}

}

The current implementation allocates a linked list of call arguments, stores tags in the list cells,
and allocates promises. Alternative implementations that avoid some or all allocation are worth
exploring. Also worth exploring is having an instruction specifically for calls that do not require
matching of named arguments to formal arguments, since cases that use only order of arguments,
not names, are quite common and are known at compile time. In the case of calls to functions with
definitions known at compile time matching of named arguments to formal ones could also be done
at compile time.

2.8 Discussion

The framework presented in this section, together with some support functions, is actually able
to compile any legal R code. But this is somewhat deceptive. The R implementation, and the
CALL opcode, support three kinds of functions: closures (i.e. R-level functions), primitive functions
of type BUILTIN, and primitive functions of type SPECIAL. Primitives of type BUILTIN always
evaluate their arguments in order, so creating promises is not necessary and in fact the MAKEPROM

instruction does not do so — if the function to be called is a BUILTIN then MAKEPROM runs the
code for computing the argument in the current environment and pushes the value on the stack.
On the other hand, primitive functions of type SPECIAL use the call expression and evaluate bits
of it as needed. As a result, they will be running interpreted code. Since core functions like the
sequencing function { and the conditional evaluation function if are of type SPECIAL this means

August 23, 2023 compiler.nw 14

most non-trivial code will be run by the standard interpreter. This will be addressed by defining
inlining rules that allow functions like { and if to be compiled properly.

3 The code buffer

The code buffer is a collection of closures that accumulate code and constants in variables in their
defining environment. For a code buffer cb the closures cb$putcode and cb$putconst write an
instruction sequence and a constant, respectively, into the code buffer. The closures cb$code and
cb$consts extract the code vector and the constant pool.

The function make.codeBuf creates a set of closures for managing the instruction stream buffer
and the constant pool buffer and returns a list of these closures for use by the compilation functions.
In addition, the expression to be compiled into the code buffer is stored as the first constant in the
constant pool; this can be used to retrieve the source code for a compiled expression.

⟨make.codeBuf function⟩≡
make.codeBuf <- function(expr, loc = NULL) {

⟨source location tracking implementation⟩
⟨instruction stream buffer implementation⟩
⟨constant pool buffer implementation⟩
⟨label management interface⟩
cb <- list(code = getcode,

const = getconst,

putcode = putcode,

putconst = putconst,

makelabel = makelabel,

putlabel = putlabel,

patchlabels = patchlabels,

setcurexpr = setcurexpr,

setcurloc = setcurloc,

commitlocs = commitlocs,

savecurloc = savecurloc,

restorecurloc = restorecurloc)

cb$putconst(expr) ## insert expression as first constant.

NOTE: this will also insert the srcref directly into the constant

pool

cb

}

The instruction stream buffer uses a list structure and a count of elements in use, and doubles
the size of the list to make room for new code when necessary. By convention the first entry is a
byte code version number; if the interpreter sees a byte code version number it cannot handle then
it falls back to interpreting the uncompiled expression. The doubling strategy is needed to avoid
quadratic compilation times for large instruction streams.

⟨instruction stream buffer implementation⟩≡
codeBuf <- list(.Internal(bcVersion()))

codeCount <- 1

putcode <- function(...) {

August 23, 2023 compiler.nw 15

new <- list(...)

newLen <- length(new)

while (codeCount + newLen > length(codeBuf)) {

codeBuf <<- c(codeBuf, vector("list", length(codeBuf)))

if (exprTrackingOn)

exprBuf <<- c(exprBuf, vector("integer", length(exprBuf)))

if (srcrefTrackingOn)

srcrefBuf <<- c(srcrefBuf, vector("integer", length(srcrefBuf)))

}

codeRange <- (codeCount + 1) : (codeCount + newLen)

codeBuf[codeRange] <<- new

if (exprTrackingOn) { ## put current expression into the constant pool

ei <- putconst(curExpr)

exprBuf[codeRange] <<- ei

}

if (srcrefTrackingOn) { ## put current srcref into the constant pool

si <- putconst(curSrcref)

srcrefBuf[codeRange] <<- si

}

codeCount <<- codeCount + newLen

}

getcode <- function() as.integer(codeBuf[1 : codeCount])

The constant pool is accumulated into a list buffer. The zero-based index of the constant in the
pool is returned by the insertion function. Values are only entered once; if a value is already in the
pool, as determined by identical, its existing index is returned. Again a size-doubling strategy
is used for the buffer. .Internal functions are used both for performance reasons and to prevent
duplication of the constants.

⟨constant pool buffer implementation⟩≡
constBuf <- vector("list", 1)

constCount <- 0

putconst <- function(x) {

if (constCount == length(constBuf))

constBuf <<- .Internal(growconst(constBuf))

i <- .Internal(putconst(constBuf, constCount, x))

if (i == constCount)

constCount <<- constCount + 1

i

}

getconst <- function()

.Internal(getconst(constBuf, constCount))

The compiler maintains a mapping from code to source locations. For each value in the code
buffer (instruction and operand) there is a source code reference (srcref) and the corresponding
expression (AST). The code buffer implementation remembers the current location (source reference
and expression), which can be set by setcurloc, setcurexpr or restorecurloc and retrieved by

August 23, 2023 compiler.nw 16

savecurloc. In addition to emitting code, putconst also copies the current location information
into the constant pool and records the resulting constant indices in a source reference buffer and
expression buffer. When the final code is extracted using codeBufCode, the source reference and
expression buffers are copied into the constant pool as vectors indexed by code offset (program
counter).

⟨source location tracking functions⟩≡
extractSrcref <- function(sref, idx) {

if (is.list(sref) && length(sref) >= idx)

sref[[idx]]

else if (is.integer(sref) && length(sref) >= 6)

sref

else

NULL

}

getExprSrcref <- function(expr) {

sattr <- attr(expr, "srcref")

extractSrcref(sattr, 1)

}

if block is a block srcref, get its idx’th entry

if block is a single srcref, return this srcref

getBlockSrcref <- function(block, idx) {

extractSrcref(block, idx)

}

addLocString <- function(msg, loc) {

if (is.null(loc$srcref))

msg

else

paste0(msg, " at ", utils::getSrcFilename(loc$srcref), ":",

utils::getSrcLocation(loc$srcref, "line"))

}

⟨source location tracking implementation⟩≡
exprTrackingOn <- TRUE

srcrefTrackingOn <- TRUE

if (is.null(loc)) {

curExpr <- expr

curSrcref <- getExprSrcref(expr)

} else {

curExpr <- loc$expr

curSrcref <- loc$srcref

}

if (is.null(curSrcref))

when top-level srcref is null, we speculate there will be no

source references within the compiled expressions either,

disabling the tracking makes the resulting constant pool

smaller

August 23, 2023 compiler.nw 17

srcrefTrackingOn <- FALSE

exprBuf <- NA ## exprBuf will have the same length as codeBuf

srcrefBuf <- NA ## srcrefBuf will have the same length as codeBuf

if (!exprTrackingOn) {

curExpr <- NULL

exprBuf <- NULL

}

if (!srcrefTrackingOn) {

curSrcref <- NULL

srcrefBuf <- NULL

}

set the current expression

also update the srcref according to expr, if expr has srcref attribute

(note: never clears current srcref)

setcurexpr <- function(expr) {

if (exprTrackingOn) {

curExpr <<- expr

}

if (srcrefTrackingOn) {

sref <- getExprSrcref(expr)

if (!is.null(sref) && srcrefTrackingOn)

curSrcref <<- sref

}

}

unconditionally sets the current expression and srcrefs

setcurloc <- function(expr, sref) {

if (exprTrackingOn)

curExpr <<- expr

if (srcrefTrackingOn)

curSrcref <<- sref

}

add location information (current expressions, srcrefs) to the constant pool

commitlocs <- function() {

if (exprTrackingOn) {

exprs <- exprBuf[1:codeCount]

class(exprs) <- "expressionsIndex"

putconst(exprs)

}

if (srcrefTrackingOn) {

srefs <- srcrefBuf[1:codeCount]

class(srefs) <- "srcrefsIndex"

putconst(srefs)

}

August 23, 2023 compiler.nw 18

these entries will be at the end of the constant pool, assuming only the compiler

uses these two classes

NULL

}

savecurloc <- function() {

list(expr = curExpr, srcref = curSrcref)

}

restorecurloc <- function(saved) {

if (exprTrackingOn) curExpr <<- saved$expr

if (srcrefTrackingOn) curSrcref <<- saved$srcref

}

Labels are used for identifying targets for branching instruction. The label management in-
terface creates new labels with makelabel as character strings that are unique within the buffer.
These labels can then be included as operands in branching instructions. The putlabel function
records the current code position as the value of the label.

⟨label management interface⟩≡
idx <- 0

labels <- vector("list")

makelabel <- function() { idx <<- idx + 1; paste0("L", idx) }

putlabel <- function(name) labels[[name]] <<- codeCount

Once code generation is complete the symbolic labels in the code stream need to be converted to
numerical offset values. This is done by patchlabels. Labels can appear directly in the instruction
stream and in lists that have been placed in the instruction stream; this is used for the SWITCH

instruction.

⟨label management interface⟩+≡
patchlabels <- function(cntxt) {

offset <- function(lbl) {

if (is.null(labels[[lbl]]))

cntxt$stop(gettextf("no offset recorded for label \"%s\"", lbl),

cntxt)

labels[[lbl]]

}

for (i in 1 : codeCount) {

v <- codeBuf[[i]]

if (is.character(v))

codeBuf[[i]] <<- offset(v)

else if (typeof(v) == "list") {

off <- as.integer(lapply(v, offset))

ci <- putconst(off)

codeBuf[[i]] <<- ci

}

}

}

The contents of the code buffer is extracted into a code object by calling codeBufCode:

⟨codeBufCode function⟩≡
codeBufCode <- function(cb, cntxt) {

August 23, 2023 compiler.nw 19

cb$patchlabels(cntxt)

cb$commitlocs()

.Internal(mkCode(cb$code(), cb$const()))

}

4 Compiler contexts

The compiler context object cntxt carries along information about whether the expression appears
in tail position and should be followed by a return or, whether the result is ignored, or whether the
expression is contained in a loop. The context object also contains current compiler option settings
as well as functions used to issue warnings or signal errors.

4.1 Top level contexts

Top level compiler functions start by creating a top level context. The constructor for top level
contexts takes as arguments the current compilation environment, described in Section 5, and a list
of option values used to override default option settings. The toplevel field will be set to FALSE

for compiling expressions, such as function arguments, that do not appear at top level. Top level
expressions are assumed to be in tail position, so the tailcall field is initialized as TRUE. The
needRETURNJMP specifies whether a call to the return function can use the RETURN instruction or
has to use a longjmp via the RETURNJMP instruction. Initially using a simple RETURN is safe; this is
set set to TRUE when compiling promises ad certain loops where RETURNJMP is needed.

⟨make.toplevelContext function⟩≡
make.toplevelContext <- function(cenv, options = NULL)

structure(list(toplevel = TRUE,

tailcall = TRUE,

needRETURNJMP = FALSE,

env = cenv,

optimize = getCompilerOption("optimize", options),

suppressAll = getCompilerOption("suppressAll", options),

suppressNoSuperAssignVar =

getCompilerOption("suppressNoSuperAssignVar", options),

suppressUndefined = getCompilerOption("suppressUndefined",

options),

call = NULL,

stop = function(msg, cntxt, loc = NULL)

stop(simpleError(addLocString(msg, loc), cntxt$call)),

warn = function(x, cntxt, loc = NULL)

cat(paste("Note:", addLocString(x, loc), "\n"))

),

class = "compiler_context")

Errors are signaled using a version of stop that uses the current call in the compilation context.
The default would be to use the call in the compiler code where the error was raised, and that
would not be meaningful to the end user. Ideally warn should do something similar and also use
the condition system, but for now it just prints a simple message to standard output.

August 23, 2023 compiler.nw 20

4.2 Other compiler contexts

The cmpCall function creates a new context for each call it compiles. The new context is the
current context with the call entry replaced by the current call — this is be useful for issuing
meaningful warning and error messages.

⟨make.callContext function⟩≡
make.callContext <- function(cntxt, call) {

cntxt$call <- call

cntxt

}

Non-tail-call contexts are used when a value is being computed for use in a subsequent compu-
tation. The constructor returns a new context that is the current context with the tailcall field set
to FALSE.

⟨make.nonTailCallContext function⟩≡
make.nonTailCallContext <- function(cntxt) {

cntxt$tailcall <- FALSE

cntxt

}

A no value context is used in cases where the computed value will be ignored. For now this is
identical to a non-tail-call context, but it may eventually be useful to distinguish the two situations.
This is used mainly for expressions other than the final one in { calls and for compiling the bodies
of loops.

⟨make.noValueContext function⟩≡
make.noValueContext <- function(cntxt) {

cntxt$tailcall <- FALSE

cntxt

}

The compiler context for compiling a function is a new toplevel context using the function
environment and the current compiler options settings.

⟨make.functionContext function⟩≡
make.functionContext <- function(cntxt, forms, body) {

nenv <- funEnv(forms, body, cntxt)

ncntxt <- make.toplevelContext(nenv)

ncntxt$optimize <- cntxt$optimize

ncntxt$suppressAll <- cntxt$suppressAll

ncntxt$suppressNoSuperAssignVar <- cntxt$suppressNoSuperAssignVar

ncntxt$suppressUndefined <- cntxt$suppressUndefined

ncntxt

}

The context for compiling the body of a loop is a no value context with the loop information
available.

⟨make.loopContext function⟩≡
make.loopContext <- function(cntxt, loop.label, end.label) {

ncntxt <- make.noValueContext(cntxt)

ncntxt$loop <- list(loop = loop.label, end = end.label, gotoOK = TRUE)

August 23, 2023 compiler.nw 21

ncntxt

}

The initial loop context allows break and next calls to be implemented as GOTO instructions.
This is OK for calls that are in top level position relative to the loop. Calls that occur in promises
or in other contexts where the stack has changed from the loop top level state need stack unwinding
and cannot be implemented as GOTO instructions. These should should be compiled with contexts
that have the loop$gotoOK field set to FALSE. The promise context does this for promises and
the argument context for other settings. The promise context also sets needRETURNJMP to TRUE

since a return call that is triggered by forcing a promise requires a longjmp to return from the
appropriate function.

⟨make.argContext function⟩≡
make.argContext <- function(cntxt) {

cntxt$toplevel <- FALSE

cntxt$tailcall <- FALSE

if (! is.null(cntxt$loop))

cntxt$loop$gotoOK <- FALSE

cntxt

}

⟨make.promiseContext function⟩≡
make.promiseContext <- function(cntxt) {

cntxt$toplevel <- FALSE

cntxt$tailcall <- TRUE

cntxt$needRETURNJMP <- TRUE

if (! is.null(cntxt$loop))

cntxt$loop$gotoOK <- FALSE

cntxt

}

4.3 Compiler options

Default compiler options are maintained in an environment. For now, the supported options are
optimize, which is initialized to level 2, and two options for controlling compiler messages. The
suppressAll option, if TRUE, suppresses all notifications. The suppressNoSuperAssignVar op-
tion, if TRUE, suppresses notifications about missing binding for a super-assigned variable. The
suppressUndefined option can be TRUE to suppress all notifications about undefined variables and
functions, or it can be a character vector of the names of variables for which warnings should be
suppressed.

⟨compiler options data base⟩≡
compilerOptions <- new.env(hash = TRUE, parent = emptyenv())

compilerOptions$optimize <- 2

compilerOptions$suppressAll <- TRUE

compilerOptions$suppressNoSuperAssignVar <- FALSE

compilerOptions$suppressUndefined <-

c(".Generic", ".Method", ".Random.seed", ".self")

August 23, 2023 compiler.nw 22

Options are retrieved with the getCompilerOption function.

⟨getCompilerOption function⟩≡
getCompilerOption <- function(name, options = NULL) {

if (name %in% names(options))

options[[name]]

else

get(name, compilerOptions)

}

The suppressAll function determines whether a context has its supressAll property set to
TRUE.

⟨suppressAll function⟩≡
suppressAll <- function(cntxt)

identical(cntxt$suppressAll, TRUE)

The suppressNoSuperAssignVar function determines whether a context has its suppressNoSuperAssignVar
property set to TRUE.

⟨suppressNoSuperAssignVar function⟩≡
suppressNoSuperAssignVar <- function(cntxt)

isTRUE(cntxt$suppressNoSuperAssignVar)

The suppressUndef function determines whether undefined variable or function definition notifi-
cations for a particular variable should be suppressed in a particular compiler context.

⟨suppressUndef function⟩≡
suppressUndef <- function(name, cntxt) {

if (identical(cntxt$suppressAll, TRUE))

TRUE

else {

suppress <- cntxt$suppressUndefined

if (is.null(suppress))

FALSE

else if (identical(suppress, TRUE))

TRUE

else if (is.character(suppress) && as.character(name) %in% suppress)

TRUE

else FALSE

}

}

At some point we will need mechanisms for setting default options from the interpreter and
in package meta-data. A declaration mechanism for adjusting option settings locally will also be
needed.

4.4 Compiler notifications

Compiler notifications are currently sent by calling the context’s warn function, which in turn
prints a message to standard output. It would be better to use an approach based on the condition
system, and this will be done eventually. The use of separate notification functions for each type
of issue signaled is a step in this direction.

August 23, 2023 compiler.nw 23

Undefined function and undefined variable notifications are issued by notifyUndefFun and
notifyUndefVar. These both use suppressUndef to determine whether the notification should be
suppressed in the current context.

⟨notifyUndefFun function⟩≡
notifyUndefFun <- function(fun, cntxt, loc = NULL) {

if (! suppressUndef(fun, cntxt)) {

msg <- gettextf("no visible global function definition for ’%s’",

as.character(fun))

cntxt$warn(msg, cntxt, loc)

}

}

⟨notifyUndefVar function⟩≡
notifyUndefVar <- function(var, cntxt, loc = NULL) {

if (! suppressUndef(var, cntxt)) {

msg <- gettextf("no visible binding for global variable ’%s’",

as.character(var))

cntxt$warn(msg, cntxt, loc)

}

}

Codetools currently optionally notifies about use of local functions. This is of course not an
error but may sometimes be the result of a mis-spelling. For now the compiler does not notify
about these, but this could be changed by redefining notifyLocalFun .

⟨notifyLocalFun function⟩≡
notifyLocalFun <- function(fun, cntxt, loc = NULL) {

if (! suppressAll(cntxt))

NULL

}

Warnings about possible improper use of ... and ..n variables are sent by notifyWrongDotsUse.

⟨notifyWrongDotsUse function⟩≡
notifyWrongDotsUse <- function(var, cntxt, loc = NULL) {

if (! suppressAll(cntxt)) {

msg <- paste(var, "may be used in an incorrect context")

cntxt$warn(msg, cntxt, loc)

}

}

Wrong argument count issues are signaled by notifyWrongArgCount.

⟨notifyWrongArgCount function⟩≡
notifyWrongArgCount <- function(fun, cntxt, loc = NULL) {

if (! suppressAll(cntxt)) {

msg <- gettextf("wrong number of arguments to ’%s’",

as.character(fun))

cntxt$warn(msg, cntxt, loc)

}

}

August 23, 2023 compiler.nw 24

Other issues with calls that do not match their definitions are signaled by notifyBadCall. Ideally
these should be broken down more finely, but that would require some rewriting of the error
signaling in match.call.

⟨notifyBadCall function⟩≡
notifyBadCall <- function(w, cntxt, loc = NULL) {

if (! suppressAll(cntxt))

cntxt$warn(w, cntxt, loc)

}

break or next calls that occur in a context where no loop is visible will most likely result in
runtime errors, and notifyWrongBreakNext is used to signal such cases.

⟨notifyWrongBreakNext function⟩≡
notifyWrongBreakNext <- function(fun, cntxt, loc = NULL) {

if (! suppressAll(cntxt)) {

msg <- paste(fun, "used in wrong context: no loop is visible")

cntxt$warn(msg, cntxt, loc)

}

}

Several issues can arise in assignments. For super-assignments a target variable should be
defined; otherwise there will be a runtime warning.

⟨notifyNoSuperAssignVar function⟩≡
notifyNoSuperAssignVar <- function(symbol, cntxt, loc = NULL) {

if (! suppressAll(cntxt) && ! suppressNoSuperAssignVar(cntxt)) {

msg <- gettextf("no visible binding for ’<<-’ assignment to ’%s’",

as.character(symbol))

cntxt$warn(msg, cntxt, loc)

}

}

If the compiler detects an invalid function in a complex assignment then this is signaled at compile
time; a corresponding error would occur at runtime.

⟨notifyBadAssignFun function⟩≡
notifyBadAssignFun <- function(fun, cntxt, loc = NULL) {

if (! suppressAll(cntxt)) {

msg <- gettext("invalid function in complex assignment")

cntxt$warn(msg, cntxt, loc)

}

}

In switch calls it is an error if a character selector argument is used and there are multiple de-
fault alternatives. The compiler signals a possible problem with notifyMultipleSwitchDefaults

if there are some named cases but more than one unnamed ones.

⟨notifyMultipleSwitchDefaults function⟩≡
notifyMultipleSwitchDefaults <- function(ndflt, cntxt, loc = NULL)

if (! suppressAll(cntxt)) {

msg <- gettext("more than one default provided in switch() call")

cntxt$warn(msg, cntxt, loc)

}

August 23, 2023 compiler.nw 25

⟨notifyNoSwitchcases function⟩≡
notifyNoSwitchcases <- function(cntxt, loc = NULL)

if (! suppressAll(cntxt)) {

msg <- gettext("’switch’ with no alternatives")

cntxt$warn(msg, cntxt, loc)

}

The compiler signals when it encounters that a special syntactic function, such as for, has been
assigned to.

⟨notifyAssignSyntacticFun function⟩≡
notifyAssignSyntacticFun <- function(funs, cntxt, loc = NULL) {

if (! suppressAll(cntxt)) {

msg <- ngettext(length(funs),

"local assignment to syntactic function: ",

"local assignments to syntactic functions: ")

cntxt$warn(paste(msg, paste(funs, collapse = ", ")),

cntxt, loc)

}

}

When the compiler encounters an error during JIT or package compilation, it catches the error
and returns the original uncompiled code letting the AST interpreter handle it. This can happen
due to a compiler bug or when the code being compiled violates certain assumptions made by the
compiler (such as a certain discipline on frame types in the evaluation environment, as checked in
frameTypes). The compiler will notify about catching such errors via notifyCompilerError.

⟨notifyCompilerError function⟩≡
notifyCompilerError <- function(msg)

if (!compilerOptions$suppressAll)

cat(paste(gettext("Error: compilation failed - "), msg, "\n"))

5 Compilation environments

At this point the compiler will essentially use the interpreter to evaluate an expression of the form

if (x > 0) log(x) else 0

since if is a SPECIAL function. To make further improvements the compiler needs to be able to
implement the if expression in terms of conditional and unconditional branch instructions. It
might then also be useful to implement > and log with special virtual machine instructions. To be
able to do this, the compiler needs to know that if, >, and log refer to the standard versions of
these functions in the base package. While this is very likely, it is not guaranteed.

R is a very dynamic language. Functions defined in the base and other packages could be
shadowed at runtime by definitions in loaded user packages or by local definitions within a function.
It is even possible for user code to redefine the functions in the base package, though this is
discouraged by binding locking and would be poor programming practice. Finally, it is possible
for functions called prior to evaluating an expression like the one above to reach into their calling

August 23, 2023 compiler.nw 26

environment and add new definitions of log or if that wound then be used in evaluating this
expression. Again this is not common and generally not a good idea outside of a debugging context.

Ideally the compiler should completely preserve semantics of the language implemented by the
interpreter. While this is possible it would significantly complicate the compiler and the compiled
code, and carry at least some runtime penalty. The approach taken here is therefore to permit the
compiler to inline some functions when they are not visibly shadowed in the compiled code. What
the compiler is permitted to do is determined by the setting of an optimization level. The details
are desctibed in Section 6.

For the compiler to be able to decide whether is can inline a function it needs to be able to
determine whether there are any local variable that might shadow a variable from a base package.
This requires adding environment information to the compilation process.

