
Algorithmic Excursions: Topics in Computer Science II Spring 2016

Lecture 15 & 16 : ε-net(contd.), ε-approximation and Discrepancy
Lecturer: Kasturi Varadarajan Scribe: T. Alsulaiman

Let σ =< a1, a2, ..., am > be a stream; each ai is a pair (j, c), where j ∈ [n] and c is an integer–meaning of
ai is: update fj ← fj + c, where i ∈ [1..m].

Algorithm 1 Sketch Algorithm

1. Initialize: C[0..k]← [0..0] //count vector
2. Choose random hash function h : [n]→ [k] from a 2-universal process
3. Choose random hash function g : [n]→ {−1,+1} from a 2-universal process
4. Process ai = (j, c′)

C[h(j)]← C[h(j)] + c′ ∗ g(j)
5. Output: on query a, report

f̂a = g(a) ∗ C[h(a)]

3.0.1 Analysis

Let ej be the k-vector with 1 in h(j) co-ordinate, and 0 otherwise. For stream σ,

σ → f = (f0, f1, ..., fn−1)→ C[σ]

σ → f0g(0)e0 + f1g(1)e1 + ....+ fn−1g(n− 1)en−1

σ → [|M |]


f0
f1
.
.
.

fn−1


Definition 3.1 Fix σ → C[σ]. C is a sketch if, given 2 streams σ1 and σ2, the concatenation of the two
streams C[σ1.σ2] can be obtained from C[σ1] and C[σ2]

If C[σ1] = M ∗ fσ1 , C[σ2] = M ∗ fσ2 ,

C[σ1.σ2] = M ∗ fσ1.σ2 = M ∗ (fσ1 + fσ2) = C[σ1] + C[σ2]

Fix a ∈ [n]. Let X = f̂a. Define random variableYj ,

Yj =

{
1 if h(j) = h(a); //a and j maps to the same bin in C[ ]
0 otherwise.

3-1



3-2

⇒ X = g(a)
∑

fjg(j)Yj = fa +
∑

j∈[n]\{a}

fjg(a)g(j)Yj

Now we compute the expected value of X, then the variance.

E[X] = fa +
∑
j∈[n]\{a} fjE[g(a)g(j)Yj ]

= fa +
∑
j∈[n]\{a} fjE[g(a)g(j)]E[Yj ] //g() and h() are independent

= fa +
∑
j∈[n]\{a} fjE[g(a)]E[g(j)]E[Yj ] //by pairwise independence

note that E[g(a)] = E[g(j)] = 0

= fa

Now we compute the variance.

V ar[x] = 0 + V ar[
∑
j∈[n]\{a} fjg(a)g(j)Yj ]

= E[ (
∑
j∈[n]\{a} fjg(a)g(j)Yj )2 ]− E[

∑
j∈[n]{a} fjg(a)g(j)Yj ]2

= E[ (
∑
j∈[n]\{a} fjg(a)g(j)Yj )2 ]− 0

= E[
∑
j∈[n]\{a} f

2
j g(a)2g(j)2Y 2

j +
∑
i,j∈[n]\{a},i6=j fifjg(a)2g(i)g(j)YiYj ]

note that g(i)2 = (+1)2 = (−1)2 = 1
= E[

∑
j∈[n]\{a} f

2
j Y

2
j +

∑
i,j∈[n]\{a},i6=j fifjg(i)g(j)YiYj ]

=
∑
j∈[n]\{a}E[ f2j Y

2
j ] +

∑
i,j∈[n]\{a},i6=j fifj E[ g(i)g(j)YiYj ]

=
∑
j∈[n]\{a} f

2
j E[ Y 2

j ] +
∑
i,j∈[n]\{a},i6=j fifj E[ g(i)g(j) ] E[ YiYj ]

=
∑
j∈[n]\{a} f

2
j E[ Y 2

j ] +
∑
i,j∈[n]\{a},i6=j fifj E[ g(i) ] E[ g(j) ] E[ YiYj ]

=
∑
j∈[n]\{a} f

2
j E[ Y 2

j ] + 0

=
∑
j∈[n]\{a} f

2
j E[ Y 2

j ] //Yj = 0 or 1;Y 2
j = Yj

=
∑
j∈[n]\{a} f

2
j E[ Yj ]

= 1
k

∑
j∈[n]\{a} f

2
j //Pr[h(j) = h(a)] = 1

k

= 1
k ( ||f ||22 − f2a )

We now compute the error probability. By Chebyshev’s inequality,

Pr[ | X − E[X] | ≥ ε
√

( ||f ||22 − f2a ) ] ≤ V ar[X]

ε2