5.1 Representing compilation environments

When compiling an expression the compiler needs to take into account an evaluation environment,
which would typically be a toplevel environment, along with local variable definitions discovered
during the compilation process. The evaluation environment should not be modified, so the local
variables need to be considered in addition to ones defined in the evaluation environment. If an
expression

{ x <- 1; x + 2 }

is compiled for evaluation in the global environment then existing definitions in the global envi-
ronment as well as the new definition for x need to be taken into account. To address this the
compilation environment is a list of two components, an environment and a list of character vec-
tors. The environment consists of one frame for each level of local variables followed by the top
level evaluation environment. The list of character vectors consist of one element for each frame for
which local variables have been discovered by the compiler. For efficiency the compilation environ-
ment structure also includes a character vector ftype classifying each frame as a local, namespace,
or global frame.

⟨makeCenv function⟩≡
Create a new compiler environment

**** need to explain the structure

makeCenv <- function(env) {

structure(list(extra = list(character(0)),

env = env,

ftypes = frameTypes(env)),

class = "compiler_environment")

}

When an expression is to be compiled in a particular environment a first step is to identify any
local variable definitions and add these to the top level frame.

⟨addCenvVars function⟩≡
Add vars to the top compiler environment frame

addCenvVars <- function(cenv, vars) {

cenv$extra[[1]] <- union(cenv$extra[[1]], vars)

cenv

August 23, 2023 compiler.nw 27

}

When compiling a function a new frame is added to the compilation environment. Typically a
number of local variables are added immediately, so an optional vars argument is provided so this
can be done without an additional call to addCenvVars.

⟨addCenvFrame function⟩≡
Add a new frame to a compiler environment

addCenvFrame <- function(cenv, vars) {

cenv$extra <- c(list(character(0)), cenv$extra)

cenv$env <- new.env(parent = cenv$env)

cenv$ftypes <- c("local", cenv$ftypes)

if (missing(vars))

cenv

else

addCenvVars(cenv, vars)

}

The compilation environment is queried by calling findCenvVar. If a binding for the specified
variable is found then findCenvVar returns a list containing information about the binding. If no
binding is found then NULL is returned.

⟨findCenvVar function⟩≡
Find binding information for a variable (character or name).

If a binding is found, return a list containing components

ftype -- one of "local", "namespace", "global"

value -- current value if available

frame -- frame containing the binding (not useful for "local" variables)

index -- index of the frame (1 for top, 2, for next one, etc.)

Return NULL if no binding is found.

**** drop the index, maybe value, to reduce cost? (query as needed?)

findCenvVar <- function(var, cenv) {

if (typeof(var) == "symbol")

var <- as.character(var)

extra <- cenv$extra

env <- cenv$env

frame <- NULL

⟨search extra entries and environment frames⟩
⟨search the remaining environment frames if necessary⟩
⟨create the findCenvVar result⟩

}

The initial search for a matching binding proceeds down each frame for which there is also an
entry in extra, searching the extra entry before the environment frame.

⟨search extra entries and environment frames⟩≡
for (i in seq_along(cenv$extra)) {

if (var %in% extra[[i]] || exists(var, env, inherits = FALSE)) {

frame <- env

break

}

else

August 23, 2023 compiler.nw 28

env <- parent.env(env)

}

If frame is still NULL after the initial search then the remaining environment frames from the
evaluation environment for which there are no corresponding entries in extra are searched.

⟨search the remaining environment frames if necessary⟩≡
if (is.null(frame)) {

empty <- emptyenv()

while (! identical(env, empty)) {

i <- i + 1

if (exists(var, env, inherits = FALSE)) {

frame <- env

break

}

else

env <- parent.env(env)

}

}

If a binding frame is found then the result consists of a list containing the frame, the frame
type, the value if available, and the frame index. The value is not looked up for ... variables. A
promise to compute the value is stored in an environment in the result. This avoids computing the
value in some cases where doing so may fail or produce unwanted side effects.

⟨create the findCenvVar result⟩≡
if (! is.null(frame)) {

if (exists(var, frame, inherits = FALSE) && var != "...") {

value <- new.env(parent = emptyenv())

delayedAssign("value", get(var, frame, inherits = FALSE),

assign.env = value)

}

else

value <- NULL

list(frame = frame, ftype = cenv$ftypes[i], value = value, index = i)

}

else

NULL

Useful functions for querying the environment associated with a compilation context are findVar,
findLocVar, and findFunDef. The function findVar returns TRUE is a binding for the specified
variable is visible and FALSE otherwise.

⟨findVar function⟩≡
findVar <- function(var, cntxt) {

cenv <- cntxt$env

info <- findCenvVar(var, cenv)

! is.null(info)

}

findLocVar returns TRUE only if a local binding is found.

⟨findLocVar function⟩≡

August 23, 2023 compiler.nw 29

test whether a local version of a variable might exist

findLocVar <- function(var, cntxt) {

cenv <- cntxt$env

info <- findCenvVar(var, cenv)

! is.null(info) && info$ftype == "local"

}

findFunDef returns a function definition if one is available for the specified name and NULL other-
wise.

⟨findFunDef function⟩≡
**** should this check for local functions as well?

findFunDef <- function(fun, cntxt) {

cenv <- cntxt$env

info <- findCenvVar(fun, cenv)

if (! is.null(info$value) && is.function(info$value$value))

info$value$value

else

NULL

}

5.2 Identifying possible local variables

For the compiler to be able to know that it can optimize a reference to a particular global function or
variable it needs to be able to determine that that variable will not be shadowed by a local definition
at runtime. R semantics do not allow certain identification of local variables. If a function body
consist of the two lines

if (x) y <- 1

y

then whether the variable y in the second line is local or global depends on the value of x. Lazy
evaluation of arguments also means what whether and when an assignment in a function argument
occurs can be uncertain.

The approach taken by the compiler is to conservatively identify all variables that might be
created within an expression, such as a function body, and consider those to be potentially local
variables that inhibit optimizations. This ignores runtime creation of new variables, but as already
mentioned that is generally not good programming practice.

Variables are created by the assignment operators <- and = and by for loops. In addition, calls
to assign and delayedAssign with a literal character name argument are considered to create
potential local variables if the environment argument is missing, which means the assignment is in
the current environment.

A simple approach for identifying all local variables created within an expression is given by

⟨findlocals0 ⟩≡
findLocals0 <- function(e, cntxt) {

if (typeof(e) == "language") {

if (typeof(e[[1]]) %in% c("symbol", "character"))

switch(as.character(e[[1]]),

August 23, 2023 compiler.nw 30

⟨findLocals0 switch clauses⟩
findLocalsList0(e[-1], cntxt))

else findLocalsList0(e, cntxt)

}

else character(0)

}

findLocalsList0 <- function(elist, cntxt)

unique(unlist(lapply(elist, findLocals0, cntxt)))

For assignment expressions the assignment variable is added to any variables found in the value
expression.

⟨findLocals0 switch clauses⟩≡
"=" =,

"<-" = unique(c(getAssignedVar(e, cntxt),

findLocalsList0(e[-1], cntxt))),

The assigned variable is determined by getAssignedVar:

⟨getAssignedVar function⟩≡
getAssignedVar <- function(e, cntxt) {

v <- e[[2]]

if (missing(v))

cntxt$stop(gettextf("bad assignment: %s", pasteExpr(e)), cntxt)

else if (typeof(v) %in% c("symbol", "character"))

as.character(v)

else {

while (typeof(v) == "language") {

if (length(v) < 2)

cntxt$stop(gettextf("bad assignment: %s", pasteExpr(e)), cntxt)

v <- v[[2]]

if (missing(v))

cntxt$stop(gettextf("bad assignment: %s", pasteExpr(e)), cntxt)

}

if (typeof(v) != "symbol")

cntxt$stop(gettextf("bad assignment: %s", pasteExpr(e)), cntxt)

as.character(v)

}

}

For for loops the loop variable is added to any variables found in the sequence and body
expressions.

⟨findLocals0 switch clauses⟩+≡
"for" = unique(c(as.character(e[2]),

findLocalsList0(e[-2], cntxt))),

The variable in assign and delayedAssign expressions is considered local if it is an explicit
character string and there is no environment argument.

⟨findLocals0 switch clauses⟩+≡
"delayedAssign" =,

"assign" = if (length(e) == 3 &&

August 23, 2023 compiler.nw 31

is.character(e[[2]]) &&

length(e[[2]]) == 1)

c(e[[2]], findLocals0(e[[3]], cntxt))

else findLocalsList0(e[1], cntxt),

Variables defined within local functions created by function expressions do not shadow globals
within the containing expression and therefore function expressions do not contribute any new
local variables. Similarly, local calls without an environment argument create a new environment
for evaluating their expression and do not add new local variables. If an environment argument
is present then this might be the current environment and so assignments in the expression are
considered to create possible local variables. Finally, ~, expression, and quote do not evaluate
their arguments and so do not contribute new local variables.

⟨findLocals0 switch clauses⟩+≡
"function" = character(0),

"~" = character(0),

"local" = if (length(e) == 2) character(0)

else findLocalsList0(e[-1], cntxt),

"expression" =,

"quote" = character(0),

Other functions, for example Quote from the methods package, are also known to not evaluate
their arguments but these do not often contain assignment expressions and so ignoring them only
slightly increases the degree of conservatism in this approach.

A problem with this simple implementation is that it assumes that all of the functions named
in the switch correspond to the bindings in the base package. This is reasonable for the ones that
are syntactically special, but not for expression, local and quote. These might be shadowed
by local definitions in a surrounding function. To allow for this we can add an optional variable
shadowed for providing a character vector of names of variables with shadowing local definitions.

The more sophisticated implementaiton is also slightly optimized to avoid recursive calls.
findLocals1 now, instead of searching through the full transitive closure of language objects,
only searches from the first, but returns what remains to be searched. The variables found are
stored into an environment, which avoids some extra calls and assures that each variable is listed
at most once.

⟨findLocals1 function⟩≡
addVar <- function(v, vars) assign(v, 1, envir = vars)

findLocals1 <- function(e, shadowed = character(0), cntxt, vars) {

if (typeof(e) == "language") {

if (typeof(e[[1]]) %in% c("symbol", "character")) {

v <- as.character(e[[1]])

switch(v,

⟨findLocals1 switch clauses⟩
e[-1])

}

else e

}

else NULL

}

August 23, 2023 compiler.nw 32

⟨findLocalsList1 function⟩≡
findLocalsList1 <- function(elist, shadowed, cntxt) {

todo <- elist

vars <- new.env()

while(length(todo) > 0) {

newtodo <- list()

lapply(todo, function(e)

lapply(findLocals1(e, shadowed, cntxt, vars),

function(x)

if (typeof(x) == "language")

newtodo <<- append(newtodo, x))

)

todo <- newtodo

}

ls(vars, all.names=T)

}

The handling of assignment operators, for loops, function and ~ expressions is analogous to the
approach in findLocals0.

⟨findLocals1 switch clauses⟩≡
"=" =,

"<-" = { addVar(getAssignedVar(e, cntxt), vars); e[-1] },

"for" = { addVar(as.character(e[2]), vars); e[-2] },

"delayedAssign" =,

"assign" = if (length(e) == 3 &&

is.character(e[[2]]) &&

length(e[[2]]) == 1) {

addVar(e[[2]], vars); list(e[[3]])

}

else e[1],

"function" = character(0),

"~" = character(0),

The rules for ignoring assignments in local, expression, and quote calls are only applied if there
are no shadowing definitions.

⟨findLocals1 switch clauses⟩+≡
"local" = if (! v %in% shadowed && length(e) == 2)

NULL

else e[-1],

"expression" =,

"quote" = if (! v %in% shadowed)

NULL

else e[-1],

The assignment functions could also be shadowed, but this is not very common, and assuming that
they are not errs in the conservative direction.

August 23, 2023 compiler.nw 33

This approach can handle the case where quote or one of the other non-syntactic functions
is shadowed by an outer definition but does not handle assignments that occur in the expression
itself. For example, in

function (f, x, y) {

local <- f

local(x <- y)

x

}

the reference to x in the third line has to be considered potentially local. To deal with this multiple
passes are needed. The first pass assumes that expression, local or quote might be shadowed by
local assignments. If no assignments to some of them are visible, then a second pass can be used in
which they are assumed not to be shadowed. This can be iterated to convergence. It is also useful
to check before returning whether any of the syntactically special variables has been assigned to.
If so, so a warning is issued.

⟨findLocalsList function⟩≡
findLocalsList <- function(elist, cntxt) {

initialShadowedFuns <- c("expression", "local", "quote")

shadowed <- Filter(function(n) ! isBaseVar(n, cntxt), initialShadowedFuns)

specialSyntaxFuns <- c("~", "<-", "=", "for", "function")

sf <- initialShadowedFuns

nsf <- length(sf)

repeat {

vals <- findLocalsList1(elist, sf, cntxt)

redefined <- sf %in% vals

last.nsf <- nsf

sf <- unique(c(shadowed, sf[redefined]))

nsf <- length(sf)

**** need to fix the termination condition used in codetools!!!

if (last.nsf == nsf) {

rdsf <- vals %in% specialSyntaxFuns

if (any(rdsf))

cannot get location info (source reference) here

notifyAssignSyntacticFun(vals[rdsf], cntxt)

return(vals)

}

}

}

⟨findLocals function⟩≡
findLocals <- function(e, cntxt)

findLocalsList(list(e), cntxt)

Standard definitions for all functions in initialShadowedFuns are in the base package and
isBaseVar checks the compilation environment to see whether the specified variable’s definition
comes from that package either via a namespace or the global environment.

⟨isBaseVar function⟩≡

August 23, 2023 compiler.nw 34

isBaseVar <- function(var, cntxt) {

info <- getInlineInfo(var, cntxt)

(! is.null(info) &&

(identical(info$frame, .BaseNamespaceEnv) ||

identical(info$frame, baseenv())))

}

The use of getInlineInfo, defined in Section 6, means that the setting of the optimize compiler
option will influence whether a variable should be considered to be from the base package or not.
It might also be useful to warn about assignments to other functions.

When a function expression is compiled, its body and default arguments need to be compiled
using a compilation environment that contains a new frame for the function that contains variables
for the arguments and any assignments in the body and the default expressions. funEnv creates
such an environment.

⟨funEnv function⟩≡
augment compiler environment with function args and locals

funEnv <- function(forms, body, cntxt) {

cntxt$env <- addCenvFrame(cntxt$env, names(forms))

locals <- findLocalsList(c(forms, body), cntxt)

addCenvVars(cntxt$env, locals)

}

6 The inlining mechanism

To allow for inline coding of calls to some functions the cmpCall function calls the tryInline

function. The tryInline function will either generate code for the call and return TRUE, or it will
decline to do so and return FALSE, in which case the standard code generation process for a function
call is used.

The function tryInline calls getInlineInfo to determine whether inlining is permissible given
the current environment and optimization settings. There are four possible optimization levels:

Level 0: No inlining.

Level 1: Functions in the base packages found through a namespace that are not shadowed by
function arguments or visible local assignments may be inlined.

Level 2: In addition to the inlining permitted by Level 1, functions that are syntactically special
or are considered core language functions and are found via the global environment at compile
time may be inlined. Other functions in the base packages found via the global environment
may be inlined with a guard that ensures at runtime that the inlined function has not been
masked; if it has, then the call in handled by the AST interpreter.

Level 3: Any function in the base packages found via the global environment may be inlined.

August 23, 2023 compiler.nw 35

The syntactically special and core language functions are

⟨languageFuns definition⟩≡
languageFuns <- c("^", "~", "<", "<<-", "<=", "<-", "=", "==", ">", ">=",

"|", "||", "-", ":", "!", "!=", "/", "(", "[", "[<-", "[[",

"[[<-", "{", "@", "$", "$<-", "*", "&", "&&", "%/%", "%*%",

"%%", "+",

"::", ":::", "@<-",

"break", "for", "function", "if", "next", "repeat", "while",

"local", "return", "switch")

The default optimization level is Level 2. Future versions of the compiler may allow some functions
to be explicitly excluded from inlining and may provide a means for allowing user-defined functions
to be declared eligible for inlining.

If inlining is permissible then the result returned by getInlineInfo contains the packages
associated with the specified variable in the current environment. The variable name and package
are then looked up in a data base of handlers. If a handler is found then the handler is called. The
handler can either generate code and return TRUE or decline to and return FALSE. If inlining is not
possible then getInlineInfo returns NULL and tryInline returns FALSE.

⟨tryInline function⟩≡
tryInline <- function(e, cb, cntxt) {

name <- as.character(e[[1]])

info <- getInlineInfo(name, cntxt, guardOK = TRUE)

if (is.null(info))

FALSE

else {

h <- getInlineHandler(name, info$package)

if (! is.null(h)) {

if (info$guard) {

⟨inline with a guard instruction⟩
}

else h(e, cb, cntxt)

}

else FALSE

}

}

If a guard instruction is needed then the instruction is emitted that will check validity of the inlined
function at runtime; if the inlined code is not valid the guard instruction will evaluate the call in
the AST interpreter and jump over the inlined code. The inlined code is handled as a non-tail-call;
if the call is in tail position, then a return instruction is emitted.

⟨inline with a guard instruction⟩≡
tailcall <- cntxt$tailcall

if (tailcall) cntxt$tailcall <- FALSE

expridx <- cb$putconst(e)

endlabel <- cb$makelabel()

cb$putcode(BASEGUARD.OP, expridx, endlabel)

if (! h(e, cb, cntxt))

cmpCall(e, cb, cntxt, inlineOK = FALSE)

August 23, 2023 compiler.nw 36

cb$putlabel(endlabel)

if (tailcall) cb$putcode(RETURN.OP)

TRUE

The function getInlineInfo implements the optimization rules described at the beginning of
this section.

⟨getInlineInfo function⟩≡
noInlineSymbols <- c("standardGeneric")

getInlineInfo <- function(name, cntxt, guardOK = FALSE) {

optimize <- cntxt$optimize

if (optimize > 0 && ! (name %in% noInlineSymbols)) {

info <- findCenvVar(name, cntxt$env)

if (is.null(info))

NULL

else {

ftype <- info$ftype

frame <- info$frame

if (ftype == "namespace") {

⟨fixup for a namespace import frame⟩
info$package <- nsName(findHomeNS(name, frame, cntxt))

info$guard <- FALSE

info

}

else if (ftype == "global" &&

(optimize >= 3 ||

(optimize >= 2 && name %in% languageFuns))) {

info$package <- packFrameName(frame)

info$guard <- FALSE

info

}

else if (guardOK && ftype == "global" &&

packFrameName(frame) == "base") {

info$package <- packFrameName(frame)

info$guard <- TRUE

info

}

else NULL

}

}

else NULL

}

The code for finding the home namespace from a namespace import frame is needed here to deal
with the fact that a namespace may not be registered when this function is called, so the mechanism
used in findHomeNS to locate the namespace to which an import frame belongs may not work.

⟨fixup for a namespace import frame⟩≡
if (! isNamespace(frame)) {

should be the import frame of the current topenv

August 23, 2023 compiler.nw 37

top <- topenv(cntxtenvenv)

if (! isNamespace(top) ||

! identical(frame, parent.env(top)))

cntxt$stop(gettext("bad namespace import frame"))

frame <- top

}

For this version of the compiler the inline handler data base is managed as an environment in
which handlers are entered and looked up by name. For now it is assumed that a name can only
appear associated with one package and an error is signaled if an attempt is made to redefine a
handler for a given name for a different package than an existing definition. This can easily be
changed if it should prove too restrictive.

⟨inline handler implementation⟩≡
inlineHandlers <- new.env(hash = TRUE, parent = emptyenv())

setInlineHandler <- function(name, h, package = "base") {

if (exists(name, inlineHandlers, inherits = FALSE)) {

entry <- get(name, inlineHandlers)

if (entry$package != package) {

fmt <- "handler for ’%s’ is already defined for another package"

stop(gettextf(fmt, name), domain = NA)

}

}

entry <- list(handler = h, package = package)

assign(name, entry, inlineHandlers)

}

getInlineHandler <- function(name, package = "base") {

if (exists(name, inlineHandlers, inherits = FALSE)) {

hinfo <- get(name, inlineHandlers)

if (hinfo$package == package)

hinfo$handler

else NULL

}

else NULL

}

haveInlineHandler <- function(name, package = "base") {

if (exists(name, inlineHandlers, inherits = FALSE)) {

hinfo <- get(name, inlineHandlers)

package == hinfo$package

}

else FALSE

}

August 23, 2023 compiler.nw 38

7 Default inlining rules for primitives

This section defines generic handlers for BUILTIN and SPECIAL functions. These are installed
programmatically for all BUILTIN and SPECIAL functions. The following sections present more
specialized handlers for a range of functions that are installed in place of the default ones.

⟨install default inlining handlers⟩≡
local({

⟨install default SPECIAL handlers⟩
⟨install default BUILTIN handlers⟩

})

The handler installations are wrapped in a local call to reduce environment pollution.

7.1 BUILTIN functions

Calls to functions known at compile time to be of type BUILTIN can be handled more efficiently.
The interpreter evaluates all arguments for BUILTIN functions before calling the function, so the
compiler can evaluate the arguments in line without the need for creating promises.

A generic handler for inlining a call to a BUILIN function is provided by cmpBuiltin. For now,
the handler returns FALSE if the call contains missing arguments, which are currently not allowed
in BUILTIN functions, or ... arguments. The handling of ... arguments should be improved. For
BUILTIN functions the function to call is pushed on the stack with the GETBUILTIN instruction.
The internal argument allows cmpBuiltin to be used with .Internal functions of type BUILTIN
as well; this is used in the handler for .Internal defined in Section 8.4.

⟨cmpBuiltin function⟩≡
cmpBuiltin <- function(e, cb, cntxt, internal = FALSE) {

fun <- e[[1]]

args <- e[-1]

names <- names(args)

if (dots.or.missing(args))

FALSE

else {

ci <- cb$putconst(fun)

if (internal)

cb$putcode(GETINTLBUILTIN.OP, ci)

else

cb$putcode(GETBUILTIN.OP, ci)

cmpBuiltinArgs(args, names, cb, cntxt)

ci <- cb$putconst(e)

cb$putcode(CALLBUILTIN.OP, ci)

if (cntxt$tailcall) cb$putcode(RETURN.OP)

TRUE

}

}

Argument evaluation code is generated by cmpBuiltinArgs. In the context of BUILTIN functions
missing arguments are currently not allowed. But to allow cmpBuiltinArgs to be used in other

August 23, 2023 compiler.nw 39

contexts missing arguments are supported if the optional argument missingOK is TRUE.

⟨cmpBuiltinArgs function⟩≡
cmpBuiltinArgs <- function(args, names, cb, cntxt, missingOK = FALSE) {

ncntxt <- make.argContext(cntxt)

for (i in seq_along(args)) {

a <- args[[i]]

n <- names[[i]]

⟨compile missing BUILTIN argument⟩
**** handle ... here ??

⟨signal an error for promise or bytecode argument⟩
⟨compile a general BUILTIN argument⟩

}

}

Missing argument code is generated by

⟨compile missing BUILTIN argument⟩≡
if (missing(a)) {

if (missingOK) {

cb$putcode(DOMISSING.OP)

cmpTag(n, cb)

}

else

cntxt$stop(gettext("missing arguments are not allowed"), cntxt,

loc = cb$savecurloc())

}

The error case should not be reached as cmpBuiltinArgs should not be called with missing
arguments unless missingOK is TRUE.

The code for general arguments handles symbols separately to allow for the case when missing
values are acceptable. Constant folding is tried first since the constant folding code in cmp is not
reached in this case. Constant folding is needed here since it doesn’t go through cmp.

⟨compile a general BUILTIN argument⟩≡
else {

if (is.symbol(a)) {

ca <- constantFold(a, cntxt, loc = cb$savecurloc())

if (is.null(ca)) {

cmpSym(a, cb, ncntxt, missingOK)

cb$putcode(PUSHARG.OP)

}

else

cmpConstArg(ca$value, cb, cntxt)

}

else if (typeof(a) == "language") {

cmp(a, cb, ncntxt)

cb$putcode(PUSHARG.OP)

}

else

cmpConstArg(a, cb, cntxt)

August 23, 2023 compiler.nw 40

cmpTag(n, cb)

}

Handling the constant case separately is not really necessary but makes the code a bit cleaner.
Default handlers for all BUILTIN functions in the base package are installed programmatically

by

⟨install default BUILTIN handlers⟩≡
for (b in basevars[types == "builtin"])

if (! haveInlineHandler(b, "base"))

setInlineHandler(b, cmpBuiltin)

7.2 SPECIAL functions

Calls to functions known to be of type SPECIAL can also be compiled somewhat more efficiently by
the cmpSpecial function:

⟨cmpSpecial function⟩≡
cmpSpecial <- function(e, cb, cntxt) {

fun <- e[[1]]

if (typeof(fun) == "character")

fun <- as.name(fun)

ci <- cb$putconst(e)

cb$putcode(CALLSPECIAL.OP, ci)

if (cntxt$tailcall)

cb$putcode(RETURN.OP)

TRUE

}

This handler is installed for all SPECIAL functions in the base package with

⟨install default SPECIAL handlers⟩≡
basevars <- ls(’package:base’, all.names = TRUE)

types <- sapply(basevars, function(n) typeof(get(n)))

for (s in basevars[types == "special"])

if (! haveInlineHandler(s, "base"))

setInlineHandler(s, cmpSpecial)

8 Some simple inlining handlers

This section presents inlining handlers for a number of core primitive functions. With these addi-
tions the compiler will begin to show some performance improvements.

8.1 The left brace sequencing function

The inlining handler for { needs to consider that a pair of braces { and } can surround zero, one,
or more expressions. A set of empty braces is equivalent to the constant NULL. If there is more
than one expression, then all the values of all expressions other than the last are ignored. These
expressions are compiled in a no-value context (currently equivalent to a non-tail-call context), and

August 23, 2023 compiler.nw 41

then code is generated to pop their values off the stack. The final expression is then compiled
according to the context in which the braces expression occurs.

⟨inlining handler for left brace function⟩≡
setInlineHandler("{", function(e, cb, cntxt) {

n <- length(e)

if (n == 1)

cmp(NULL, cb, cntxt)

else {

sloc <- cb$savecurloc()

bsrefs <- attr(e, "srcref")

if (n > 2) {

ncntxt <- make.noValueContext(cntxt)

for (i in 2 : (n - 1)) {

subexp <- e[[i]]

cb$setcurloc(subexp, getBlockSrcref(bsrefs, i))

cmp(subexp, cb, ncntxt, setloc = FALSE)

cb$putcode(POP.OP)

}

}

subexp <- e[[n]]

cb$setcurloc(subexp, getBlockSrcref(bsrefs, n))

cmp(subexp, cb, cntxt, setloc = FALSE)

cb$restorecurloc(sloc)

}

TRUE

})

8.2 The closure constructor function

Compiling of function expressions is somewhat similar to compiling promises for function argu-
ments. The body of a function is compiled into a separate byte code object and stored in the
constant pool together with the formals. Then code is emitted for creating a closure from the
formals, compiled body, and the current environment. For now, only the body of functions is
compiled, not the default argument expressions. This should be changed in future versions of the
compiler.

⟨inlining handler for function⟩≡
setInlineHandler("function", function(e, cb, cntxt) {

forms <- e[[2]]

body <- e[[3]]

sref <- if (length(e) > 3) e[[4]] else NULL

ncntxt <- make.functionContext(cntxt, forms, body)

if (mayCallBrowser(body, cntxt))

return(FALSE)

cbody <- genCode(body, ncntxt, loc = cb$savecurloc())

ci <- cb$putconst(list(forms, cbody, sref))

cb$putcode(MAKECLOSURE.OP, ci)

if (cntxt$tailcall) cb$putcode(RETURN.OP)

August 23, 2023 compiler.nw 42

TRUE

})

8.3 The left parenthesis function

In R an expression of the form (expr) is interpreted as a call to the function (with the argument
expr. Parentheses are used to guide the parser, and for the most part (expr) is equivalent to expr.
There are two exceptions:

� Since (is a function an expression of the form (...) is legal whereas just ... may not be,
depending on the context. A runtime error will occur unless the ... argument expands to
exactly one non-missing argument.

� In tail position a call to (sets the visible flag to TRUE. So at top level for example the result
of an assignment expression x <- 1 would not be printed, but the result of (x
<- 1 would be printed. It is not clear that this feature really needs to be preserved within

functions — it could be made a feature of the read-eval-print loop — but for now it is a
feature of the interpreter that the compiler should preserve.

The inlining handler for (calls handles a ... argument case or a case with fewer or more than
one argument as a generic BUILTIN call. If the expression is in tail position then the argument is
compiled in a non-tail-call context, a VISIBLE instruction is emitted to set the visible flag to TRUE,
and a RETURN instruction is emitted. If the expression is in non-tail position, then code for the
argument is generated in the current context.

⟨inlining handler for (⟩≡
setInlineHandler("(", function(e, cb, cntxt) {

if (anyDots(e))

cmpBuiltin(e, cb, cntxt) ## punt

else if (length(e) != 2) {

notifyWrongArgCount("(", cntxt, loc = cb$savecurloc())

cmpBuiltin(e, cb, cntxt) ## punt

}

else if (cntxt$tailcall) {

ncntxt <- make.nonTailCallContext(cntxt)

cmp(e[[2]], cb, ncntxt)

cb$putcode(VISIBLE.OP)

cb$putcode(RETURN.OP)

TRUE

}

else {

cmp(e[[2]], cb, cntxt)

TRUE

}

})

August 23, 2023 compiler.nw 43

8.4 The .Internal function

One frequently used SPECIAL function is .Internal. When the .Internal function called is of
type BUILTIN it is useful to compile the call as for a BUILTIN function. For .Internal func-
tions of type SPECIAL there is less of an advantage, and so the .Internal expression is compiled
with cmpSpecial. It may be useful to introduce a GETINTLSPECIAL instruction and handle these
analogously to .Internal functions of type BUILTIN. The handler is assigned to the variable
cmpDotInternalCall to allow its use in inlining.

⟨inlining handler for .Internal⟩≡
cmpDotInternalCall <- function(e, cb, cntxt) {

ee <- e[[2]]

sym <- ee[[1]]

if (.Internal(is.builtin.internal(sym)))

cmpBuiltin(ee, cb, cntxt, internal = TRUE)

else

cmpSpecial(e, cb, cntxt)

}

setInlineHandler(".Internal", cmpDotInternalCall)

8.5 The local function

While local is currently implemented as a closure, because of its importance relative to local
variable determination it is a good idea to inline it as well. The current semantics are such that
the interpreter treats

local(expr)

essentially the same as

(function() expr)()

There may be some minor differences related to what the sys.xyz functions return. An instance of
this was found in the RefManageR package which used parent.frame(2) to access the environment
from which local was invoked. In this case, the use of parent.frame was unnecessary (and local
was not needed either); the maintainer accepted a patch fixing this. The code pattern in the
package was

MakeBibLaTeX <- function(docstyle = "text") local({

docstyle <- get("docstyle", parent.frame(2))

sortKeys <- function() 42

environment()

})

and the suggested fix was

MakeBibLaTeX <- function(docstyle = "text") {

sortKeys <- function() 42

environment()

}

August 23, 2023 compiler.nw 44

So the compiler handles one argument local calls by making this conversion and compiling the
result.

⟨inlining handler for local function⟩≡
setInlineHandler("local", function(e, cb, cntxt) {

if (length(e) == 2) {

ee <- as.call(list(as.call(list(

as.name("function"), NULL, e[[2]], NULL))))

cmp(ee, cb, cntxt)

TRUE

}

else FALSE

})

The interpreter couls, and probably should, be modified to handle this case of a local call expression
in the same way as the compiler.

8.6 The return function

A call to return causes a return from the associated function call, as determined by the lexical
context in which the return expression is defined. If the return is captured in a closure and is
executed within a callee then this requires a longjmp. A longjmp is also needed if the return call
occurs within a loop that is compiled to a separate code object to support a setjmp for break or
next calls. The RETURNJMP instruction is provided for this purpose. In all other cases an ordinary
RETURN instruction can be used. return calls with ..., which may be legal if ... contains only one
argument, or missing arguments or more than one argument, which will produce runtime errors,
are compiled as generic SPECIAL calls.

⟨inlining handler for return function⟩≡
setInlineHandler("return", function(e, cb, cntxt) {

if (dots.or.missing(e) || length(e) > 2)

cmpSpecial(e, cb, cntxt) ## **** punt for now

else {

if (length(e) == 1)

val <- NULL

else

val <- e[[2]]

ncntxt <- make.nonTailCallContext(cntxt)

cmp(val, cb, ncntxt)

if (cntxt$needRETURNJMP)

cb$putcode(RETURNJMP.OP)

else

cb$putcode(RETURN.OP)

}

TRUE

})

August 23, 2023 compiler.nw 45

9 Branching and labels

The code generated so far is straight line code without conditional or unconditional branches. To
implement conditional evaluation constructs and loops we need to add conditional and uncon-
ditional branching instructions. These make use of the labels mechanism provided by the code
buffer.

9.1 Inlining handler for if expressions

Using the labels mechanism we can implement an inlining handler for if expressions. The first
step extracts the components of the expression. An if expression with no else clause will invisibly
return NULL if the test is FALSE, but the visible flag setting only matters if the if expression is in
tail position. So the case of no else clause will be handled slightly differently in tail and non-tail
contexts.

⟨if inline handler body⟩≡
test <- e[[2]]

then.expr <- e[[3]]

if (length(e) == 4) {

have.else.expr <- TRUE

else.expr <- e[[4]]

}

else have.else.expr <- FALSE

To deal with use of if (FALSE) ... for commenting out code and of if (is.R()) ... else

... for handling both R and Splus code it is useful to attempt to constant-fold the test. If this
succeeds and produces either TRUE or FALSE then only the appropriate branch is compiled and the
handler returns TRUE.

⟨if inline handler body⟩+≡
ct <- constantFold(test, cntxt, loc = cb$savecurloc())

if (! is.null(ct) && is.logical(ct$value) && length(ct$value) == 1

&& ! is.na(ct$value)) {

if (ct$value)

cmp(then.expr, cb, cntxt)

else if (have.else.expr)

cmp(else.expr, cb, cntxt)

else if (cntxt$tailcall) {

cb$putcode(LDNULL.OP)

cb$putcode(INVISIBLE.OP)

cb$putcode(RETURN.OP)

}

else cb$putcode(LDNULL.OP)

return(TRUE)

}

Next, the test code is compiled, a label for the start of code for the else clause is generated, and
a conditional branch instruction that branches to the else label if the test fails is emitted. This
is followed by code for the consequent (test is TRUE) expression. The BRIFNOT takes two operand,

August 23, 2023 compiler.nw 46

the constant pool index for the call and the label to branch to if the value on the stack is FALSE.
The call is used if an error needs to be signaled for an improper test result on the stack.

⟨if inline handler body⟩+≡
ncntxt <- make.nonTailCallContext(cntxt)

cmp(test, cb, ncntxt)

callidx <- cb$putconst(e)

else.label <- cb$makelabel()

cb$putcode(BRIFNOT.OP, callidx, else.label)

cmp(then.expr, cb, cntxt)

The code for the alternative else expression will be placed after the code for the consequent
expression. If the if expression appears in tail position then the code for the consequent will end
with a RETURN instruction and there is no need to jump over the following instructions for the else
expression. All that is needed is to record the value of the label for the else clause and to emit
the code for the else clause. If no else clause was provided then that code arranges for the value
NULL to be returned invisibly.

⟨if inline handler body⟩+≡
if (cntxt$tailcall) {

cb$putlabel(else.label)

if (have.else.expr)

cmp(else.expr, cb, cntxt)

else {

cb$putcode(LDNULL.OP)

cb$putcode(INVISIBLE.OP)

cb$putcode(RETURN.OP)

}

}

On the other hand, if the if expression is not in tail position then a label for the next instruction
after the else expression code is needed, and the consequent expression code needs to end with a
GOTO instruction to that label. If the expression does not include an else clause then the alternative
code just places NULL on the stack.

⟨if inline handler body⟩+≡
else {

end.label <- cb$makelabel()

cb$putcode(GOTO.OP, end.label)

cb$putlabel(else.label)

if (have.else.expr)

cmp(else.expr, cb, cntxt)

else

cb$putcode(LDNULL.OP)

cb$putlabel(end.label)

}

The resulting handler definition is

⟨inlining handler for if⟩≡
setInlineHandler("if", function(e, cb, cntxt) {

**** test for missing, ...

August 23, 2023 compiler.nw 47

⟨if inline handler body⟩
TRUE

})

9.2 Inlining handlers for && and || expressions

In many languages it is possible to convert the expression a && b to an equivalent if expression
of the form

if (a) { if (b) TRUE else FALSE }

Similarly, in these languages the expression a || b is equivalent to

if (a) TRUE else if (b) TRUE else FALSE

Compilation of these expressions is thus reduced to compiling if expressions.
Unfortunately, because of the possibility of NA values, these equivalencies do not hold in R. In

R, NA || TRUE should evaluate to TRUE and NA && FALSE to FALSE. This is handled by introducing
special instructions AND1ST and AND2ND for && expressions and OR1ST and OR2ND for ||.

The code generator for && expressions generates code to evaluate the first argument and then
emits an AND1ST instruction. The AND1ST instruction has one operand, the label for the instruction
following code for the second argument. If the value on the stack produced by the first argument
is FALSE then AND1ST jumps to the label and skips evaluation of the second argument; the value
of the expression is FALSE. The code for the second argument is generated next, followed by an
AND2ND instruction. This removes the values of the two arguments to && from the stack and pushes
the value of the expression onto the stack. A RETURN instruction is generated if the && expression
was in tail position.

⟨inlining handler for &&⟩≡
setInlineHandler("&&", function(e, cb, cntxt) {

**** arity check??

ncntxt <- make.argContext(cntxt)

callidx <- cb$putconst(e)

label <- cb$makelabel()

cmp(e[[2]], cb, ncntxt)

cb$putcode(AND1ST.OP, callidx, label)

cmp(e[[3]], cb, ncntxt)

cb$putcode(AND2ND.OP, callidx)

cb$putlabel(label)

if (cntxt$tailcall)

cb$putcode(RETURN.OP)

TRUE

})

The code generator for || expressions is analogous.

⟨inlining handler for ||⟩≡
setInlineHandler("||", function(e, cb, cntxt) {

**** arity check??

ncntxt <- make.argContext(cntxt)

August 23, 2023 compiler.nw 48

callidx <- cb$putconst(e)

label <- cb$makelabel()

cmp(e[[2]], cb, ncntxt)

cb$putcode(OR1ST.OP, callidx, label)

cmp(e[[3]], cb, ncntxt)

cb$putcode(OR2ND.OP, callidx)

cb$putlabel(label)

if (cntxt$tailcall)

cb$putcode(RETURN.OP)

TRUE

})

10 Loops

In principle code for repeat and while loops can be generated using just GOTO and BRIFNOT

instructions. for loops require a little more to manage the loop variable and termination. A
complication arises due to the need to support break and next calls in the context of lazy evaluation
of arguments: if a break or next expression appears in a function argument that is compiled as
a closure, then the expression may be evaluated deep inside a series of nested function calls and
require a non-local jump. A similar issue arises for calls to the return function as described in
Section 8.6.

To support these non-local jumps the interpreter sets up a setjmp context for each loop, and
break and next use longjmp to transfer control. In general, compiled loops need to use a similar
approach. For now, this is implemented by the STARTLOOPCNTXT and ENDLOOPCNTXT instructions.
The STARTLOOPCNTXT instructions takes two operands, a flag indicating whether the loop is a for

loop or not, and a label which points after the loop. The interpreter jumps to this label in case
of a non-local jump implementing break. The loop body should end with a call to ENDLOOPCNTXT,
which takes one operand indicating whether this is a for loop or not. ENDLOOPCNTXT terminates
the context established by STARTLOOPCNTXT and pops it off the context stack. The context data is
stored on the byte code interpreter stack; in the case of a for loop some loop state information is
duplicated on the stack by STARTLOOPCNTXT and removed again by ENDLOOPCNTXT. The byte code
intepreter stores the pc in a slot in the RCNTXT structure so it is available after a longjmp triggered
by a break for retrieving the label on the ENDLOOPCNTXT instruction. An alternative would be to
add separate STARTFORLOOPCNTXT and ENDFORLOOPCNTXT instructions. Then the pc or the label
could be stored on the note stack.

At least with some assumptions it is often possible to implement break and next calls as simple
GOTOs. If all break and next calls in a loop can be implemented using GOTOs then the loop context
is not necessary. The mechanism to enable the simpler code generation is presented in Section 10.4.

The current engine implementation executes one setjmp per STARTLOOPCNTXT and uses nested
calls to bceval to run the code. Eventually we should be able to reduce the need for nested bceval

calls and to arrange that setjmp buffers be reused for multiple purposes.

August 23, 2023 compiler.nw 49

10.1 repeat loops

The simplest loop in R is the repeat loop. The code generator is defined as

⟨inlining handler for repeat loops⟩≡
setInlineHandler("repeat", function(e, cb, cntxt) {

body <- e[[2]]

⟨generate context and body for repeat loop⟩
⟨generate repeat and while loop wrap-up code⟩
TRUE

})

If a loop context is not needed then the code for the loop body is just written to the original
code buffer. The else clause in the code chunk below generates the code for the general case. The
need for using RETURNJMP for return calls is indicated by setting the needRETURNJMP flag in the
compiler context to TRUE.

⟨generate context and body for repeat loop⟩≡
if (checkSkipLoopCntxt(body, cntxt))

cmpRepeatBody(body, cb, cntxt)

else {

cntxt$needRETURNJMP <- TRUE ## **** do this a better way

ljmpend.label <- cb$makelabel()

cb$putcode(STARTLOOPCNTXT.OP, 0, ljmpend.label)

cmpRepeatBody(body, cb, cntxt)

cb$putlabel(ljmpend.label)

cb$putcode(ENDLOOPCNTXT.OP, 0)

}

The loop body uses two labels. loop.label marks the top of the loop and is the target of
the GOTO instruction at the end of the body. This label is also used by next expressions that do
not require longjmps. The end.loop label is placed after the GOTO instruction and is used by
break expressions that do not require longjmps. The body is compiled in a context that makes
these labels available, and the value left on the stack is removed by a POP instruction. The POP

instruction is followed by a GOTO instruction that returns to the top of the loop.

⟨cmpRepeatBody function⟩≡
cmpRepeatBody <- function(body, cb, cntxt) {

loop.label <- cb$makelabel()

end.label <- cb$makelabel()

cb$putlabel(loop.label)

lcntxt <- make.loopContext(cntxt, loop.label, end.label)

cmp(body, cb, lcntxt)

cb$putcode(POP.OP)

cb$putcode(GOTO.OP, loop.label)

cb$putlabel(end.label)

}

The wrap-up code for the loop places the NULL value of the loop expression on the stack and
emits INVISIBLE and RETURN instructions to return the value if the loop appears in tail position.

⟨generate repeat and while loop wrap-up code⟩≡

August 23, 2023 compiler.nw 50

cb$putcode(LDNULL.OP)

if (cntxt$tailcall) {

cb$putcode(INVISIBLE.OP)

cb$putcode(RETURN.OP)

}

The break and next code generators emit GOTO instructions if the loop information is available
and the gotoOK compiler context flag is TRUE. A warning is issued if no loop is visible in the
compilation context.

⟨inlining handlers for next and break⟩≡
setInlineHandler("break", function(e, cb, cntxt) {

if (is.null(cntxt$loop)) {

notifyWrongBreakNext("break", cntxt, loc = cb$savecurloc())

cmpSpecial(e, cb, cntxt)

}

else if (cntxt$loop$gotoOK) {

cb$putcode(GOTO.OP, cntxt$loop$end)

TRUE

}

else cmpSpecial(e, cb, cntxt)

})

setInlineHandler("next", function(e, cb, cntxt) {

if (is.null(cntxt$loop)) {

notifyWrongBreakNext("next", cntxt, loc = cb$savecurloc())

cmpSpecial(e, cb, cntxt)

}

else if (cntxt$loop$gotoOK) {

cb$putcode(GOTO.OP, cntxt$loop$loop)

TRUE

}

else cmpSpecial(e, cb, cntxt)

})

10.2 while loops

The structure for the while loop code generator is similar to the structure of the repeat code
generator:

⟨inlining handler for while loops⟩≡
setInlineHandler("while", function(e, cb, cntxt) {

cond <- e[[2]]

body <- e[[3]]

⟨generate context and body for while loop⟩
⟨generate repeat and while loop wrap-up code⟩
TRUE

})

August 23, 2023 compiler.nw 51

The context and body generation chunk is similar as well. The expression stored in the code object
isn’t quite right as what is compiled includes both the test and the body, but this code object
should not be externally visible.

⟨generate context and body for while loop⟩≡
if (checkSkipLoopCntxt(cond, cntxt) && checkSkipLoopCntxt(body, cntxt))

cmpWhileBody(e, cond, body, cb, cntxt)

else {

cntxt$needRETURNJMP <- TRUE ## **** do this a better way

ljmpend.label <- cb$makelabel()

cb$putcode(STARTLOOPCNTXT.OP, 0, ljmpend.label)

cmpWhileBody(e, cond, body, cb, cntxt)

cb$putlabel(ljmpend.label)

cb$putcode(ENDLOOPCNTXT.OP, 0)

}

Again two labels are used, one at the top of the loop and one at the end. The loop.label is
followed by code for the test. Next is a BRIFNOT instruction that jumps to the end of the loop if
the value left on the stack by the test is FALSE. This is followed by the code for the body, a POP

instruction, and a GOTO instruction that jumps to the top of the loop. Finally, the end.label is
recorded.

⟨cmpWhileBody function⟩≡
cmpWhileBody <- function(call, cond, body, cb, cntxt) {

loop.label <- cb$makelabel()

end.label <- cb$makelabel()

cb$putlabel(loop.label)

lcntxt <- make.loopContext(cntxt, loop.label, end.label)

cmp(cond, cb, lcntxt)

callidx <- cb$putconst(call)

cb$putcode(BRIFNOT.OP, callidx, end.label)

cmp(body, cb, lcntxt)

cb$putcode(POP.OP)

cb$putcode(GOTO.OP, loop.label)

cb$putlabel(end.label)

}

cmpWhileBody

10.3 for loops

Code generation for for loops is a little more complex because of the need to manage the loop
variable value and stepping through the sequence. Code for for loops uses three additional in-
structions. STARTFOR takes the constant pool index of the call, the constant pool index of the loop
variable symbol, and the label of the start instruction as operands. It finds the sequence to iterate
over on the stack and places information for accessing the loop variable binding and stepping the
sequence on the stack before jumping to the label. The call is used if an error for an improper for
loop sequence needs to be signaled. The STEPFOR instruction takes a label for the top of the loop
as its operand. If there are more elements in the sequence then STEPFOR advances the position

August 23, 2023 compiler.nw 52

within the sequence, sets the loop variable, and jumps to the top of the loop. Otherwise it drops
through to the next instruction. Finally ENDFOR cleans up the loop information stored on the stack
by STARTFOR and leaves the NULL loop value on the stack.

The inlining handler for a for loop starts out by checking the loop variable and issuing a
warning if it is not a symbol. The code generator then declines to inline the loop expression. This
means it is compiled as a generic function call and will signal an error at runtime. An alternative
would be do generate code to signal the error as is done with improper use of ... arguments. After
checking the symbol, code to compute the sequence to iterate over is generated. From then on the
structure is similar to the structure of the other loop code generators.

⟨inlining handler for for loops⟩≡
setInlineHandler("for", function(e, cb, cntxt) {

sym <- e[[2]]

seq <- e[[3]]

body <- e[[4]]

if (! is.name(sym)) {

not worth warning here since the parser should not allow this

return(FALSE)

}

ncntxt <- make.nonTailCallContext(cntxt)

cmp(seq, cb, ncntxt)

ci <- cb$putconst(sym)

callidx <- cb$putconst(e)

⟨generate context and body for for loop⟩
⟨generate for loop wrap-up code⟩
TRUE

})

When a setjmp context is needed, the label given to STARTFOR is just the following instruction,
which is a STARTLOOPCNTXT instruction. If the context is not needed then the label for the STARTFOR
instruction will be the loop’s STEPFOR instruction; if the context is needed then the first instruction
in the code object for the body will be a GOTO instruction that jumps to the STEPFOR instruction.
This design means the stepping and the jump can be handled by one instruction instead of two, a
step instruction and a GOTO.

⟨generate context and body for for loop⟩≡
if (checkSkipLoopCntxt(body, cntxt))

cmpForBody(callidx, body, ci, cb, cntxt)

else {

cntxt$needRETURNJMP <- TRUE ## **** do this a better way

ctxt.label <- cb$makelabel()

cb$putcode(STARTFOR.OP, callidx, ci, ctxt.label)

cb$putlabel(ctxt.label)

ljmpend.label <- cb$makelabel()

cb$putcode(STARTLOOPCNTXT.OP, 1, ljmpend.label)

cmpForBody(NULL, body, NULL, cb, cntxt)

cb$putlabel(ljmpend.label)

cb$putcode(ENDLOOPCNTXT.OP, 1)

}

August 23, 2023 compiler.nw 53

The body code generator takes an additional argument, the index of the loop label. For the
case where a setjmp context is needed this argument is NULL, and the first instruction generated is
a GOTO targeting the STEPFOR instruction. This is labeled by the loop.label label, since this will
also be the target used by a next expression. An additional label, body.label is needed for the
top of the loop, which is used by STEPFOR if there are more loop elements to process. When the ci
argument is not NULL code is being generated for the case without a setjmp context, and the first
instruction is the STARTFOR instruction which initializes the loop and jumps to loop.label at the
STEPLOOP instruction.

⟨cmpForBody function⟩≡
cmpForBody <- function(callidx, body, ci, cb, cntxt) {

body.label <- cb$makelabel()

loop.label <- cb$makelabel()

end.label <- cb$makelabel()

if (is.null(ci))

cb$putcode(GOTO.OP, loop.label)

else

cb$putcode(STARTFOR.OP, callidx, ci, loop.label)

cb$putlabel(body.label)

lcntxt <- make.loopContext(cntxt, loop.label, end.label)

cmp(body, cb, lcntxt)

cb$putcode(POP.OP)

cb$putlabel(loop.label)

cb$putcode(STEPFOR.OP, body.label)

cb$putlabel(end.label)

}

The wrap-up code issues an ENDFOR instruction instead of the LDNULL instruction used for
repeat and while loops.

⟨generate for loop wrap-up code⟩≡
cb$putcode(ENDFOR.OP)

if (cntxt$tailcall) {

cb$putcode(INVISIBLE.OP)

cb$putcode(RETURN.OP)

}

10.4 Avoiding runtime loop contexts

When all uses of break or next in a loop occur only in top level contexts then all break and
next calls can be implemented with simple GOTO instructions and a setjmp context for the loop
is not needed. Top level contexts are the loop body itself and argument expressions in top level
calls to if, {, and (. The switch functions will eventually be included as well. The function
checkSkipLoopContxt recursively traverses an expression tree to determine whether all relevant
uses of break or next are safe to compile as GOTO instructions. The search returns FALSE if a
break or next call occurs in an unsafe place. The search stops and returns TRUE for any expression
that cannot contain relevant break or next calls. These stop expressions are calls to the three
loop functions and to function. Calls to functions like quote that are known not to evaluate

August 23, 2023 compiler.nw 54

their arguments could also be included among the stop functions but this doesn’t seem particularly
worth while at this time. Loops that include a call to eval (or evalq, source) are compiled with
context to support a programming pattern present e.g. in package Rmpi: a server application is
implemented using an infinite loop, which evaluates de-serialized code received from the client; the
server shuts down when it receives a serialized version of break.

The recursive checking function is defined as

⟨checkSkipLoopCntxt function⟩≡
checkSkipLoopCntxt <- function(e, cntxt, breakOK = TRUE) {

if (typeof(e) == "language") {

fun <- e[[1]]

if (typeof(fun) == "symbol") {

fname <- as.character(fun)

if (! breakOK && fname %in% c("break", "next"))

FALSE

else if (isLoopStopFun(fname, cntxt))

TRUE

else if (isLoopTopFun(fname, cntxt))

checkSkipLoopCntxtList(e[-1], cntxt, breakOK)

else if (fname %in% c("eval", "evalq", "source"))

FALSE

else

checkSkipLoopCntxtList(e[-1], cntxt, FALSE)

}

else

checkSkipLoopCntxtList(e, cntxt, FALSE)

}

else TRUE

}

A version that operates on a list of expressions is given by

⟨checkSkipLoopCntxtList function⟩≡
checkSkipLoopCntxtList <- function(elist, cntxt, breakOK) {

for (a in as.list(elist))

if (! missing(a) && ! checkSkipLoopCntxt(a, cntxt, breakOK))

return(FALSE)

TRUE

}

The stop functions are identified by isLoopStopFun. This uses isBaseVar to ensure that
interpreting a reference to a stop function name as referring to the corresponding function in the
base package is permitted by the current optimization settings.

⟨isLoopStopFun function⟩≡
isLoopStopFun <- function(fname, cntxt)

(fname %in% c("function", "for", "while", "repeat") &&

isBaseVar(fname, cntxt))

The top level functions are identified by isLoopTopFun. Again the compilation context is
consulted to ensure that candidate can be assumed to be from the base package.

August 23, 2023 compiler.nw 55

⟨isLoopTopFun function⟩≡
isLoopTopFun <- function(fname, cntxt)

(fname %in% c("(", "{", "if") &&

isBaseVar(fname, cntxt))

The checkSkipLoopCntxt function does not check whether calls to break or next are indeed
calls to the base functions. Given the special syntactic nature of break and next this is very
unlikely to cause problems, but if it does it will result in some safe loops being considered unsafe
and so errs in the conservative direction.

11 More inlining

11.1 Basic arithmetic expressions

The addition and subtraction functions + and - are BUILTIN functions that can both be called with
one or two arguments. Multiplication and division functions * and / require two arguments. Since
code generation for all one arguments cases and all two argument cases is very similar these are
abstracted out into functions cmpPrim1 and cmpPrim2.

The code generators for addition and subtraction are given by

⟨inline handlers for + and -⟩≡
setInlineHandler("+", function(e, cb, cntxt) {

if (length(e) == 3)

cmpPrim2(e, cb, ADD.OP, cntxt)

else

cmpPrim1(e, cb, UPLUS.OP, cntxt)

})

setInlineHandler("-", function(e, cb, cntxt) {

if (length(e) == 3)

cmpPrim2(e, cb, SUB.OP, cntxt)

else

cmpPrim1(e, cb, UMINUS.OP, cntxt)

})

The code generators for multiplication and division are

⟨inline handlers for * and /⟩≡
setInlineHandler("*", function(e, cb, cntxt)

cmpPrim2(e, cb, MUL.OP, cntxt))

setInlineHandler("/", function(e, cb, cntxt)

cmpPrim2(e, cb, DIV.OP, cntxt))

Code for instructions corresponding to calls to a BUILTIN function with one argument are
generated by cmpPrim1. The generator produces code for a generic BUILTIN call using cmpBuiltin

if if there are any missing or ... arguments or if the number of arguments is not equal to one.
Otherwise code for the argument is generated in a non-tail-call context, and the instruction provided

August 23, 2023 compiler.nw 56

as the op argument is emitted followed by a RETURN instruction for an expression in tail position.
The op instructions take the call as operand for use in error message and for internal dispatching.

⟨cmpPrim1 function⟩≡
cmpPrim1 <- function(e, cb, op, cntxt) {

if (dots.or.missing(e[-1]))

cmpBuiltin(e, cb, cntxt)

else if (length(e) != 2) {

notifyWrongArgCount(e[[1]], cntxt, loc = cb$savecurloc())

cmpBuiltin(e, cb, cntxt)

}

else {

ncntxt <- make.nonTailCallContext(cntxt)

cmp(e[[2]], cb, ncntxt);

ci <- cb$putconst(e)

cb$putcode(op, ci)

if (cntxt$tailcall)

cb$putcode(RETURN.OP)

TRUE

}

}

Code generation for the two argument case is similar, except that the second argument has to
be compiled with an argument context since the stack already has the value of the first argument
on it and that would need to be popped before a jump.

⟨cmpPrim2 function⟩≡
cmpPrim2 <- function(e, cb, op, cntxt) {

if (dots.or.missing(e[-1]))

cmpBuiltin(e, cb, cntxt)

else if (length(e) != 3) {

notifyWrongArgCount(e[[1]], cntxt, loc = cb$savecurloc())

cmpBuiltin(e, cb, cntxt)

}

else {

needInc <- checkNeedsInc(e[[3]], cntxt)

ncntxt <- make.nonTailCallContext(cntxt)

cmp(e[[2]], cb, ncntxt);

if (needInc) cb$putcode(INCLNK.OP)

ncntxt <- make.argContext(cntxt)

cmp(e[[3]], cb, ncntxt)

if (needInc) cb$putcode(DECLNK.OP)

ci <- cb$putconst(e)

cb$putcode(op, ci)

if (cntxt$tailcall)

cb$putcode(RETURN.OP)

TRUE

}

}

The INCLNK and DECLNK instructions are used to protect evaluated arguents on the stack from

August 23, 2023 compiler.nw 57

modifications during evaluation of subsequent arguments. These instructions can be omitted if
the subsequent argument evaluations cannot modify values on the stack. With changes to stack
protection this is mechanism is no longer needed, so the check just returns FALSE.

⟨checkNeedsInc function⟩≡
checkNeedsInc <- function(e, cntxt)

return(FALSE)

⟨old checkNeedsInc function⟩≡
checkNeedsInc <- function(e, cntxt) {

type <- typeof(e)

if (type %in% c("language", "bytecode", "promise"))

TRUE

else FALSE ## symbols and constants

}

Calls to the power function ^ and the functions exp and sqrt can be compiled using cmpPrim1

and cmpPrim2 as well:

⟨inline handlers for ^, exp, and sqrt⟩≡
setInlineHandler("^", function(e, cb, cntxt)

cmpPrim2(e, cb, EXPT.OP, cntxt))

setInlineHandler("exp", function(e, cb, cntxt)

cmpPrim1(e, cb, EXP.OP, cntxt))

setInlineHandler("sqrt", function(e, cb, cntxt)

cmpPrim1(e, cb, SQRT.OP, cntxt))

The log function is currently defined as a SPECIAL. The default inline handler action is therefore
to use cmpSpecial. For calls with one unnamed argument the LOG.OP instruction is used. For two
unnamed arguments LOGBASE.OP is used. It might be useful to introduce instructions for log2 and
log10 as well but this has not been done yet.

⟨inline handler for log⟩≡
setInlineHandler("log", function(e, cb, cntxt) {

if (dots.or.missing(e) || ! is.null(names(e)) ||

length(e) < 2 || length(e) > 3)

cmpSpecial(e, cb, cntxt)

else {

ci <- cb$putconst(e)

ncntxt <- make.nonTailCallContext(cntxt)

cmp(e[[2]], cb, ncntxt);

if (length(e) == 2)

cb$putcode(LOG.OP, ci)

else {

needInc <- checkNeedsInc(e[[3]], cntxt)

if (needInc) cb$putcode(INCLNK.OP)

ncntxt <- make.argContext(cntxt)

cmp(e[[3]], cb, ncntxt)

if (needInc) cb$putcode(DECLNK.OP)

August 23, 2023 compiler.nw 58

cb$putcode(LOGBASE.OP, ci)

}

if (cntxt$tailcall)

cb$putcode(RETURN.OP)

TRUE

}

})

A number of one argument math functions are handled by the interpreter using the function
math1 in arithmetic.c. The MATH1.OP instruction handles these for compuled code. The instruc-
tion takes two operands, an index for the call expression in the constant table, and an index for the
function to be called in a table of function pointers. The table of names in the byte code compiler
has to match the function pointer array in the byte code interpreter. It would have been possible
to use the same indices as the offset values used in names.c, but keeping this consistent seemed
more challenging.

⟨list of one argument math functions⟩≡
Keep the order consistent with the order in the internal byte code

interpreter!

math1funs <- c("floor", "ceiling", "sign",

"expm1", "log1p",

"cos", "sin", "tan", "acos", "asin", "atan",

"cosh", "sinh", "tanh", "acosh", "asinh", "atanh",

"lgamma", "gamma", "digamma", "trigamma",

"cospi", "sinpi", "tanpi")

The code generation is done by cmpMath1:

⟨cmpMath1 function⟩≡
cmpMath1 <- function(e, cb, cntxt) {

if (dots.or.missing(e[-1]))

cmpBuiltin(e, cb, cntxt)

else if (length(e) != 2) {

notifyWrongArgCount(e[[1]], cntxt, loc = cb$savecurloc())

cmpBuiltin(e, cb, cntxt)

}

else {

name <- as.character(e[[1]])

idx <- match(name, math1funs) - 1

if (is.na(idx))

cntxt$stop(

paste(sQuote(name), "is not a registered math1 function"),

cntxt, loc = cb$savecurloc())

ncntxt <- make.nonTailCallContext(cntxt)

cmp(e[[2]], cb, ncntxt);

ci <- cb$putconst(e)

cb$putcode(MATH1.OP, ci, idx)

if (cntxt$tailcall)

cb$putcode(RETURN.OP)

TRUE

August 23, 2023 compiler.nw 59

}

}

The generators are installed by

⟨inline one argument math functions⟩≡
for (name in math1funs)

setInlineHandler(name, cmpMath1)

11.2 Logical operators

Two argument instructions are provided for the comparison operators and code for them can be
generated using cmpPrim2:

⟨inline handlers for comparison operators⟩≡
setInlineHandler("==", function(e, cb, cntxt)

cmpPrim2(e, cb, EQ.OP, cntxt))

setInlineHandler("!=", function(e, cb, cntxt)

cmpPrim2(e, cb, NE.OP, cntxt))

setInlineHandler("<", function(e, cb, cntxt)

cmpPrim2(e, cb, LT.OP, cntxt))

setInlineHandler("<=", function(e, cb, cntxt)

cmpPrim2(e, cb, LE.OP, cntxt))

setInlineHandler(">=", function(e, cb, cntxt)

cmpPrim2(e, cb, GE.OP, cntxt))

setInlineHandler(">", function(e, cb, cntxt)

cmpPrim2(e, cb, GT.OP, cntxt))

The vectorized & and | functions are handled similarly:

⟨inline handlers for & and |⟩≡
setInlineHandler("&", function(e, cb, cntxt)

cmpPrim2(e, cb, AND.OP, cntxt))

setInlineHandler("|", function(e, cb, cntxt)

cmpPrim2(e, cb, OR.OP, cntxt))

The negation operator ! takes only one argument and code for calls to it are generated using
cmpPrim1:

⟨inline handler for !⟩≡
setInlineHandler("!", function(e, cb, cntxt)

cmpPrim1(e, cb, NOT.OP, cntxt))

11.3 Subsetting and related operations

Current R semantics are such that the subsetting operator [and a number of others may not
evaluate some of their arguments if S3 or S4 methods are available. S-plus has different semantics—

August 23, 2023 compiler.nw 60

there the subsetting operator is guaranteed to evaluate its arguments. For subsetting there are
CRAN packages that use non-standard evaluation of their arguments (igraph is one example), so
this probably can no longer be changed.

The compiler preserve these semantics. To do so subsetting is implemented in terms of two
instructions, STARTSUBSET and DFLTSUBSET. The object being subsetted is evaluated and placed
on the stack. STARTSUBSET takes a constant table index for the expression and a label operand as
operands and examines the object on the stack. If an internal S3 or S4 dispatch succeeds then the
receiver object is removed and the result is placed on the stack and a jump to the label is carried
out. If the dispatch fails then code to evaluate and execute the arguments is executed followed
by a DFLTSUBSET instruction. This pattern is used for several other operations and is abstracted
into the code generation function cmpDispatch. Code for subsetting and other operations is then
generated by

⟨inlining handlers for some dispatching SPECIAL functions⟩≡
**** this is now handled differently; see "Improved subset ..."

setInlineHandler("[", function(e, cb, cntxt)

cmpDispatch(STARTSUBSET.OP, DFLTSUBSET.OP, e, cb, cntxt))

**** c() is now a BUILTIN

setInlineHandler("c", function(e, cb, cntxt)

cmpDispatch(STARTC.OP, DFLTC.OP, e, cb, cntxt, FALSE))

**** this is now handled differently; see "Improved subset ..."

setInlineHandler("[[", function(e, cb, cntxt)

cmpDispatch(STARTSUBSET2.OP, DFLTSUBSET2.OP, e, cb, cntxt))

The cmpDispatch function takes the two opcodes as arguments. It declines to handle cases
with ... arguments in the call or with a missing first argument — these will be handled as calls
to a SPECIAL primitive. For the case handled it generates code for the first argument, followed by
a call to the first start.op instruction. The operands for the start.op are a constant pool index
for the expression and a label for the instruction following the dflt.op instruction that allows
skipping over the default case code. The default case code consists of code to compute and push
the arguments followed by the dflt.op instruction.

⟨cmpDispatch function⟩≡
cmpDispatch <- function(start.op, dflt.op, e, cb, cntxt, missingOK = TRUE) {

if ((missingOK && anyDots(e)) ||

(! missingOK && dots.or.missing(e)) ||

length(e) == 1)

cmpSpecial(e, cb, cntxt) ## punt

else {

ne <- length(e)

oe <- e[[2]]

if (missing(oe))

cmpSpecial(e, cb, cntxt) ## punt

else {

ncntxt <- make.argContext(cntxt)

cmp(oe, cb, ncntxt)

August 23, 2023 compiler.nw 61

ci <- cb$putconst(e)

end.label <- cb$makelabel()

cb$putcode(start.op, ci, end.label)

if (ne > 2)

cmpBuiltinArgs(e[-(1:2)], names(e)[-(1:2)], cb, cntxt,

missingOK)

cb$putcode(dflt.op)

cb$putlabel(end.label)

if (cntxt$tailcall) cb$putcode(RETURN.OP)

TRUE

}

}

}

The $ function is simpler to implement since its selector argument is never evaluated. The
DOLLAR instruction takes the object to extract a component from off the stack and takes a constant
index argument specifying the selection symbol.

⟨inlining handler for $⟩≡
setInlineHandler("$", function(e, cb, cntxt) {

if (anyDots(e) || length(e) != 3)

cmpSpecial(e, cb, cntxt)

else {

sym <- if (is.character(e[[3]]) && length(e[[3]]) == 1

&& e[[3]] != "")

as.name(e[[3]]) else e[[3]]

if (is.name(sym)) {

ncntxt <- make.argContext(cntxt)

cmp(e[[2]], cb, ncntxt)

ci <- cb$putconst(e)

csi <- cb$putconst(sym)

cb$putcode(DOLLAR.OP, ci, csi)

if (cntxt$tailcall) cb$putcode(RETURN.OP)

TRUE

}

else cmpSpecial(e, cb, cntxt)

}

})

11.4 Inlining simple .Internal functions

A number of functions are defined as simple wrappers around .Internal calls. One example is
dnorm, which is currently defined as

dnorm <- function (x, mean = 0, sd = 1, log = FALSE)

.Internal(dnorm(x, mean, sd, log))

The implementation of .Internal functions can be of type BUILTIN or SPECIAL. The dnorm
implementation is of type BUILTIN, so its arguments are guaranteed to be evaluated in order, and
this particular function doe not depend on the position of its calls in the evaluation stack. As a
result, a call of the form

August 23, 2023 compiler.nw 62

dnorm(2, 1)

can be replaced by the call

.Internal(dnorm(2, 1, 1, FALSE))

This can result in considerable speed-up since it avoids the overhead of the call to the wrapper
function.

The substitution of a call to the wrapper with a .Internal call can be done by a function
inlineSimpleInternalCall defined as

⟨inlineSimpleInternalCall function⟩≡
inlineSimpleInternalCall <- function(e, def) {

if (! dots.or.missing(e) && is.simpleInternal(def)) {

forms <- formals(def)

b <- body(def)

if (typeof(b) == "language" && length(b) == 2 && b[[1]] == "{")

b <- b[[2]]

icall <- b[[2]]

defaults <- forms ## **** could strip missings but OK not to?

cenv <- c(as.list(match.call(def, e, F))[-1], defaults)

subst <- function(n)

if (typeof(n) == "symbol") cenv[[as.character(n)]] else n

args <- lapply(as.list(icall[-1]), subst)

as.call(list(quote(.Internal), as.call(c(icall[[1]], args))))

}

else NULL

}

Code for an inlined simple internal function can then be generated by cmpSimpleInternal:

⟨cmpSimpleInternal function⟩≡
cmpSimpleInternal <- function(e, cb, cntxt) {

if (anyDots(e))

FALSE

else {

name <- as.character(e[[1]])

def <- findFunDef(name, cntxt)

if (! checkCall(def, e, NULL)) return(FALSE)

call <- inlineSimpleInternalCall(e, def)

if (is.null(call))

FALSE

else

cmpDotInternalCall(call, cb, cntxt)

}

}

⟨inline safe simple .Internal functions from base⟩≡
safeBaseInternals <- c("atan2", "besselY", "beta", "choose",

"drop", "inherits", "is.vector", "lbeta", "lchoose",

"nchar", "polyroot", "typeof", "vector", "which.max",

August 23, 2023 compiler.nw 63

"which.min", "is.loaded", "identical",

"match", "rep.int", "rep_len")

for (i in safeBaseInternals) setInlineHandler(i, cmpSimpleInternal)

⟨inline safe simple .Internal functions from stats⟩≡
safeStatsInternals <- c("dbinom", "dcauchy", "dgeom", "dhyper", "dlnorm",

"dlogis", "dnorm", "dpois", "dunif", "dweibull",

"fft", "mvfft", "pbinom", "pcauchy",

"pgeom", "phyper", "plnorm", "plogis", "pnorm",

"ppois", "punif", "pweibull", "qbinom", "qcauchy",

"qgeom", "qhyper", "qlnorm", "qlogis", "qnorm",

"qpois", "qunif", "qweibull", "rbinom", "rcauchy",

"rgeom", "rhyper", "rlnorm", "rlogis", "rnorm",

"rpois", "rsignrank", "runif", "rweibull",

"rwilcox", "ptukey", "qtukey")

for (i in safeStatsInternals) setInlineHandler(i, cmpSimpleInternal, "stats")

It is possible to automate the process of identifying functions with the simple wrapper form and
with .Internal implementations of type BUILTIN, and the function simpleInternals produces a
list of such candidates for a given package on the search path. But determining whether such a
candidate can be safely inlined needs to be done manually. Most can, but some, such as sys.call,
cannot since they depend on their position on the call stack (removing the wrapper call that the
implementation expects would change the result). Nevertheless, simpleInternals is useful for
providing a list of candidates to screen. The is.simpleInternal function can be used in test code
to check that the assumption made in the compiler is valid. The implementation is

⟨simpleInternals function⟩≡
simpleInternals <- function(pos = "package:base") {

names <- ls(pos = pos, all.names = TRUE)

if (length(names) == 0)

character(0)

else {

fn <- function(n)

is.simpleInternal(get(n, pos = pos))

names[sapply(names, fn)]

}

}

⟨is.simpleInternal function⟩≡
is.simpleInternal <- function(def) {

if (typeof(def) == "closure" && simpleFormals(def)) {

b <- body(def)

if (typeof(b) == "language" && length(b) == 2 && b[[1]] == "{")

b <- b[[2]]

if (typeof(b) == "language" &&

typeof(b[[1]]) == "symbol" &&

b[[1]] == ".Internal") {

August 23, 2023 compiler.nw 64

icall <- b[[2]]

ifun <- icall[[1]]

typeof(ifun) == "symbol" &&

.Internal(is.builtin.internal(as.name(ifun))) &&

simpleArgs(icall, names(formals(def)))

}

else FALSE

}

else FALSE

}

⟨simpleFormals function⟩≡
simpleFormals <- function(def) {

forms <- formals(def)

if ("..." %in% names(forms))

return(FALSE)

for (d in as.list(forms)) {

if (! missing(d)) {

**** check constant folding

if (typeof(d) %in% c("symbol", "language", "promise", "bytecode"))

return(FALSE)

}

}

TRUE

}

⟨simpleArgs function⟩≡
simpleArgs <- function(icall, fnames) {

for (a in as.list(icall[-1])) {

if (missing(a))

return(FALSE)

else if (typeof(a) == "symbol") {

if (! (as.character(a) %in% fnames))

return(FALSE)

}

else if (typeof(a) %in% c("language", "promise", "bytecode"))

return(FALSE)

}

TRUE

}

11.5 Inlining is.xyz functions

Most of the is.xyz functions in base are simple BUILTINs that do not do internal dispatch. They
have simple instructions defined for them and are compiled in a common way. cmpIs abstract out
the common compilation process.

⟨cmpIs function⟩≡

August 23, 2023 compiler.nw 65

cmpIs <- function(op, e, cb, cntxt) {

if (anyDots(e) || length(e) != 2)

cmpBuiltin(e, cb, cntxt)

else {

**** check that the function is a builtin somewhere??

s<-make.argContext(cntxt)

cmp(e[[2]], cb, s)

cb$putcode(op)

if (cntxt$tailcall) cb$putcode(RETURN.OP)

TRUE

}

}

Inlining handlers are then defined by

⟨inlining handlers for is.xyz functions⟩≡
setInlineHandler("is.character", function(e, cb, cntxt)

cmpIs(ISCHARACTER.OP, e, cb, cntxt))

setInlineHandler("is.complex", function(e, cb, cntxt)

cmpIs(ISCOMPLEX.OP, e, cb, cntxt))

setInlineHandler("is.double", function(e, cb, cntxt)

cmpIs(ISDOUBLE.OP, e, cb, cntxt))

setInlineHandler("is.integer", function(e, cb, cntxt)

cmpIs(ISINTEGER.OP, e, cb, cntxt))

setInlineHandler("is.logical", function(e, cb, cntxt)

cmpIs(ISLOGICAL.OP, e, cb, cntxt))

setInlineHandler("is.name", function(e, cb, cntxt)

cmpIs(ISSYMBOL.OP, e, cb, cntxt))

setInlineHandler("is.null", function(e, cb, cntxt)

cmpIs(ISNULL.OP, e, cb, cntxt))

setInlineHandler("is.object", function(e, cb, cntxt)

cmpIs(ISOBJECT.OP, e, cb, cntxt))

setInlineHandler("is.symbol", function(e, cb, cntxt)

cmpIs(ISSYMBOL.OP, e, cb, cntxt))

At present is.numeric, is.matrix, and is.array do internal dispatching so we just handle
them as ordinary BUILTINs. It might be worth defining virtual machine instructions for them as
well.

11.6 Inline handler for calling C functions

The .Call interface is now the preferred interface for calling C functions and is also used in base
packages like stat. The DOTCALL.OP instruction allows these calls to be made without allocating a
list of arguments—the arguments are accumulated on the stack. For now only 16 or fewer arguments
are handled; more arguments, and cases with named arguments, are handled by the standard .Call

BUILTIN.

⟨inline handler for .Call⟩≡
setInlineHandler(".Call", function(e, cb, cntxt) {

nargsmax <- 16 ## should match DOTCALL_MAX in eval.c

August 23, 2023 compiler.nw 66

if (dots.or.missing(e[-1]) || ! is.null(names(e)) ||

length(e) < 2 || length(e) > nargsmax + 2)

cmpBuiltin(e, cb, cntxt) ## punt

else {

ncntxt <- make.nonTailCallContext(cntxt)

cmp(e[[2]], cb, ncntxt);

nargs <- length(e) - 2

if (nargs > 0) {

ncntxt <- make.argContext(cntxt)

for (a in as.list(e[-(1:2)]))

cmp(a, cb, ncntxt);

}

ci <- cb$putconst(e)

cb$putcode(DOTCALL.OP, ci, nargs)

if (cntxt$tailcall)

cb$putcode(RETURN.OP)

TRUE

}

})

11.7 Inline handlers for generating integer sequences

The colon operator and the BUILTIN functions seq along and seq len generate sequences (the
sequence might not be integers if long vectors are involved or the colon operator is given no-integer
arguments). The COLON.OP, SEQALONG.OP, and SEQLEN.OP instructions implement these operations
in byte code. This allows an implementation in which the result stored on the stack is not a fully
realized sequence but only a recipe that the for loop, for example, can use to run the loop without
generating the sequence. This is optionally implemented in the byte code interpreter. It would also
be possible to allow the compact sequence representation to be stored in variables, etc., but this
would require more extensive changes.

⟨inline handlers for integer sequences⟩≡
setInlineHandler(":", function(e, cb, cntxt)

cmpPrim2(e, cb, COLON.OP, cntxt))

setInlineHandler("seq_along", function(e, cb, cntxt)

cmpPrim1(e, cb, SEQALONG.OP, cntxt))

setInlineHandler("seq_len", function(e, cb, cntxt)

cmpPrim1(e, cb, SEQLEN.OP, cntxt))

11.8 Inlining handlers for controlling warnings

The inlining handlers in this section do not actually affect code generation. Their purpose is to
suppress warnings.

Compiling calls to the :: and ::: functions without special handling would generate undefined
variable warnings for the arguments. This is avoided by converting the arguments from symbols to

August 23, 2023 compiler.nw 67

strings, which these functions would do anyway at runtime, and then compiling the modified calls.
The common process is handled by cmpMultiColon.

⟨cmpMultiColon function⟩≡
cmpMultiColon <- function(e, cb, cntxt) {

if (! dots.or.missing(e) && length(e) == 3) {

goodType <- function(a)

typeof(a) == "symbol" ||

(typeof(a) == "character" && length(a) == 1)

fun <- e[[1]]

x <- e[[2]]

y <- e[[3]]

if (goodType(x) && goodType(y)) {

args <- list(as.character(x), as.character(y))

cmpCallSymFun(fun, args, e, cb, cntxt)

TRUE

}

else FALSE

}

else FALSE

}

Code generators are then registered by

⟨inlining handlers for :: and :::⟩≡
setInlineHandler("::", cmpMultiColon)

setInlineHandler(":::", cmpMultiColon)

Calls to with will often generate spurious undefined variable warning for variables appearing in
the expression argument. A crude approach is to compile the entire call with undefined variable
warnings suppressed.

⟨inlining handler for with⟩≡
setInlineHandler("with", function(e, cb, cntxt) {

cntxt$suppressUndefined <- TRUE

cmpCallSymFun(e[[1]], e[-1], e, cb, cntxt)

TRUE

})

A similar issue arises for require, where an unquoted argument is often used.

⟨inlining handler for require⟩≡
setInlineHandler("require", function(e, cb, cntxt) {

cntxt$suppressUndefined <- TRUE

cmpCallSymFun(e[[1]], e[-1], e, cb, cntxt)

TRUE

})

12 The switch function

The switch function has somewhat awkward semantics that vary depending on whether the value
of the first argument is a character string or is numeric. For a string all or all but one of the

August 23, 2023 compiler.nw 68

alternatives must be named, and empty case arguments are allowed and result in falling through to
the next non-empty case. In the numeric case selecting an empty case produces an error. If there
is more than one alternative case and no cases are named then a character selector argument will
produce an error, so one can assume that a numeric switch is intended. But a switch with named
arguments can be used with a numeric selector, so it is not in general possible to determine the
intended type of the switch call from the structure of the call alone. The compiled code therefore
has to allow for both possibilities.

The inlining handler goes through a number of steps collecting and processing information
computed from the call and finally emits code for the non-empty alternatives. If the switch

expression appears in tail position then each alternative will end in a RETURN instruction. If the
call is not in tail position then each alternative will end with a GOTO than jumps to a label placed
after the code for the final alternative.

⟨inline handler for switch⟩≡
setInlineHandler("switch", function(e, cb, cntxt) {

if (length(e) < 2 || anyDots(e))

cmpSpecial(e, cb, cntxt)

else {

**** check name on EXPR, if any, partially matches EXPR?

⟨extract the switch expression components⟩

⟨collect information on named alternatives⟩

⟨create the labels⟩

⟨create the map from names to labels for a character switch⟩

⟨emit code for the EXPR argument⟩

⟨emit the switch instruction⟩

⟨emit error code for empty alternative in numerical switch⟩

⟨emit code for the default case⟩

⟨emit code for non-empty alternatives⟩

if (! cntxt$tailcall)

cb$putlabel(endLabel)

}

TRUE

})

The first step in processing the switch expression is to extract the selector expression expr and
the case expressions, to identify which, if any, of the cases are empty, and to extract the names of
the cases as nm. A warning is issued if there are no cases. If there is only one case and that case
is not named then setting nm = "" allows this situation to be processed by code used when names
are present.

August 23, 2023 compiler.nw 69

⟨extract the switch expression components⟩≡
expr <- e[[2]]

cases <-e[-c(1, 2)]

if (is.null(cases))

notifyNoSwitchcases(cntxt, loc = cb$savecurloc())

miss <- missingArgs(cases)

nm <- names(cases)

allow for corner cases like switch(x, 1) which always

returns 1 if x is a character scalar.

if (is.null(nm) && length(cases) == 1)

nm <- ""

The next step in the case where some cases are named is to check for a default expression. If
there is more than one expression then the switch is compiled by cmpSpecial. This avoids having
to reproduce the runtime error that would be generated if the switch is called with a character
selector.

⟨collect information on named alternatives⟩≡
collect information on named alternatives and check for

multiple default cases.

if (! is.null(nm)) {

haveNames <- TRUE

ndflt <- sum(nm == "")

if (ndflt > 1) {

notifyMultipleSwitchDefaults(ndflt, cntxt, loc = cb$savecurloc())

**** punt back to interpreted version for now to get

**** runtime error message for multiple defaults

cmpSpecial(e, cb, cntxt)

return(TRUE)

}

if (ndflt > 0)

haveCharDflt <- TRUE

else

haveCharDflt <- FALSE

}

else {

haveNames <- FALSE

haveCharDflt <- FALSE

}

Next the labels are generated. missLabel will be the label for code that signals an error if
a numerical selector expression chooses a case with an empty argument. The label dfltLabel
will be for code that invisibly procures the value NULL, which is the default case for a numerical
selector argument and also for a character selector when no unnamed default case is provided. All
non-empty cases are given their own labels, and endLabel is generated if it will be needed as the
GOTO target for a switch expression that is not in tail position.

August 23, 2023 compiler.nw 70

⟨create the labels⟩≡
create the labels

if (any(miss))

missLabel <- cb$makelabel()

dfltLabel <- cb$makelabel()

lab <- function(m)

if (m) missLabel

else cb$makelabel()

labels <- c(lapply(miss, lab), list(dfltLabel))

if (! cntxt$tailcall)

endLabel <- cb$makelabel()

When there are named cases a map from the case names to the corresponding code labels is
constructed next. If no unnamed default was provided one is added that uses the dfltLabel.

⟨create the map from names to labels for a character switch⟩≡
create the map from names to labels for a character switch

if (haveNames) {

unm <- unique(nm[nm != ""])

if (haveCharDflt)

unm <- c(unm, "")

nlabels <- labels[unlist(lapply(unm, findActionIndex, nm, miss))]

if there is no unnamed case to act as a default for a

character switch then the numeric default becomes the

character default as well.

if (! haveCharDflt) {

unm <- c(unm, "")

nlabels <- c(nlabels, list(dfltLabel))

}

}

else {

unm <- NULL

nlabels <- NULL

}

The computation of the index of the appropriate label for a given name is carried out by findActionIndex.

⟨findActionIndex function⟩≡
findActionIndex <- function(name, nm, miss) {

start <- match(name, nm)

aidx <- c(which(! miss), length(nm) + 1)

min(aidx[aidx >= start])

}

At this point we are ready to start emitting code into the code buffer. First code to compute
the selector is emitted. As with the condition for an if expression a non-tail-call context is used.

⟨emit code for the EXPR argument⟩≡
compile the EXPR argument

ncntxt <- make.nonTailCallContext(cntxt)

cmp(expr, cb, ncntxt)

August 23, 2023 compiler.nw 71

The switch instruction takes the selector off the stack and four operands from the instruction
stream: the call index, an index for the names, or NULL if there are none, and indices for the labels
for a character selector and for a numeric selector. At this point lists of labels are placed in the
instruction buffer. At code extraction time these will be replaced by indices for numeric offset
vectors by the patchlables function of the code buffer.

⟨emit the switch instruction⟩≡
emit the SWITCH instruction

cei <- cb$putconst(e)

if (haveNames) {

cni <- cb$putconst(unm)

cb$putcode(SWITCH.OP, cei, cni, nlabels, labels)

}

else {

cni <- cb$putconst(NULL)

cb$putcode(SWITCH.OP, cei, cni, cni, labels)

}

If there are empty alternatives then code to signal an error for a numeric selector that chooses
one of these is needed and is identified by the label missLabel.

⟨emit error code for empty alternative in numerical switch⟩≡
emit code to signal an error if a numeric switch hist an

empty alternative (fall through, as for character, might

make more sense but that isn’t the way switch() works)

if (any(miss)) {

cb$putlabel(missLabel)

cmp(quote(stop("empty alternative in numeric switch")), cb, cntxt)

}

Code for the numeric default case, corresponding to dfltLabel, places NULL on the stack, and
for a switch in tail position this is followed by an INVISIBLE and a RETURN instruction.

⟨emit code for the default case⟩≡
emit code for the default case

cb$putlabel(dfltLabel)

cb$putcode(LDNULL.OP)

if (cntxt$tailcall) {

cb$putcode(INVISIBLE.OP)

cb$putcode(RETURN.OP)

}

else

cb$putcode(GOTO.OP, endLabel)

Finally the labels and code for the non-empty alternatives are written to the code buffer. In
non-tail position the code is followed by a GOTO instruction that jumps to endLabel. The final case
does not need this GOTO.

⟨emit code for non-empty alternatives⟩≡
emit code for the non-empty alternatives

for (i in seq_along(cases)) {

if (! miss[i]) {

August 23, 2023 compiler.nw 72

cb$putlabel(labels[[i]])

cmp(cases[[i]], cb, cntxt)

if (! cntxt$tailcall)

cb$putcode(GOTO.OP, endLabel)

}

}

13 Assignments expressions

R supports simple assignments in which the left-hand side of the assignment expression is a symbol
and complex assignments of the form

f(x) <- v

or

g(f(x)) <- v

The second form is sometimes called a nested complex assignment. Ordinary assignment creates
or modifies a binding in the current environment. Superassignment via the <<- operator modifies
a binding in a containing environment.

Assignment expressions are compiled by cmpAssign. This function checks the form of the
assignment expression and, for well formed expressions then uses cmpSymbolAssign for simple
assignments and cmpComplexAssign for complex assignments.

For now, a temporary hack is needed to address a discrepancy between byte code and AST
code that can be caused by assignments in arguments to primitives. The root issue is that we are
not recording referenced to arguments that have been evaluated. Once that is addressed we can
remove this hack.

⟨temporary hack to deal with assignments in arguments issue⟩≡
if (! cntxt$toplevel)

return(cmpSpecial(e, cb, cntxt))

⟨cmpAssign function⟩≡
cmpAssign <- function(e, cb, cntxt) {

⟨temporary hack to deal with assignments in arguments issue⟩
if (! checkAssign(e, cntxt, loc = cb$savecurloc()))

return(cmpSpecial(e, cb, cntxt))

superAssign <- as.character(e[[1]]) == "<<-"

lhs <- e[[2]]

value <- e[[3]]

symbol <- as.name(getAssignedVar(e, cntxt))

if (superAssign && ! findVar(symbol, cntxt))

notifyNoSuperAssignVar(symbol, cntxt, loc = cb$savecurloc())

if (is.name(lhs) || is.character(lhs))

cmpSymbolAssign(symbol, value, superAssign, cb, cntxt)

else if (typeof(lhs) == "language")

cmpComplexAssign(symbol, lhs, value, superAssign, cb, cntxt)

else cmpSpecial(e, cb, cntxt) # punt for now

}

August 23, 2023 compiler.nw 73

The code generators for the assignment operators <- and = and the superassignment operator
<<- are registered by

⟨inlining handlers for <-, =, and <<-⟩≡
setInlineHandler("<-", cmpAssign)

setInlineHandler("=", cmpAssign)

setInlineHandler("<<-", cmpAssign)

The function checkAssign is used to check that an assignment expression is well-formed.

⟨checkAssign function⟩≡
checkAssign <- function(e, cntxt, loc = NULL) {

if (length(e) != 3)

FALSE

else {

place <- e[[2]]

if (typeof(place) == "symbol" ||

(typeof(place) == "character" && length(place) == 1))

TRUE

else {

⟨check left hand side call⟩
}

}

}

A valid left hand side call must have a function that is either a symbol or is of the form foo::bar

or foo:::bar, and the first argument must be a symbol or another valid left hand side call. A
while loop is used to unravel nested calls.

⟨check left hand side call⟩≡
while (typeof(place) == "language") {

fun <- place[[1]]

if (typeof(fun) != "symbol" &&

! (typeof(fun) == "language" && length(fun) == 3 &&

typeof(fun[[1]]) == "symbol" &&

as.character(fun[[1]]) %in% c("::", ":::"))) {

notifyBadAssignFun(fun, cntxt, loc)

return(FALSE)

}

place = place[[2]]

}

if (typeof(place) == "symbol")

TRUE

else FALSE

13.1 Simple assignment expressions

Code for assignment to a symbol is generated by cmpSymbolAssign.

⟨cmpSymbolAssign function⟩≡
cmpSymbolAssign <- function(symbol, value, superAssign, cb, cntxt) {

⟨compile the right hand side value expression⟩

August 23, 2023 compiler.nw 74

⟨emit code for the symbol assignment instruction⟩
⟨for tail calls return the value invisibly⟩
TRUE

}

A non-tail-call context is used to generate code for the right hand side value expression.

⟨compile the right hand side value expression⟩≡
ncntxt <- make.nonTailCallContext(cntxt)

cmp(value, cb, ncntxt)

The SETVAR and SETVAR2 instructions assign the value on the stack to the symbol specified by
its constant pool index operand. The SETVAR instruction is used by ordinary assignment to assign
in the local frame, and SETVAR2 for superassignments.

⟨emit code for the symbol assignment instruction⟩≡
ci <- cb$putconst(symbol)

if (superAssign)

cb$putcode(SETVAR2.OP, ci)

else

cb$putcode(SETVAR.OP, ci)

The super-assignment case does not need to check for and warn about a missing binding since this
is done in cmpAssign.

The SETVAR and SETVAR2 instructions leave the value on the stack as the value of the assignment
expression; if the expression appears in tail position then this value is returned with the visible flag
set to FALSE.

⟨for tail calls return the value invisibly⟩≡
if (cntxt$tailcall) {

cb$putcode(INVISIBLE.OP)

cb$putcode(RETURN.OP)

}

13.2 Complex assignment expressions

It seems somehow appropriate at this point to mention that the code in eval.c implementing the
interpreter semantics starts with the following comment:

/*

* Assignments for complex LVAL specifications. This is the stuff that

* nightmares are made of ...

There are some issues with the semantics for complex assignment as implemented by the inter-
preter:

� With the current approach the following legal, though strange, code fails:

⟨inner assignment trashes temporary⟩≡
f <-function(x, y) x

‘f<-‘ <- function(x, y, value) { y; x}

x <- 1

y <- 2

f(x, y[] <- 1) <- 3

August 23, 2023 compiler.nw 75

The reason is that the current left hand side object is maintained in a variable *tmp*, and
processing the assignment in the second argument first overwrites the value of *tmp* and then
removes *tmp* before the first argument is evaluated. Using evaluated promises as arguments,
as is done for the right hand side value, solves this.

� The current approach of using a temporary variable *tmp* to hold the evaluated LHS object
requires an internal cleanup context to ensure that the variable is removed in the event of a
non-local exit. Implementing this in the compiler would introduce significant overhead.

� The asymmetry of handling the pre-evaluated right hand side value via an evaluated promise
and the pre-evaluated left hand side via a temporary variable makes the code harder to
understand and the semantics harder to explain.

� Using promises in an expression passed to eval means promises can leak out into R via sys.call.
This is something we have tried to avoid and should try to avoid so we can have the freedom to
implement lazy evaluation differently if that seems useful. [It may be possible at some point
to avoid allocation of promise objects in compiled code.] The compiler can avoid this by using
promises only in the argument lists passed to function calls, not in the call expressions. A
similar change could be made in the interpreter but it would have a small runtime penalty
for constructing an expression in addition to an argument list I would prefer to avoid that
for now until the compiler has been turned on by default.

� The current approach of installing the intermediate RHS value as the expression for the RHS
promise in nested complex assignments has several drawbacks:

– it can produce huge expressions.

– the result is misleading if the intermediate RHS value is a symbol or a language object.

– to maintain this in compiled code it would be necessary to construct the assignment
function call expression at runtime even though it is usually not needed (or it would
require significant rewriting to allow on-demand computation of the call). If *vtmp* is
used as a marker for the expression and documented as not a real variable then the call
can be constructed at compile time.

� In nested complex assignments the additional arguments of the inner functions are evaluated
twice. This is illustrated by running this code:

⟨multiple evaluation of arguments in assignments⟩≡
f <- function(x, y) {y ; x }

‘f<-‘ <- function(x, y, value) { y; x }

g <- function(x, y) {y ; x }

‘g<-‘ <- function(x, y, value) { y; x }

x <- 1

y <- 2

f(g(x, print(y)), y) <- 3

August 23, 2023 compiler.nw 76

This is something we have lived with, and I don’t propose to change it at this time. But it
would be good to be able to change it in the future.

Because of these issues the compiler implements slightly different semantics for complex assign-
ment than the current intepreter. Evaluation semantics should be identical; the difference arises
in how intermediate values are managed and has some effect on results produced by substitute.
In particular, no intermediate *tmp* value is used and therefore no cleanup frame is needed. This
does mean that uses of the form

eval(substitute(<first arg>), parent.frame())

will no longer work. In tests of most of CRAN and BioC this directly affected only one function,
$.proto in the proto package, and indirectly about 30 packages using proto failed. I looked at
the $.proto implementation, and it turned out that the eval(substitute()) approach used there
could be replaced by standard evaluation using lexical scope. This produces better code, and the
result works with both the current R interpreter and compiled code (proto and all the dependent
packages pass check with this change). The proto maintainer has changed proto along these lines.
It would be good to soon change the interpreter to also use evaluated promises in place of the *tmp*
variable to bring the compiled and interpreted semantics closer together.

Complex assignment expressions are compiled by cmpComplexAssign.

⟨cmpComplexAssign function⟩≡
cmpComplexAssign <- function(symbol, lhs, value, superAssign, cb, cntxt) {

⟨select complex assignment instructions⟩
⟨protect the stack during a non-top-level complex assignment⟩
⟨compile the right hand side value expression⟩
⟨compile the left hand side call⟩
⟨unprotect the stack after a not-top-level complex assignment⟩
⟨for tail calls return the value invisibly⟩
TRUE;

}

Assignment code is bracketed by a start and an end instruction.

⟨compile the left hand side call⟩≡
csi <- cb$putconst(symbol)

cb$putcode(startOP, csi)

⟨compile code to compute left hand side values⟩
⟨compile code to compute right hand side values⟩

cb$putcode(endOP, csi)

The appropriate instructions startOP and endOP depend on whether the assignment is an ordinary
assignment or a superassignment.

⟨select complex assignment instructions⟩≡
if (superAssign) {

startOP <- STARTASSIGN2.OP

endOP <- ENDASSIGN2.OP

}

August 23, 2023 compiler.nw 77

else {

if (! findVar(symbol, cntxt))

notifyUndefVar(symbol, cntxt, loc = cb$savecurloc())

startOP <- STARTASSIGN.OP

endOP <- ENDASSIGN.OP

}

An undefined variable notification is issued for ordinary assignment, since this will produce a
runtime error. For superassignment cmpAssign has already checked for an undefined left-hand-side
variable and issued a notification if none was found.

The start instructions obtain the initial value of the left-hand-side variable and in the case of
standard assignment assign it in the local frame if it is not assigned there already. They also prepare
the stack for the assignment process. The stack invariant maintained by the assignment process is
that the current right hand side value is on the top, followed by the evaluated left hand side values,
the binding cell, and the original right hand side value. Thus the start instruction leaves the right
hand side value on the top, then the value of the left hand side variable, the binding cell, and again
the right hand side value on the stack.

The end instruction finds the final right hand side value followed by the original right hand
side value on the top of the stack. The final value is removed and assigned to the appropriate
variable binding. The original right hand side value is left on the top of the stack as the value of
the assignment expression.

Evaluating a nested complex assignment involves evaluating a sequence of expressions to obtain
the left hand sides to modify, and then evaluating a sequence of corresponding calls to replacement
functions in the opposite order. The function flattenPlace returns a list of the expressions that
need to be considered, with *tmp* in place of the current left hand side argument. For example,
for an assignment of the form f(g(h(x, k), j), i) <- v this produces

> flattenPlace(quote(f(g(h(x, k), j), i)))$places

{\Tt{}1\nwendquote}

f(‘*tmp*‘, i)

{\Tt{}2\nwendquote}

g(‘*tmp*‘, j)

{\Tt{}3\nwendquote}

h(‘*tmp*‘, k)

The sequence of left hand side values needed consists of the original variable value, which is already
on the stack, and the values of h(‘*tmp*‘, k) and g(‘*tmp*‘, j).

In general the additional evaluations needed are of all but the first expression produced by
flattenPlace, evaluated in reverse order. An argument context is used since there are already
values on the stack.

⟨compile code to compute left hand side values⟩≡
ncntxt <- make.argContext(cntxt)

flat <- flattenPlace(lhs, cntxt, loc = cb$savecurloc())

flatOrigPlace <- flat$origplaces

flatPlace <- flat$places

August 23, 2023 compiler.nw 78

flatPlaceIdxs <- seq_along(flatPlace)[-1]

for (i in rev(flatPlaceIdxs))

cmpGetterCall(flatPlace[[i]], flatOrigPlace[[i]], cb, ncntxt)

The compilation of the individual calls carried out by cmpGetterCall, which is presented in Section
13.4. Each compilation places the new left hand side value on the top of the stack and then switches
it with the value below, which is the original right hand side value, to preserve the stack invariant.

The function flattenPlace is defined as

⟨flattenPlace function⟩≡
flattenPlace <- function(place, cntxt, loc = NULL) {

places <- NULL

origplaces <- NULL

while (typeof(place) == "language") {

if (length(place) < 2)

cntxt$stop(gettext("bad assignment 1"), cntxt, loc = loc)

origplaces <- c(origplaces, list(place))

tplace <- place

tplace[[2]] <- as.name("*tmp*")

places <- c(places, list(tplace))

place <- place[[2]]

}

if (typeof(place) != "symbol")

cntxt$stop(gettext("bad assignment 2"), cntxt, loc = loc)

list(places = places, origplaces = origplaces)

}

After the right hand side values have been computed the stack contains the original right hand
side value followed by the left hand side values in the order in which they need to be modified.
Code to call the sequence of replacement functions is generated by

⟨compile code to compute right hand side values⟩≡
cmpSetterCall(flatPlace[[1]], flatOrigPlace[[1]], value, cb, ncntxt)

for (i in flatPlaceIdxs)

cmpSetterCall(flatPlace[[i]], flatOrigPlace[[i]], as.name("*vtmp*"), cb, ncntxt)

The first call uses the expression for the original right hand side in its call; all others will use *vtmp*.
Each replacement function call compiled by cmpSetterCall will remove the top two elements from
the stack and then push the new right hand side value on the stack. cmpSetterCall is described
in Section 13.3.

For non-top-level complex assignments values on the stack need to be protected from mutation
during the assignment.

⟨protect the stack during a non-top-level complex assignment⟩≡
if (! cntxt$toplevel) cb$putcode(INCLNKSTK.OP)

⟨unprotect the stack after a not-top-level complex assignment⟩≡
if (! cntxt$toplevel) cb$putcode(DECLNKSTK.OP)

August 23, 2023 compiler.nw 79

13.3 Compiling setter calls

Setter calls, or calls to replacement functions, in compiled assignment expressions find stack that
contains the current right hand side value on the top followed by the current left hand side value.
Some replacement function calls, such as calls to $<-, are handled by an inlining mechanism de-
scribed below. The general case when the function is specified by a symbol is handled a GETFUN

instruction to push the function on the stack, pushing any additional arguments on the stack, and
using the SETTER CALL instruction to execute the call. This instruction adjusts the argument list
by inserting as the first argument an evaluated promise for the left hand side value and as the
last argument an evaluated promise for the right hand side value; the final argument also has the
value tag. The case where the function is specified in the form foo::bar or foo:::bar differs only
compiling the function expression and using CHECKFUN to verify the result and prepare the stack.

⟨cmpSetterCall function⟩≡
cmpSetterCall <- function(place, origplace, vexpr, cb, cntxt) {

afun <- getAssignFun(place[[1]])

acall <- as.call(c(afun, as.list(place[-1]), list(value = vexpr)))

acall[[2]] <- as.name("*tmp*")

ncntxt <- make.callContext(cntxt, acall)

sloc <- cb$savecurloc()

cexpr <- as.call(c(afun, as.list(origplace[-1]), list(value = vexpr)))

cb$setcurexpr(cexpr)

if (is.null(afun))

**** warn instead and arrange for cmpSpecial?

**** or generate code to signal runtime error?

cntxt$stop(gettext("invalid function in complex assignment"),

loc = cb$savecurloc())

else if (typeof(afun) == "symbol") {

if (! trySetterInline(afun, place, origplace, acall, cb, ncntxt)) {

ci <- cb$putconst(afun)

cb$putcode(GETFUN.OP, ci)

⟨compile additional arguments and call to setter function⟩
}

}

else {

cmp(afun, cb, ncntxt)

cb$putcode(CHECKFUN.OP)

⟨compile additional arguments and call to setter function⟩
}

cb$restorecurloc(sloc)

}

The common code for compiling additional arguments and issuing the SETTER CALL instruction is
given by

⟨compile additional arguments and call to setter function⟩≡
cb$putcode(PUSHNULLARG.OP)

cmpCallArgs(place[-c(1, 2)], cb, ncntxt)

cci <- cb$putconst(acall)

cvi <- cb$putconst(vexpr)

August 23, 2023 compiler.nw 80

cb$putcode(SETTER_CALL.OP, cci, cvi)

The PUSHNULL instruction places NULL in the argument list as a first argument to serve as a place
holder; SETTER CALL replaces this with the evaluated promise for the current left hand side value.

The replacement function corresponding to fun is computed by getAssignFun. If fun is a
symbol then the assignment function is the symbol followed by <-. The function fun can also
be an expression of the form foo::bar, in which case the replacement function is the expression
foo::‘bar<-‘. NULL is returned if fun does not fit into one of these two cases.

⟨getAssignFun function⟩≡
getAssignFun <- function(fun) {

if (typeof(fun) == "symbol")

as.name(paste0(fun, "<-"))

else {

check for and handle foo::bar(x) <- y assignments here

if (typeof(fun) == "language" && length(fun) == 3 &&

(as.character(fun[[1]]) %in% c("::", ":::")) &&

typeof(fun[[2]]) == "symbol" && typeof(fun[[3]]) == "symbol") {

afun <- fun

afun[[3]] <- as.name(paste0(fun[[3]],"<-"))

afun

}

else NULL

}

}

To produce more efficient code some replacement function calls can be inlined and use specialized
instructions. The most important of these are $<-, [<-, and [[<-. An inlining mechanism similar
to the one described in Section 6 is used for this purpose. A separate mechanism is needed because
of the fact that in the present context two arguments, the left hand side and right hand side values,
are already on the stack.

⟨setter inlining mechanism⟩≡
setterInlineHandlers <- new.env(hash = TRUE, parent = emptyenv())

setSetterInlineHandler <- function(name, h, package = "base") {

if (exists(name, setterInlineHandlers, inherits = FALSE)) {

entry <- get(name, setterInlineHandlers)

if (entry$package != package) {

fmt <- "handler for ’%s’ is already defined for another package"

stop(gettextf(fmt, name), domain = NA)

}

}

entry <- list(handler = h, package = package)

assign(name, entry, setterInlineHandlers)

}

getSetterInlineHandler <- function(name, package = "base") {

if (exists(name, setterInlineHandlers, inherits = FALSE)) {

hinfo <- get(name, setterInlineHandlers)

August 23, 2023 compiler.nw 81

if (hinfo$package == package)

hinfo$handler

else NULL

}

else NULL

}

trySetterInline <- function(afun, place, origplace, call, cb, cntxt) {

name <- as.character(afun)

info <- getInlineInfo(name, cntxt)

if (is.null(info))

FALSE

else {

h <- getSetterInlineHandler(name, info$package)

if (! is.null(h))

h(afun, place, origplace, call, cb, cntxt)

else FALSE

}

}

The inline handler for $<- replacement calls uses the DOLLARGETS instruction. The handler
declines to handle cases that would produce runtime errors; these are compiled by the generic
mechanism.

⟨setter inline handler for $<-⟩≡
setSetterInlineHandler("$<-", function(afun, place, origplace, call, cb, cntxt) {

if (anyDots(place) || length(place) != 3)

FALSE

else {

sym <- place[[3]]

if (is.character(sym))

sym <- as.name(sym)

if (is.name(sym)) {

ci <- cb$putconst(call)

csi <- cb$putconst(sym)

cb$putcode(DOLLARGETS.OP, ci, csi)

TRUE

}

else FALSE

}

})

The replacement functions [<- and [[<-] are implemented as SPECIAL functions that do
internal dispatching. They are therefore compiled along the same lines as their correspond-
ing accessor functions as described in Section 11.3. The common pattern is implemented by
cmpSetterDispatch.

⟨cmpSetterDispatch function⟩≡
cmpSetterDispatch <- function(start.op, dflt.op, afun, place, call, cb, cntxt) {

if (anyDots(place))

FALSE ## punt

August 23, 2023 compiler.nw 82

else {

ci <- cb$putconst(call)

end.label <- cb$makelabel()

cb$putcode(start.op, ci, end.label)

if (length(place) > 2) {

args <- place[-(1:2)]

cmpBuiltinArgs(args, names(args), cb, cntxt, TRUE)

}

cb$putcode(dflt.op)

cb$putlabel(end.label)

TRUE

}

}

The two inlining handlers are then defined as

⟨setter inline handlers for [<- and [[<- ⟩≡
**** this is now handled differently; see "Improved subset ..."

setSetterInlineHandler("[<-", function(afun, place, origplace, call, cb, cntxt)

cmpSetterDispatch(STARTSUBASSIGN.OP, DFLTSUBASSIGN.OP,

afun, place, call, cb, cntxt))

setSetterInlineHandler("[[<-", function(afun, place, origplace, call, cb, cntxt)

cmpSetterDispatch(STARTSUBASSIGN2.OP, DFLTSUBASSIGN2.OP,

afun, place, call, cb, cntxt))

An inline handler is defined for @<- in order to suppress spurious warnings about the slot name
symbol. A call in which the slot is specified by a symbol is converted to one using a string instead,
and is then compiled by a recursive call to cmpSetterCall; the handler will decline in this second
call and the default compilation strategy will be used.

⟨setter inlining handler for @<-⟩≡
setSetterInlineHandler("@<-", function(afun, place, origplace, acall, cb, cntxt) {

if (! dots.or.missing(place) && length(place) == 3 &&

typeof(place[[3]]) == "symbol") {

place[[3]] <- as.character(place[[3]])

vexpr <- acall[[length(acall)]]

cmpSetterCall(place, origplace, vexpr, cb, cntxt)

TRUE

}

else FALSE

})

13.4 Compiling getter calls

Getter calls within an assignment also need special handling because of the left hand side argument
being on the stack already and because of the need to restore the stack invariant. There are again
two cases for installing the getter function on the stack. These are then followed by common code
for handling the additional arguments and the call.

⟨cmpGetterCall function⟩≡

August 23, 2023 compiler.nw 83

cmpGetterCall <- function(place, origplace, cb, cntxt) {

ncntxt <- make.callContext(cntxt, place)

sloc <- cb$savecurloc()

cb$setcurexpr(origplace)

fun <- place[[1]]

if (typeof(fun) == "symbol") {

if (! tryGetterInline(place, cb, ncntxt)) {

ci <- cb$putconst(fun)

cb$putcode(GETFUN.OP, ci)

⟨compile additional arguments and call to getter function⟩
}

}

else {

cmp(fun, cb, ncntxt)

cb$putcode(CHECKFUN.OP)

⟨compile additional arguments and call to getter function⟩
}

cb$restorecurloc(sloc)

}

In the common code, as in setter calls a NULL is placed on the argument stack as a place holder
for the left hand side promise. Then the additional arguments are placed on the stack and the
GETTER-CALL instruction is issued. This instruction installs the evaluated promise with the left
hand side value as the first argument and executes the call. The call will leave the next right left
hand side on the top of the stack. A SWAP instruction then switches the top two stack entries. This
leaves the original right hand side value on top followed by the new left hand side value returned
by the getter call and any other left hand side values produced by earlier getter call.

⟨compile additional arguments and call to getter function⟩≡
cb$putcode(PUSHNULLARG.OP)

cmpCallArgs(place[-c(1, 2)], cb, ncntxt)

cci <- cb$putconst(place)

cb$putcode(GETTER_CALL.OP, cci)

cb$putcode(SWAP.OP)

Again an inlining mechanism is needed to handle calls to functions like $ and [. These are able
to use the same instructions as the inline handlers in Section 11.3 for ordinary calls to $ and [but
require some additional work to deal with maintaining the stack invariant.

The inlining mechanism itself is analogous to the general one and the one for inlining setter
calls.

⟨getter inlining mechanism⟩≡
getterInlineHandlers <- new.env(hash = TRUE, parent = emptyenv())

setGetterInlineHandler <- function(name, h, package = "base") {

if (exists(name, getterInlineHandlers, inherits = FALSE)) {

entry <- get(name, getterInlineHandlers)

if (entry$package != package) {

fmt <- "handler for ’%s’ is already defined for another package"

stop(gettextf(fmt, name), domain = NA)

August 23, 2023 compiler.nw 84

}

}

entry <- list(handler = h, package = package)

assign(name, entry, getterInlineHandlers)

}

getGetterInlineHandler <- function(name, package = "base") {

if (exists(name, getterInlineHandlers, inherits = FALSE)) {

hinfo <- get(name, getterInlineHandlers)

if (hinfo$package == package)

hinfo$handler

else NULL

}

else NULL

}

tryGetterInline <- function(call, cb, cntxt) {

name <- as.character(call[[1]])

info <- getInlineInfo(name, cntxt)

if (is.null(info))

FALSE

else {

h <- getGetterInlineHandler(name, info$package)

if (! is.null(h))

h(call, cb, cntxt)

else FALSE

}

}

The inline handler for $ in a getter context uses the DUP2ND instruction to push the second value
on the stack, the previous left hand side value, onto the stack. The DOLLAR instruction pops this
value, computes the component for this value and the symbol in the constant pool, and pushes the
result on the stack. A SWAP instruction then interchanges this value with the next value, which is
the original right hand side value, thus restoring the stack invariant.

⟨getter inline handler for $⟩≡
setGetterInlineHandler("$", function(call, cb, cntxt) {

if (anyDots(call) || length(call) != 3)

FALSE

else {

sym <- call[[3]]

if (is.character(sym))

sym <- as.name(sym)

if (is.name(sym)) {

ci <- cb$putconst(call)

csi <- cb$putconst(sym)

cb$putcode(DUP2ND.OP)

cb$putcode(DOLLAR.OP, ci, csi)

cb$putcode(SWAP.OP)

August 23, 2023 compiler.nw 85

TRUE

}

else FALSE

}

})

Calls to [and [[again need two instructions to support the internal dispatch. The general
pattern is implemented in cmpGetterDispatch. A DUP2ND instruction is used to place the first
argument for the call on top of the stack, code analogous to the code for ordinary calls to [and [[

is used to make the call, and this is followed by a SWAP instruction to rearrange the stack.

⟨cmpGetterDispatch function⟩≡
cmpGetterDispatch <- function(start.op, dflt.op, call, cb, cntxt) {

if (anyDots(call))

FALSE ## punt

else {

ci <- cb$putconst(call)

end.label <- cb$makelabel()

cb$putcode(DUP2ND.OP)

cb$putcode(start.op, ci, end.label)

if (length(call) > 2) {

args <- call[-(1:2)]

cmpBuiltinArgs(args, names(args), cb, cntxt, TRUE)

}

cb$putcode(dflt.op)

cb$putlabel(end.label)

cb$putcode(SWAP.OP)

TRUE

}

}

The two inline handlers are then defined as

⟨getter inline handlers for [and [[⟩≡
**** this is now handled differently; see "Improved subset ..."

setGetterInlineHandler("[", function(call, cb, cntxt)

cmpGetterDispatch(STARTSUBSET.OP, DFLTSUBSET.OP, call, cb, cntxt))

setGetterInlineHandler("[[", function(call, cb, cntxt)

cmpGetterDispatch(STARTSUBSET2.OP, DFLTSUBSET2.OP, call, cb, cntxt))

14 Constant folding

A very valuable compiler optimization is constant folding. For example, an expression for computing
a normal density function may include the code

1 / sqrt(2 * pi)

The interpreter would have to evaluate this expression each time it is needed, but a compiler can
often compute the value once at compile time.

August 23, 2023 compiler.nw 86

The constant folding optimization can be applied at various points in the compilation process:
It can be applied to the source code before code generation or to the generated code in a separate
optimization phase. For now, constant folding is applied during the code generation phase.

The constantFold function examines its expression argument and handles each expression type
by calling an appropriate function.

⟨constantFold function⟩≡
**** rewrite using switch??

constantFold <- function(e, cntxt, loc = NULL) {

type = typeof(e)

if (type == "language")

constantFoldCall(e, cntxt)

else if (type == "symbol")

constantFoldSym(e, cntxt)

else if (type == "promise")

cntxt$stop(gettext("cannot constant fold literal promises"),

cntxt, loc = loc)

else if (type == "bytecode")

cntxt$stop(gettext("cannot constant fold literal bytecode objects"),

cntxt, loc = loc)

else checkConst(e)

}

The checkConst function decides whether a value is a constant that is small enough and simple
enough to enter into the constant pool. If so, then checkConst wraps the value in a list as the
value component. If not, then NULL is returned.

⟨checkConst function⟩≡
checkConst <- function(e) {

if (mode(e) %in% constModes && length(e) <= maxConstSize)

list(value = e)

else

NULL

}

The maximal size and acceptable modes are defined by

⟨maxConstSize and constModes definitions⟩≡
maxConstSize <- 10

constModes <- c("numeric", "logical", "NULL", "complex", "character")

For now, constant folding is only applied for a particular set of variables and functions defined
in the base package. The constant folding code uses isBaseVar to determine whether a variable can
be assumed to reference the corresponding base variable given the current compilation environment
and optimization setting. constantFoldSym is applied to base variables in the constNames list.

⟨constantFoldSym function⟩≡
Assumes all constants will be defined in base.

Eventually allow other packages to define constants.

Any variable with locked binding could be used if type is right.

Allow local declaration of optimize, notinline declaration.

August 23, 2023 compiler.nw 87

constantFoldSym <- function(var, cntxt) {

var <- as.character(var)

if (var %in% constNames && isBaseVar(var, cntxt))

checkConst(get(var, .BaseNamespaceEnv))

else NULL

}

⟨constNames definition⟩≡
constNames <- c("pi", "T", "F")

Call expressions are handled by determining whether the function called is eligible for constant
folding, attempting to constant fold the arguments, and calling the folding function. The result is
the passed to checkConst. If an error or a warning occurs in the call to the folding function then
constantFoldCall returns NULL.

⟨constantFoldCall function⟩≡
constantFoldCall <- function(e, cntxt) {

fun <- e[[1]]

if (typeof(fun) == "symbol") {

ffun <- getFoldFun(fun, cntxt)

if (! is.null(ffun)) {

args <- as.list(e[-1])

for (i in seq_along(args)) {

a <- args[[i]]

if (missing(a))

return(NULL)

val <- constantFold(a, cntxt)

if (! is.null(val))

args[i] <- list(val$value) ## **** in case value is NULL

else return(NULL)

}

modes <- unlist(lapply(args, mode))

if (all(modes %in% constModes)) {

tryCatch(checkConst(do.call(ffun, args)),

error = function(e) NULL, warning = function(w) NULL)

**** issue warning??

}

else NULL

}

else NULL

}

else NULL

}

The functions in the base package eligible for constant folding are

⟨foldFuns definition⟩≡
foldFuns <- c("+", "-", "*", "/", "^", "(",

">", ">=", "==", "!=", "<", "<=", "||", "&&", "!",

"|", "&", "%%",

"c", "rep", ":",

August 23, 2023 compiler.nw 88

"abs", "acos", "acosh", "asin", "asinh", "atan", "atan2",

"atanh", "ceiling", "choose", "cos", "cosh", "exp", "expm1",

"floor", "gamma", "lbeta", "lchoose", "lgamma", "log", "log10",

"log1p", "log2", "max", "min", "prod", "range", "round",

"seq_along", "seq.int", "seq_len", "sign", "signif",

"sin", "sinh", "sqrt", "sum", "tan", "tanh", "trunc",

"baseenv", "emptyenv", "globalenv",

"Arg", "Conj", "Im", "Mod", "Re",

"is.R")

getFoldFun checks the called function against this list and whether the binding for the variable
can be assumed to be from the base package. If then returns the appropriate function from the
base package or NULL.

⟨getFoldFun function⟩≡
For now assume all foldable functions are in base

getFoldFun <- function(var, cntxt) {

var <- as.character(var)

if (var %in% foldFuns && isBaseVar(var, cntxt)) {

val <- get(var, .BaseNamespaceEnv)

if (is.function(val))

val

else

NULL

}

else NULL

}

15 More top level functions

15.1 Compiling closures

The function cmpfun is for compiling a closure. The body is compiled with genCode and combined
with the closure’s formals and environment to form a compiled closure. The .Internal function
bcClose does this. Some additional fiddling is needed if the closure is an S4 generic. The need for
the asS4 bit seems a bit odd but it is apparently needed at this point.

⟨cmpfun function⟩≡
cmpfun <- function(f, options = NULL) {

type <- typeof(f)

if (type == "closure") {

cntxt <- make.toplevelContext(makeCenv(environment(f)), options)

ncntxt <- make.functionContext(cntxt, formals(f), body(f))

if (mayCallBrowser(body(f), ncntxt))

return(f)

if (typeof(body(f)) != "language" || body(f)[1] != "{")

loc <- list(expr = body(f), srcref = getExprSrcref(f))

else

loc <- NULL

August 23, 2023 compiler.nw 89

b <- genCode(body(f), ncntxt, loc = loc)

val <- .Internal(bcClose(formals(f), b, environment(f)))

attrs <- attributes(f)

if (! is.null(attrs))

attributes(val) <- attrs

if (isS4(f)) ## **** should this really be needed??

val <- asS4(val)

val

}

else if (type == "builtin" || type == "special")

f

else stop("cannot compile a non-function")

}

For use in compiling packages and in JIT compilation it is useful to have a variant that returns
the uncompiled function if there is an error during compilation.

⟨tryCmpfun function⟩≡
tryCmpfun <- function(f)

tryCatch(cmpfun(f), error = function(e) {

notifyCompilerError(paste(e$message, "at", deparse(e$call)))

f

})

A similar utility for expressions for use in JIT compilation of loops:

⟨tryCompile function⟩≡
tryCompile <- function(e, ...)

tryCatch(compile(e, ...), error = function(err) {

notifyCompilerError(paste(err$message, "at", deparse(err$call)))

e

})

If a function contains a call to browser, it should not be compiled, because the byte-code
interpreter does not support command-by-command execution (”n”). This function explores the
AST of a closure to find out if it may contain a call to browser:

⟨mayCallBrowser function⟩≡
mayCallBrowser <- function(e, cntxt) {

if (typeof(e) == "language") {

fun <- e[[1]]

if (typeof(fun) == "symbol") {

fname <- as.character(fun)

if (fname == "browser") ## not checking isBaseVar to err on the

positive

TRUE

else if (fname == "function" && isBaseVar(fname, cntxt))

FALSE

else

mayCallBrowserList(e[-1], cntxt)

}

else

August 23, 2023 compiler.nw 90

mayCallBrowserList(e, cntxt)

}

else FALSE

}

A version that operates on a list of expressions is

⟨mayCallBrowserList function⟩≡
mayCallBrowserList <- function(elist, cntxt) {

for (a in as.list(elist))

if (! missing(a) && mayCallBrowser(a, cntxt))

return(TRUE)

FALSE

}

15.2 Compiling and loading files

A file can be compiled with cmpfile and loaded with loadcmp. cmpfile reads in the expressions,
compiles them, and serializes the list of compiled expressions by calling the .Internal function
save.to.file.

⟨cmpfile function⟩≡
cmpfile <- function(infile, outfile, ascii = FALSE, env = .GlobalEnv,

verbose = FALSE, options = NULL, version = NULL) {

if (! is.environment(env) || ! identical(env, topenv(env)))

stop("’env’ must be a top level environment")

⟨create outfile if argument is missing⟩
⟨check that infile and outfile are not the same⟩
forms <- parse(infile)

nforms <- length(forms)

srefs <- attr(forms, "srcref")

if (nforms > 0) {

expr.needed <- 1000

expr.old <- getOption("expressions")

if (expr.old < expr.needed) {

options(expressions = expr.needed)

on.exit(options(expressions = expr.old))

}

cforms <- vector("list", nforms)

cenv <- makeCenv(env)

cntxt <- make.toplevelContext(cenv, options)

cntxt$env <- addCenvVars(cenv, findLocalsList(forms, cntxt))

for (i in 1:nforms) {

e <- forms[[i]]

sref <- srefs[[i]]

if (verbose) {

if (typeof(e) == "language" && e[[1]] == "<-" &&

typeof(e[[3]]) == "language" && e[[3]][[1]] == "function")

cat(paste0("compiling function \"", e[[2]], "\"\n"))

else

August 23, 2023 compiler.nw 91

cat(paste("compiling expression", deparse(e, 20)[1],

"...\n"))

}

if (!mayCallBrowser(e, cntxt))

cforms[[i]] <- genCode(e, cntxt,

loc = list(expr = e, srcref = sref))

}

cat(gettextf("saving to file \"%s\" ... ", outfile))

.Internal(save.to.file(cforms, outfile, ascii, version))

cat(gettext("done"), "\n", sep = "")

}

else warning("empty input file; no output written");

invisible(NULL)

}

The default output file name is the base name of the input file with a .Rc extension.

⟨create outfile if argument is missing⟩≡
if (missing(outfile)) {

basename <- sub("\\.[a-zA-Z0-9]$", "", infile)

outfile <- paste0(basename, ".Rc")

}

As a precaution it is useful to check that infile and outfile are not the same and signal an error
if they are.

⟨check that infile and outfile are not the same⟩≡
if (infile == outfile)

stop("input and output file names are the same")

The loadcmp reads in the serialized list of expressions using the .Internal function load.from.file.
The compiled expressions are then evaluated in the global environment.

⟨loadcmp function⟩≡
loadcmp <- function (file, envir = .GlobalEnv, chdir = FALSE) {

if (!(is.character(file) && file.exists(file)))

stop(gettextf("file ’%s’ does not exist", file), domain = NA)

exprs <- .Internal(load.from.file(file))

if (length(exprs) == 0)

return(invisible())

if (chdir && (path <- dirname(file)) != ".") {

owd <- getwd()

on.exit(setwd(owd), add = TRUE)

setwd(path)

}

for (i in exprs) {

eval(i, envir)

}

invisible()

}

loadcmp is the analog to source for compiled files.

August 23, 2023 compiler.nw 92

Two additional functions that are currently not exported or used are cmpframe and cmplib.
They should probably be removed.

⟨cmpframe function⟩≡
cmpframe <- function(inpos, file) {

expr.needed <- 1000

expr.old <- getOption("expressions")

if (expr.old < expr.needed)

options(expressions = expr.needed)

on.exit(options(expressions = expr.old))

attach(NULL, name="<compiled>")

inpos <- inpos + 1

outpos <- 2

on.exit(detach(pos=outpos), add=TRUE)

for (f in ls(pos = inpos, all.names = TRUE)) {

def <- get(f, pos = inpos)

if (typeof(def) == "closure") {

cat(gettextf("compiling ’%s’", f), "\n", sep = "")

fc <- cmpfun(def)

assign(f, fc, pos=outpos)

}

}

cat(gettextf("saving to file \"%s\" ... ", file))

save(list = ls(pos = outpos, all.names = TRUE), file = file)

cat(gettext("done"), "\n", sep = "")

}

⟨cmplib function⟩≡
cmplib <- function(package, file) {

package <- as.character(substitute(package))

pkgname <- paste("package", package, sep = ":")

pos <- match(pkgname, search());

if (missing(file))

file <- paste0(package,".Rc")

if (is.na(pos)) {

library(package, character.only = TRUE)

pos <- match(pkgname, search());

on.exit(detach(pos=match(pkgname, search())))

}

cmpframe(pos, file)

}

15.3 Enabling implicit compilation

⟨enableJIT function⟩≡
enableJIT <- function(level)

.Internal(enableJIT(level))

August 23, 2023 compiler.nw 93

⟨compilePKGS function⟩≡
compilePKGS <- function(enable)

.Internal(compilePKGS(enable))

15.4 Setting compiler options

The setCompilerOptions function provides a means for users to adjust the default compiler option
values. This interface is experimental and may change.

⟨setCompilerOptions function⟩≡
setCompilerOptions <- function(...) {

options <- list(...)

nm <- names(options)

for (n in nm)

if (! exists(n, compilerOptions))

stop(gettextf("’%s’ is not a valid compiler option", n),

domain = NA)

old <- list()

newOptions <- as.list(compilerOptions) # copy options

for (n in nm) {

op <- options[[n]]

switch(n,

optimize = {

op <- as.integer(op)

if (length(op) == 1 && 0 <= op && op <= 3) {

old <- c(old, list(optimize =

compilerOptions$optimize))

newOptions$optimize <- op

}

},

suppressAll = {

if (identical(op, TRUE) || identical(op, FALSE)) {

old <- c(old, list(suppressAll =

compilerOptions$suppressAll))

newOptions$suppressAll <- op

}

},

suppressNoSuperAssignVar = {

if (isTRUE(op) || isFALSE(op)) {

old <- c(old, list(

suppressNoSuperAssignVar =

compilerOptions$suppressNoSuperAssignVar))

newOptions$suppressNoSuperAssignVar <- op

}

},

suppressUndefined = {

if (identical(op, TRUE) || identical(op, FALSE) ||

is.character(op)) {

August 23, 2023 compiler.nw 94

old <- c(old, list(suppressUndefined =

compilerOptions$suppressUndefined))

newOptions$suppressUndefined <- op

}

})

}

jitEnabled <- enableJIT(-1)

if (checkCompilerOptions(jitEnabled, newOptions))

for(n in names(newOptions)) # commit the new options

assign(n, newOptions[[n]], compilerOptions)

invisible(old)

}

For now, a .onLoad function is used to allow all warning to be suppressed. This is probably
useful for building packages, since the way lazy loading is done means variables defined in shared
libraries are not available and produce a raft of warnings. The .onLoad function also allows
undefined variables to be suppressed and the optimization level to be specified using environment
variables.

⟨.onLoad function⟩≡
.onLoad <- function(libname, pkgname) {

envAsLogical <- function(varName) {

value = Sys.getenv(varName)

if (value == "")

NA

else

switch(value,

"1"=, "TRUE"=, "true"=, "True"=, "yes"=, "Yes"= TRUE,

"0"=, "FALSE"=,"false"=,"False"=, "no"=, "No" = FALSE,

stop(gettextf("invalid environment variable value: %s==%s",

varName, value)))

}

val <- envAsLogical("R_COMPILER_SUPPRESS_ALL")

if (!is.na(val))

setCompilerOptions(suppressAll = val)

val <- envAsLogical("R_COMPILER_SUPPRESS_UNDEFINED")

if (!is.na(val))

setCompilerOptions(suppressUndefined = val)

val <- envAsLogical("R_COMPILER_SUPPRESS_NO_SUPER_ASSIGN_VAR")

if (!is.na(val))

setCompilerOptions(suppressNoSuperAssignVar = val)

if (Sys.getenv("R_COMPILER_OPTIMIZE") != "")

tryCatch({

lev <- as.integer(Sys.getenv("R_COMPILER_OPTIMIZE"))

if (0 <= lev && lev <= 3)

setCompilerOptions(optimize = lev)

}, error = function(e) e, warning = function(w) w)

}

When enableJIT is set to 3, loops should be compiled before executing. However, if the

August 23, 2023 compiler.nw 95

optimize option is set to 0 or 1, a compiled loop will call to the same primitive function as is
used by the AST interpretter (e.g. do for), and the compilation would run into infinite recursion.
checkCompilerOptions will detect invalid combinations of enableJIT and optimize and report a
warning.

⟨checkCompilerOptions function⟩≡
checkCompilerOptions <- function(jitEnabled, options = NULL) {

optimize <- getCompilerOption("optimize", options)

if (jitEnabled <= 2 || optimize >= 2)

TRUE

else {

stop(gettextf(

"invalid compiler options: optimize(==%d)<2 and jitEnabled(==%d)>2",

optimize, jitEnabled))

FALSE

}

}

15.5 Disassembler

A minimal disassembler is provided by disassemble. This is primarily useful for debugging the
compiler. A more readable output representation might be nice to have. It would also probably
make sense to give the result a class and write a print method.

⟨disassemble function⟩≡
disassemble <- function(code) {

.CodeSym <- as.name(".Code")

disasm.const<-function(x)

if (typeof(x)=="list" && length(x) > 0 && identical(x[[1]], .CodeSym))

disasm(x) else x

disasm <-function(code) {

code[[2]]<-bcDecode(code[[2]])

code[[3]]<-lapply(code[[3]], disasm.const)

code

}

if (typeof(code)=="closure") {

code <- .Internal(bodyCode(code))

if (typeof(code) != "bytecode")

stop("function is not compiled")

}

dput(disasm(.Internal(disassemble(code))))

}

The .Internal function disassemble extracts the numeric code vector and constant pool. The
function bcDecode uses the Opcodes.names array to translate the numeric opcodes into symbolic
ones. At this point not enough information is available in a reasonable place to also convert labels
back to symbolic form.

⟨bcDecode function⟩≡
bcDecode <- function(code) {

August 23, 2023 compiler.nw 96

n <- length(code)

ncode <- vector("list", n)

ncode[[1]] <- code[1] # version number

i <- 2

while (i <= n) {

name<-Opcodes.names[code[i]+1]

argc<-Opcodes.argc[[code[i]+1]]

ncode[[i]] <- as.name(name)

i<-i+1

if (argc > 0)

for (j in 1:argc) {

ncode[[i]]<-code[i]

i<-i+1

}

}

ncode

}

16 Improved subset and sub-assignment handling

This section describes changes that allow subset and subassign operations to inmost case be handled
without allocating list of the index arguments — the arguments are passed on the stack instead.
The function cmpSubsetDispatch is analogous to cmpDispatch described above. the dflt.op

argument passed information about the instruction to be emitted. For instructions designed for a
particular number of arguments the rank component is FALSE and no index count is emitted; this
is used for VECSUBSET.OP and MATSUBSET.OP instructions. If rank is TRUE, then the number of
indices is emitted as an operand; this is used by the SUBSET N.OP instruction.

⟨cmpSubsetDispatch function⟩≡
cmpSubsetDispatch <- function(start.op, dflt.op, e, cb, cntxt) {

if (dots.or.missing(e) || ! is.null(names(e)) || length(e) < 3)

cntxt$stop(gettext("cannot compile this expression"), cntxt,

loc = cb$savecurloc())

else {

oe <- e[[2]]

if (missing(oe))

cntxt$stop(gettext("cannot compile this expression"), cntxt,

loc = cb$savecurloc())

ncntxt <- make.argContext(cntxt)

ci <- cb$putconst(e)

label <- cb$makelabel()

cmp(oe, cb, ncntxt)

cb$putcode(start.op, ci, label)

indices <- e[-c(1, 2)]

cmpIndices(indices, cb, ncntxt)

if (dflt.op$rank) cb$putcode(dflt.op$code, ci, length(indices))

else cb$putcode(dflt.op$code, ci)

August 23, 2023 compiler.nw 97

cb$putlabel(label)

if (cntxt$tailcall) cb$putcode(RETURN.OP)

TRUE

}

}

Index expressions are compiled by

⟨cmpIndices function⟩≡
cmpIndices <- function(indices, cb, cntxt) {

n <- length(indices)

needInc <- FALSE

for (i in seq_along(indices))

if (i > 1 && checkNeedsInc(indices[[i]], cntxt)) {

needInc <- TRUE

break

}

for (i in seq_along(indices)) {

cmp(indices[[i]], cb, cntxt, TRUE)

if (needInc && i < n) cb$putcode(INCLNK.OP)

}

if (needInc) {

if (n == 2) cb$putcode(DECLNK.OP)

else if (n > 2) cb$putcode(DECLNK_N.OP, n - 1)

}

}

This adds instructions to increment and later decrement link counts on previously computed values
to prevent later computations from modifying earlier ones. Eventually it should be possible to
eliminate some of these increment/decrement instructions in an optimization phase.

The subsetting handlers fall back to using cmpDispatch if there are any named arguments or if
an error would need to be signaled (we could issue a compiler warning at this point as well). If all
arguments are unnamed and there are no dots then cmpSubsetDispatch is used; the instruction
emitted depends on the argument count.

⟨inline handlers for subsetting⟩≡
setInlineHandler("[", function(e, cb, cntxt) {

if (dots.or.missing(e) || ! is.null(names(e)) || length(e) < 3)

cmpDispatch(STARTSUBSET.OP, DFLTSUBSET.OP, e, cb, cntxt) ## punt

else {

nidx <- length(e) - 2;

if (nidx == 1)

dflt.op <- list(code = VECSUBSET.OP, rank = FALSE)

else if (nidx == 2)

dflt.op <- list(code = MATSUBSET.OP, rank = FALSE)

else

dflt.op <- list(code = SUBSET_N.OP, rank = TRUE)

cmpSubsetDispatch(STARTSUBSET_N.OP, dflt.op, e, cb, cntxt)

}

})

August 23, 2023 compiler.nw 98

setInlineHandler("[[", function(e, cb, cntxt) {

if (dots.or.missing(e) || ! is.null(names(e)) || length(e) < 3)

cmpDispatch(STARTSUBSET2.OP, DFLTSUBSET2.OP, e, cb, cntxt) ## punt

else {

nidx <- length(e) - 2;

if (nidx == 1)

dflt.op <- list(code = VECSUBSET2.OP, rank = FALSE)

else if (nidx == 2)

dflt.op <- list(code = MATSUBSET2.OP, rank = FALSE)

else

dflt.op <- list(code = SUBSET2_N.OP, rank = TRUE)

cmpSubsetDispatch(STARTSUBSET2_N.OP, dflt.op, e, cb, cntxt)

}

})

Similarly, cmpSubassignDispatch is a variant of cmpSetterDispatch that passes index argu-
ments on the stack and emits an index count if necessary.

⟨cmpSubassignDispatch function⟩≡
cmpSubassignDispatch <- function(start.op, dflt.op, afun, place, call, cb,

cntxt) {

if (dots.or.missing(place) || ! is.null(names(place)) || length(place) < 3)

cntxt$stop(gettext("cannot compile this expression"), cntxt,

loc = cb$savecurloc())

else {

ci <- cb$putconst(call)

label <- cb$makelabel()

cb$putcode(start.op, ci, label)

indices <- place[-c(1, 2)]

cmpIndices(indices, cb, cntxt)

if (dflt.op$rank) cb$putcode(dflt.op$code, ci, length(indices))

else cb$putcode(dflt.op$code, ci)

cb$putlabel(label)

TRUE

}

}

Again the handlers fall back to cmpSetterDispatch if there are named arguments or other
complication.

⟨inline handlers for subassignment⟩≡
setSetterInlineHandler("[<-", function(afun, place, origplace, call, cb, cntxt) {

if (dots.or.missing(place) || ! is.null(names(place)) || length(place) < 3)

cmpSetterDispatch(STARTSUBASSIGN.OP, DFLTSUBASSIGN.OP,

afun, place, call, cb, cntxt) ## punt

else {

nidx <- length(place) - 2

if (nidx == 1)

dflt.op <- list(code = VECSUBASSIGN.OP, rank = FALSE)

else if (nidx == 2)

August 23, 2023 compiler.nw 99

dflt.op <- list(code = MATSUBASSIGN.OP, rank = FALSE)

else

dflt.op <- list(code = SUBASSIGN_N.OP, rank = TRUE)

cmpSubassignDispatch(STARTSUBASSIGN_N.OP, dflt.op, afun, place, call,

cb, cntxt)

}

})

setSetterInlineHandler("[[<-", function(afun, place, origplace, call, cb, cntxt) {

if (dots.or.missing(place) || ! is.null(names(place)) || length(place) < 3)

cmpSetterDispatch(STARTSUBASSIGN2.OP, DFLTSUBASSIGN2.OP,

afun, place, call, cb, cntxt) ## punt

else {

nidx <- length(place) - 2

if (nidx == 1)

dflt.op <- list(code = VECSUBASSIGN2.OP, rank = FALSE)

else if (nidx == 2)

dflt.op <- list(code = MATSUBASSIGN2.OP, rank = FALSE)

else

dflt.op <- list(code = SUBASSIGN2_N.OP, rank = TRUE)

cmpSubassignDispatch(STARTSUBASSIGN2_N.OP, dflt.op, afun, place, call,

cb, cntxt)

}

})

Similarly, again, cmpSubsetGetterDispatch is a variant of cmpGetterDispatch that passes
index arguments on the stack.

⟨cmpSubsetGetterDispatch function⟩≡
cmpSubsetGetterDispatch <- function(start.op, dflt.op, call, cb, cntxt) {

if (dots.or.missing(call) || ! is.null(names(call)) || length(call) < 3)

cntxt$stop(gettext("cannot compile this expression"), cntxt,

loc = cb$savecurloc())

else {

ci <- cb$putconst(call)

end.label <- cb$makelabel()

cb$putcode(DUP2ND.OP)

cb$putcode(start.op, ci, end.label)

indices <- call[-c(1, 2)]

cmpIndices(indices, cb, cntxt)

if (dflt.op$rank)

cb$putcode(dflt.op$code, ci, length(indices))

else

cb$putcode(dflt.op$code, ci)

cb$putlabel(end.label)

cb$putcode(SWAP.OP)

TRUE

}

}

August 23, 2023 compiler.nw 100

And again the handlers fall back to cmpGetterDispatch if necessary.

⟨inline handlers for subset getters⟩≡
setGetterInlineHandler("[", function(call, cb, cntxt) {

if (dots.or.missing(call) || ! is.null(names(call)) || length(call) < 3)

cmpGetterDispatch(STARTSUBSET.OP, DFLTSUBSET.OP, call, cb, cntxt)

else {

nidx <- length(call) - 2;

if (nidx == 1)

dflt.op <- list(code = VECSUBSET.OP, rank = FALSE)

else if (nidx == 2)

dflt.op <- list(code = MATSUBSET.OP, rank = FALSE)

else

dflt.op <- list(code = SUBSET_N.OP, rank = TRUE)

cmpSubsetGetterDispatch(STARTSUBSET_N.OP, dflt.op, call, cb, cntxt)

}

})

setGetterInlineHandler("[[", function(call, cb, cntxt) {

if (dots.or.missing(call) || ! is.null(names(call)) || length(call) < 3)

cmpGetterDispatch(STARTSUBSET2.OP, DFLTSUBSET2.OP, call, cb, cntxt)

else {

nidx <- length(call) - 2;

if (nidx == 1)

dflt.op <- list(code = VECSUBSET2.OP, rank = FALSE)

else if (nidx == 2)

dflt.op <- list(code = MATSUBSET2.OP, rank = FALSE)

else

dflt.op <- list(code = SUBSET2_N.OP, rank = TRUE)

cmpSubsetGetterDispatch(STARTSUBSET2_N.OP, dflt.op, call, cb, cntxt)

}

})

17 Discussion and future directions

Despite its long gestation period this compiler should be viewed as a first pass at creating a byte
code compiler for R. The compiler itself is very simple in design as a single pass compiler with no
separate optimization phases. Similarly the virtual machine uses a very simple stack design. While
the compiler already achieves some useful performance improvements on loop-intensive code, more
can be achieved with more sophisticated approaches. This will be explored in future work.

A major objective of this first version was to reproduce R’s interpreted semantics with as few
departures as possible while at the same time optimizing a number of aspect of the execution
process. The inlining rules controlled by an optimization level setting seem to provide a good way
of doing this, and the default optimization setting seems to be reasonably effective. Mechanisms
for adjusting the default settings via declarations will be explored and added in the near future.

Future versions of the compiler and the engine will explore a number of alternative designs.
Switching to a register-based virtual machine will be explored fairly soon. Preliminary experiments

August 23, 2023 compiler.nw 101

suggest that this can provide significant improvements in the case of tight loops by allowing allo-
cation of intermediate results to be avoided in many cases. It may be possible at least initially to
keep the current compiler ant just translate the stack-based machine code to a register-based code.

Another direction that will be explored is whether sequences of arithmetic and other numerical
operations can be fused and possibly vectorized. Again preliminary experiments are promising, but
more exploration is needed.

Other improvements to be examined may affect interpreted code as much as compiled code.
These include more efficient environment representations and more efficient calling conventions.

A General utility functions

This appendix provides a few general utility functions.
The utility function pasteExpr is used in the error messages.

⟨pasteExpr function⟩≡
pasteExpr <- function(e, prefix = "\n ") {

de <- deparse(e)

if (length(de) == 1) sQuote(de)

else paste(prefix, deparse(e), collapse="")

}

The function dots.or.missing checks the argument list for any missing or ... arguments:

⟨dots.or.missing function⟩≡
dots.or.missing <- function(args) {

for (i in 1:length(args)) {

a <-args[[i]]

if (missing(a)) return(TRUE) #**** better test?

if (typeof(a) == "symbol" && a == "...") return(TRUE)

}

return(FALSE)

}

The function anyDots is defined as

⟨anyDots function⟩≡
anyDots <- function(args) {

for (i in 1:length(args)) {

a <-args[[i]]

if (! missing(a) && typeof(a) == "symbol" && a == "...")

return(TRUE)

}

return(FALSE)

}

The utility function is.ddsym is used to recognize symbols of the form ..1, ..2, and so on.

⟨is.ddsym function⟩≡
is.ddsym <- function(name) {

(is.symbol(name) || is.character(name)) &&

length(grep("^\\.\\.[0-9]+$", as.character(name))) != 0

}

August 23, 2023 compiler.nw 102

missingArgs takes an argument list for a call a logical vector indicating for each argument
whether it is empty (missing) or not.

⟨missingArgs function⟩≡
missingArgs <- function(args) {

val <- logical(length(args))

for (i in seq_along(args)) {

a <- args[[i]]

if (missing(a))

val[i] <- TRUE

else

val[i] <- FALSE

}

val

}

B Environment utilities

This appendix presents some utilities for computations on environments.
The function frameTypes takes an environment argument and returns a character vector with

elements for each frame in the environment classifying the frame as local, namespace, or global.
The environment is assumed to be a standard evaluation environment that contains .GlobalEnv
as one of its parents. It does this by computing the number of local, namespace, and global frames
and then generating the result using rep.

⟨frameTypes function⟩≡
frameTypes <- function(env) {

top <- topenv(env)

empty <- emptyenv()

⟨find the number nl of local frames⟩
⟨find the number nn of namespace frames⟩
⟨find the number ng of global frames⟩
rep(c("local", "namespace", "global"), c(nl, nn, ng))

}

The number of local frames is computes by marching down the parent frames with parent.env

until the top level environment is reached.

⟨find the number nl of local frames⟩≡
nl <- 0

while (! identical(env, top)) {

if (isNamespace(env))

stop("namespace found within local environments")

env <- parent.env(env)

nl <- nl + 1

if (identical(env, empty))

stop("not a proper evaluation environment")

}

August 23, 2023 compiler.nw 103

The number of namespace frames is computed by continuing down the parent frames until .GlobalEnv
is reached.

⟨find the number nn of namespace frames⟩≡
nn <- 0

if (isNamespace(env)) {

while (! identical(env, .GlobalEnv)) {

if (!isNamespace(env)) {

name <- attr(env, "name")

if (!is.character(name) || !startsWith(name, "imports:"))

stop("non-namespace found within namespace environments")

}

env <- parent.env(env)

nn <- nn + 1

if (identical(env, empty))

stop("not a proper evaluation environment")

}

}

Finally the number of global frames is computed by continuing until the empty environment is
reached. An alternative would be to compute the length of the result returned by search

⟨find the number ng of global frames⟩≡
ng <- 0

while (! identical(env, empty)) {

if (isNamespace(env))

stop("namespace found within global environments")

env <- parent.env(env)

ng <- ng + 1

}

The function findHomeNS takes a variable name and a namespace frame, or a namespace imports
frame, and returns the namespace frame in which the variable was originally defined, if any. The
code assumes that renaming has not been used (it may no longer be supported in the namespace
implementation in any case). Just in case, an attempt is made to check for renaming. The result
returned is the namaspace frame for the namespace in which the variable was defined or NULL if the
variable was not defined in the specified namespace or one of its imports, or if the home namespace
cannot be determined.

⟨findHomeNS function⟩≡
Given a symbol name and a namespace environment (or a namespace

imports environment) find the namespace in which the symbol’s value

was originally defined. Returns NULL if the symbol is not found via

the namespace.

findHomeNS <- function(sym, ns, cntxt) {

⟨if ns is an imports frame find the corresponding namespace⟩
if (exists(sym, ns, inherits = FALSE))

ns

else if (exists(".__NAMESPACE__.", ns, inherits = FALSE)) {

⟨search the imports for sym⟩
NULL

August 23, 2023 compiler.nw 104

}

else NULL

}

If the ns argument is not a namespace frame it should be the imports frame of a namespace.
Such an imports frame should have a name attribute or the form "imports:foo" it it is associated
with namespace "foo". This is used to find the namespace frame that owns the imports frame in
this case, and this frames is then assigned to ns.

⟨if ns is an imports frame find the corresponding namespace⟩≡
if (! isNamespace(ns)) {

As a convenience this allows for ’ns’ to be the imports fame

of a namespace. It appears that these now have a ’name’

attribute of the form ’imports:foo’ if ’foo’ is the

namespace.

name <- attr(ns, "name")

if (is.null(name))

cntxt$stop("’ns’ must be a namespace or a namespace imports environment",

cntxt)

ns <- getNamespace(sub("imports:", "", attr(ns, "name")))

}

The imports are searched in reverse order since in the case of name conflicts the last one
imported will take precedence. Full imports via an import directive have to be handled differently
than selective imports created with importFrom directives.

⟨search the imports for sym⟩≡
imports <- get(".__NAMESPACE__.", ns)$imports

for (i in rev(seq_along(imports))) {

iname <- names(imports)[i]

ins <- getNamespace(iname)

if (identical(imports[[i]], TRUE)) {

⟨search in a full import⟩
}

else {

⟨search in a selective import⟩
}

}

If an entry in the imports specification for the import source namespace ins has value TRUE,
then all exports of the ins have been imported. If sym is in the exports then the result of a recursive
call to findHomeNS is returned.

⟨search in a full import⟩≡
if (identical(ins, .BaseNamespaceEnv))

exports <- .BaseNamespaceEnv

else

exports <- get(".__NAMESPACE__.", ins)$exports

if (exists(sym, exports, inherits = FALSE))

return(findHomeNS(sym, ins, cntxt))

August 23, 2023 compiler.nw 105

For selective imports the imports entry is a named character vector mapping export name to
import name. In the absence of renaming the names should match the values; if this is not the case
NULL is returned. Otherwise, a match results again in returning a recursive call to findHomeNS.

⟨search in a selective import⟩≡
exports <- imports[[i]]

pos <- match(sym, names(exports), 0)

if (pos) {

If renaming has been used things get too

confusing so return NULL. (It is not clear if

renaming this is still supported by the

namespace code.)

if (sym == exports[pos])

return(findHomeNS(sym, ins, cntxt))

else

return(NULL)

}

Given a package package frame from the global environment the function packFrameName re-
turns the associated package name, which is computed from the name attribute.

⟨packFrameName function⟩≡
packFrameName <- function(frame) {

fname <- attr(frame, "name")

if (is.character(fname))

sub("package:", "", fname)

else if (identical(frame , baseenv()))

"base"

else ""

}

For a namespace frame the function nsName retrieves the namespace name from the namespace
information structure.

⟨nsName function⟩≡
nsName <- function(ns) {

if (identical(ns, .BaseNamespaceEnv))

"base"

else {

name <- ns$.__NAMESPACE__.$spec["name"]

if (is.character(name))

as.character(name) ## strip off names

else ""

}

}

C Experimental utilities

This section presents two experimental utililities that, for now, are not exported. The first is
a simple byte code profiler. This requires that the file eval.c be compiled with BC PROFILING

August 23, 2023 compiler.nw 106

enabled, which on gcc-compatible compilers will disable threaded code. The byte code profiler
uses the profile timer to record the active byte code instruction at interrupt time. The function
bcprof runs the profiler while evaluating its argument expression and returns a summary of the
counts.

⟨bcprof function⟩≡
bcprof <- function(expr) {

.Internal(bcprofstart())

tryCatch(expr,

finally = .Internal(bcprofstop()))

val <- structure(.Internal(bcprofcounts()),

names = Opcodes.names)

hits <- sort(val[val > 0], decreasing = TRUE)

pct <- round(100 * hits / sum(hits), 1)

data.frame(hits = hits, pct = pct)

}

The second utility is a simple interface to the code building mechanism that may help with
experimenting with code optimizations.

⟨asm function⟩≡
asm <- function(e, gen, env = .GlobalEnv, options = NULL) {

cenv <- makeCenv(env)

cntxt <- make.toplevelContext(cenv, options)

cntxt$env <- addCenvVars(cenv, findLocals(e, cntxt))

genCode(e, cntxt, gen = gen)

}

D Opcode constants

D.1 Symbolic opcode names

⟨opcode definitions⟩≡
BCMISMATCH.OP <- 0

RETURN.OP <- 1

GOTO.OP <- 2

BRIFNOT.OP <- 3

POP.OP <- 4

DUP.OP <- 5

PRINTVALUE.OP <- 6

STARTLOOPCNTXT.OP <- 7

ENDLOOPCNTXT.OP <- 8

DOLOOPNEXT.OP <- 9

DOLOOPBREAK.OP <- 10

STARTFOR.OP <- 11

STEPFOR.OP <- 12

ENDFOR.OP <- 13

SETLOOPVAL.OP <- 14

INVISIBLE.OP <- 15

August 23, 2023 compiler.nw 107

LDCONST.OP <- 16

LDNULL.OP <- 17

LDTRUE.OP <- 18

LDFALSE.OP <- 19

GETVAR.OP <- 20

DDVAL.OP <- 21

SETVAR.OP <- 22

GETFUN.OP <- 23

GETGLOBFUN.OP <- 24

GETSYMFUN.OP <- 25

GETBUILTIN.OP <- 26

GETINTLBUILTIN.OP <- 27

CHECKFUN.OP <- 28

MAKEPROM.OP <- 29

DOMISSING.OP <- 30

SETTAG.OP <- 31

DODOTS.OP <- 32

PUSHARG.OP <- 33

PUSHCONSTARG.OP <- 34

PUSHNULLARG.OP <- 35

PUSHTRUEARG.OP <- 36

PUSHFALSEARG.OP <- 37

CALL.OP <- 38

CALLBUILTIN.OP <- 39

CALLSPECIAL.OP <- 40

MAKECLOSURE.OP <- 41

UMINUS.OP <- 42

UPLUS.OP <- 43

ADD.OP <- 44

SUB.OP <- 45

MUL.OP <- 46

DIV.OP <- 47

EXPT.OP <- 48

SQRT.OP <- 49

EXP.OP <- 50

EQ.OP <- 51

NE.OP <- 52

LT.OP <- 53

LE.OP <- 54

GE.OP <- 55

GT.OP <- 56

AND.OP <- 57

OR.OP <- 58

NOT.OP <- 59

DOTSERR.OP <- 60

STARTASSIGN.OP <- 61

ENDASSIGN.OP <- 62

STARTSUBSET.OP <- 63

August 23, 2023 compiler.nw 108

DFLTSUBSET.OP <- 64

STARTSUBASSIGN.OP <- 65

DFLTSUBASSIGN.OP <- 66

STARTC.OP <- 67

DFLTC.OP <- 68

STARTSUBSET2.OP <- 69

DFLTSUBSET2.OP <- 70

STARTSUBASSIGN2.OP <- 71

DFLTSUBASSIGN2.OP <- 72

DOLLAR.OP <- 73

DOLLARGETS.OP <- 74

ISNULL.OP <- 75

ISLOGICAL.OP <- 76

ISINTEGER.OP <- 77

ISDOUBLE.OP <- 78

ISCOMPLEX.OP <- 79

ISCHARACTER.OP <- 80

ISSYMBOL.OP <- 81

ISOBJECT.OP <- 82

ISNUMERIC.OP <- 83

VECSUBSET.OP <- 84

MATSUBSET.OP <- 85

VECSUBASSIGN.OP <- 86

MATSUBASSIGN.OP <- 87

AND1ST.OP <- 88

AND2ND.OP <- 89

OR1ST.OP <- 90

OR2ND.OP <- 91

GETVAR_MISSOK.OP <- 92

DDVAL_MISSOK.OP <- 93

VISIBLE.OP <- 94

SETVAR2.OP <- 95

STARTASSIGN2.OP <- 96

ENDASSIGN2.OP <- 97

SETTER_CALL.OP <- 98

GETTER_CALL.OP <- 99

SWAP.OP <- 100

DUP2ND.OP <- 101

SWITCH.OP <- 102

RETURNJMP.OP <- 103

STARTSUBSET_N.OP <- 104

STARTSUBASSIGN_N.OP <- 105

VECSUBSET2.OP <- 106

MATSUBSET2.OP <- 107

VECSUBASSIGN2.OP <- 108

MATSUBASSIGN2.OP <- 109

STARTSUBSET2_N.OP <- 110

STARTSUBASSIGN2_N.OP <- 111

August 23, 2023 compiler.nw 109

SUBSET_N.OP <- 112

SUBSET2_N.OP <- 113

SUBASSIGN_N.OP <- 114

SUBASSIGN2_N.OP <-115

LOG.OP <- 116

LOGBASE.OP <- 117

MATH1.OP <- 118

DOTCALL.OP <- 119

COLON.OP <- 120

SEQALONG.OP <- 121

SEQLEN.OP <- 122

BASEGUARD.OP <- 123

INCLNK.OP <- 124

DECLNK.OP <- 125

DECLNK_N.OP <- 126

INCLNKSTK.OP <- 127

DECLNKSTK.OP <- 128

D.2 Instruction argument counts and names

⟨opcode argument counts⟩≡
Opcodes.argc <- list(

BCMISMATCH.OP = 0,

RETURN.OP = 0,

GOTO.OP = 1,

BRIFNOT.OP = 2,

POP.OP = 0,

DUP.OP = 0,

PRINTVALUE.OP = 0,

STARTLOOPCNTXT.OP = 2,

ENDLOOPCNTXT.OP = 1,

DOLOOPNEXT.OP = 0,

DOLOOPBREAK.OP = 0,

STARTFOR.OP = 3,

STEPFOR.OP = 1,

ENDFOR.OP = 0,

SETLOOPVAL.OP = 0,

INVISIBLE.OP = 0,

LDCONST.OP = 1,

LDNULL.OP = 0,

LDTRUE.OP = 0,

LDFALSE.OP = 0,

GETVAR.OP = 1,

DDVAL.OP = 1,

SETVAR.OP = 1,

GETFUN.OP = 1,

GETGLOBFUN.OP = 1,

GETSYMFUN.OP = 1,

August 23, 2023 compiler.nw 110

GETBUILTIN.OP = 1,

GETINTLBUILTIN.OP = 1,

CHECKFUN.OP = 0,

MAKEPROM.OP = 1,

DOMISSING.OP = 0,

SETTAG.OP = 1,

DODOTS.OP = 0,

PUSHARG.OP = 0,

PUSHCONSTARG.OP = 1,

PUSHNULLARG.OP = 0,

PUSHTRUEARG.OP = 0,

PUSHFALSEARG.OP = 0,

CALL.OP = 1,

CALLBUILTIN.OP = 1,

CALLSPECIAL.OP = 1,

MAKECLOSURE.OP = 1,

UMINUS.OP = 1,

UPLUS.OP = 1,

ADD.OP = 1,

SUB.OP = 1,

MUL.OP = 1,

DIV.OP = 1,

EXPT.OP = 1,

SQRT.OP = 1,

EXP.OP = 1,

EQ.OP = 1,

NE.OP = 1,

LT.OP = 1,

LE.OP = 1,

GE.OP = 1,

GT.OP = 1,

AND.OP = 1,

OR.OP = 1,

NOT.OP = 1,

DOTSERR.OP = 0,

STARTASSIGN.OP = 1,

ENDASSIGN.OP = 1,

STARTSUBSET.OP = 2,

DFLTSUBSET.OP = 0,

STARTSUBASSIGN.OP = 2,

DFLTSUBASSIGN.OP = 0,

STARTC.OP = 2,

DFLTC.OP = 0,

STARTSUBSET2.OP = 2,

DFLTSUBSET2.OP = 0,

STARTSUBASSIGN2.OP = 2,

DFLTSUBASSIGN2.OP = 0,

DOLLAR.OP = 2,

August 23, 2023 compiler.nw 111

DOLLARGETS.OP = 2,

ISNULL.OP = 0,

ISLOGICAL.OP = 0,

ISINTEGER.OP = 0,

ISDOUBLE.OP = 0,

ISCOMPLEX.OP = 0,

ISCHARACTER.OP = 0,

ISSYMBOL.OP = 0,

ISOBJECT.OP = 0,

ISNUMERIC.OP = 0,

VECSUBSET.OP = 1,

MATSUBSET.OP = 1,

VECSUBASSIGN.OP = 1,

MATSUBASSIGN.OP = 1,

AND1ST.OP = 2,

AND2ND.OP = 1,

OR1ST.OP = 2,

OR2ND.OP = 1,

GETVAR_MISSOK.OP = 1,

DDVAL_MISSOK.OP = 1,

VISIBLE.OP = 0,

SETVAR2.OP = 1,

STARTASSIGN2.OP = 1,

ENDASSIGN2.OP = 1,

SETTER_CALL.OP = 2,

GETTER_CALL.OP = 1,

SWAP.OP = 0,

DUP2ND.OP = 0,

SWITCH.OP = 4,

RETURNJMP.OP = 0,

STARTSUBSET_N.OP = 2,

STARTSUBASSIGN_N.OP = 2,

VECSUBSET2.OP = 1,

MATSUBSET2.OP = 1,

VECSUBASSIGN2.OP = 1,

MATSUBASSIGN2.OP = 1,

STARTSUBSET2_N.OP = 2,

STARTSUBASSIGN2_N.OP = 2,

SUBSET_N.OP = 2,

SUBSET2_N.OP = 2,

SUBASSIGN_N.OP = 2,

SUBASSIGN2_N.OP = 2,

LOG.OP = 1,

LOGBASE.OP = 1,

MATH1.OP = 2,

DOTCALL.OP = 2,

COLON.OP = 1,

SEQALONG.OP = 1,

August 23, 2023 compiler.nw 112

SEQLEN.OP = 1,

BASEGUARD.OP = 2,

INCLNK.OP = 0,

DECLNK.OP = 0,

DECLNK_N.OP = 1,

INCLNKSTK.OP = 0,

DECLNKSTK.OP = 0

)

⟨opcode names⟩≡
Opcodes.names <- names(Opcodes.argc)

E Implementation file

⟨cmp.R⟩≡
Automatically generated from ../noweb/compiler.nw.

#

File src/library/compiler/R/cmp.R

Part of the R package, https://www.R-project.org

Copyright (C) 2001-2014 Luke Tierney

#

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

#

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

#

A copy of the GNU General Public License is available at

https://www.R-project.org/Licenses/

##

Compiler options

##

⟨compiler options data base⟩

⟨getCompilerOption function⟩

##

General Utilities

##

August 23, 2023 compiler.nw 113

⟨pasteExpr function⟩

⟨dots.or.missing function⟩

⟨anyDots function⟩

⟨is.ddsym function⟩

⟨missingArgs function⟩

##

Environment utilities

##

⟨frameTypes function⟩

⟨findHomeNS function⟩

⟨packFrameName function⟩

⟨nsName function⟩

##

Finding possible local variables

##

⟨getAssignedVar function⟩

⟨findLocals1 function⟩

⟨findLocalsList1 function⟩

⟨findLocals function⟩

⟨findLocalsList function⟩

##

Compilation environment implementation

##

⟨makeCenv function⟩

⟨addCenvVars function⟩

August 23, 2023 compiler.nw 114

⟨addCenvFrame function⟩

⟨findCenvVar function⟩

⟨isBaseVar function⟩

⟨funEnv function⟩

⟨findLocVar function⟩

⟨findFunDef function⟩

⟨findVar function⟩

##

Constant folding

##

⟨maxConstSize and constModes definitions⟩

⟨constNames definition⟩

⟨checkConst function⟩

⟨constantFoldSym function⟩

⟨getFoldFun function⟩

⟨constantFoldCall function⟩

⟨constantFold function⟩

⟨foldFuns definition⟩

⟨languageFuns definition⟩

##

Opcode constants

##

⟨opcode argument counts⟩

⟨opcode names⟩

⟨opcode definitions⟩

August 23, 2023 compiler.nw 115

##

Code buffer implementation

##

⟨source location tracking functions⟩

⟨make.codeBuf function⟩

⟨codeBufCode function⟩

⟨genCode function⟩

##

Compiler contexts

##

⟨make.toplevelContext function⟩

⟨make.callContext function⟩

⟨make.promiseContext function⟩

⟨make.functionContext function⟩

⟨make.nonTailCallContext function⟩

⟨make.argContext function⟩

⟨make.noValueContext function⟩

⟨make.loopContext function⟩

##

Compiler top level

##

⟨cmp function⟩

⟨cmpConst function⟩

⟨cmpSym function⟩

⟨cmpCall function⟩

⟨cmpCallSymFun function⟩

August 23, 2023 compiler.nw 116

⟨cmpCallExprFun function⟩

⟨cmpCallArgs function⟩

⟨cmpConstArg⟩

⟨checkCall function⟩

**** need to handle ... and ..n arguments specially

**** separate call opcode for calls with named args?

**** for (a in e[[-1]]) ... goes into infinite loop

⟨cmpTag function⟩

⟨mayCallBrowser function⟩

⟨mayCallBrowserList function⟩

##

Inlining mechanism

##

⟨inline handler implementation⟩

tryInline implements the rule permitting inlining as they stand now:

Inlining is controlled by the optimize compiler option, with possible

values 0, 1, 2, 3.

⟨getInlineInfo function⟩

⟨tryInline function⟩

##

Inline handlers for some SPECIAL functions

##

⟨inlining handler for function⟩

⟨inlining handler for left brace function⟩

⟨inlining handler for if⟩

⟨inlining handler for &&⟩

⟨inlining handler for ||⟩

August 23, 2023 compiler.nw 117

##

Inline handlers for assignment expressions

##

⟨setter inlining mechanism⟩

⟨getter inlining mechanism⟩

⟨cmpAssign function⟩

⟨flattenPlace function⟩

⟨cmpGetterCall function⟩

⟨checkAssign function⟩

⟨cmpSymbolAssign function⟩

⟨cmpComplexAssign function⟩

⟨cmpSetterCall function⟩

⟨getAssignFun function⟩

⟨cmpSetterDispatch function⟩

⟨inlining handlers for <-, =, and <<-⟩

⟨setter inline handler for $<-⟩

⟨setter inline handlers for [<- and [[<- ⟩

⟨cmpGetterDispatch function⟩

⟨getter inline handler for $⟩

⟨getter inline handlers for [and [[⟩

##

Inline handlers for loops

##

⟨inlining handlers for next and break⟩

⟨isLoopStopFun function⟩

August 23, 2023 compiler.nw 118

⟨isLoopTopFun function⟩

⟨checkSkipLoopCntxtList function⟩

⟨checkSkipLoopCntxt function⟩

⟨inlining handler for repeat loops⟩

⟨cmpRepeatBody function⟩

⟨inlining handler for while loops⟩

⟨cmpWhileBody function⟩

⟨inlining handler for for loops⟩

⟨cmpForBody function⟩

##

Inline handlers for one and two argument primitives

##

⟨cmpPrim1 function⟩

⟨checkNeedsInc function⟩

⟨cmpPrim2 function⟩

⟨inline handlers for + and -⟩

⟨inline handlers for * and /⟩

⟨inline handlers for ^, exp, and sqrt⟩

⟨inline handler for log⟩

⟨list of one argument math functions⟩

⟨cmpMath1 function⟩

⟨inline one argument math functions⟩

⟨inline handlers for comparison operators⟩

⟨inline handlers for & and |⟩

⟨inline handler for !⟩

August 23, 2023 compiler.nw 119

##

Inline handlers for the left parenthesis function

##

⟨inlining handler for (⟩

##

Inline handlers for general BUILTIN and SPECIAL functions

##

⟨cmpBuiltin function⟩

⟨cmpBuiltinArgs function⟩

⟨cmpSpecial function⟩

⟨inlining handler for .Internal⟩

##

Inline handlers for subsetting and related operators

##

⟨cmpDispatch function⟩

⟨inlining handlers for some dispatching SPECIAL functions⟩

⟨inlining handler for $⟩

##

Inline handler for local() and return() functions

##

⟨inlining handler for local function⟩

⟨inlining handler for return function⟩

##

Inline handlers for the family of is.xyz primitives

##

⟨cmpIs function⟩

August 23, 2023 compiler.nw 120

⟨inlining handlers for is.xyz functions⟩

##

Default inline handlers for BUILTIN and SPECIAL functions

##

⟨install default inlining handlers⟩

##

Inline handlers for some .Internal functions

##

⟨simpleFormals function⟩

⟨simpleArgs function⟩

⟨is.simpleInternal function⟩

⟨inlineSimpleInternalCall function⟩

⟨cmpSimpleInternal function⟩

⟨inline safe simple .Internal functions from base⟩

⟨inline safe simple .Internal functions from stats⟩

##

Inline handler for switch

##

⟨findActionIndex function⟩

⟨inline handler for switch⟩

##

Inline handler for .Call

##

⟨inline handler for .Call⟩

##

Inline handlers for generating integer sequences

##

August 23, 2023 compiler.nw 121

⟨inline handlers for integer sequences⟩

##

Inline handlers to control warnings

##

⟨cmpMultiColon function⟩

⟨inlining handlers for :: and :::⟩

⟨setter inlining handler for @<-⟩

⟨inlining handler for with⟩

⟨inlining handler for require⟩

##

Compiler warnings

##

⟨suppressAll function⟩

⟨suppressNoSuperAssignVar function⟩

⟨suppressUndef function⟩

⟨notifyLocalFun function⟩

⟨notifyUndefFun function⟩

⟨notifyUndefVar function⟩

⟨notifyNoSuperAssignVar function⟩

⟨notifyWrongArgCount function⟩

⟨notifyWrongDotsUse function⟩

⟨notifyWrongBreakNext function⟩

⟨notifyBadCall function⟩

⟨notifyBadAssignFun function⟩

⟨notifyMultipleSwitchDefaults function⟩

August 23, 2023 compiler.nw 122

⟨notifyNoSwitchcases function⟩

⟨notifyAssignSyntacticFun function⟩

⟨notifyCompilerError function⟩

##

Compiler interface

##

⟨compile function⟩

⟨cmpfun function⟩

⟨tryCmpfun function⟩

⟨tryCompile function⟩

⟨cmpframe function⟩

⟨cmplib function⟩

⟨cmpfile function⟩

⟨loadcmp function⟩

⟨enableJIT function⟩

⟨compilePKGS function⟩

⟨setCompilerOptions function⟩

⟨.onLoad function⟩

⟨checkCompilerOptions function⟩

##

Disassembler

##

⟨bcDecode function⟩

⟨disassemble function⟩

August 23, 2023 compiler.nw 123

##

Experimental Utilities

##

⟨bcprof function⟩

⟨asm function⟩

##

Improved subset and subassign handling

##

⟨cmpIndices function⟩

⟨cmpSubsetDispatch function⟩

⟨inline handlers for subsetting⟩

⟨cmpSubassignDispatch function⟩

⟨inline handlers for subassignment⟩

⟨cmpSubsetGetterDispatch function⟩

⟨inline handlers for subset getters⟩

	The compiler interface
	Explicit compilation
	Implicit compilation

	The basic compiler
	The compiler top level
	Basic code buffer interface
	The recursive code generator
	Compiling constant expressions
	Compiling variable references
	Compiling function calls
	Compiling call arguments
	Discussion

	The code buffer
	Compiler contexts
	Top level contexts
	Other compiler contexts
	Compiler options
	Compiler notifications

	Compilation environments
	Representing compilation environments
	Identifying possible local variables

	The inlining mechanism
	Default inlining rules for primitives
	BUILTIN functions
	SPECIAL functions

	Some simple inlining handlers
	The left brace sequencing function
	The closure constructor function
	The left parenthesis function
	The .Internal function
	The local function
	The return function

	Branching and labels
	Inlining handler for if expressions
	Inlining handlers for && and || expressions

	Loops
	repeat loops
	while loops
	for loops
	Avoiding runtime loop contexts

	More inlining
	Basic arithmetic expressions
	Logical operators
	Subsetting and related operations
	Inlining simple .Internal functions
	Inlining is.xyz functions
	Inline handler for calling C functions
	Inline handlers for generating integer sequences
	Inlining handlers for controlling warnings

	The switch function
	Assignments expressions
	Simple assignment expressions
	Complex assignment expressions
	Compiling setter calls
	Compiling getter calls

	Constant folding
	More top level functions
	Compiling closures
	Compiling and loading files
	Enabling implicit compilation
	Setting compiler options
	Disassembler

	Improved subset and sub-assignment handling
	Discussion and future directions
	General utility functions
	Environment utilities
	Experimental utilities
	Opcode constants
	Symbolic opcode names
	Instruction argument counts and names

	Implementation file

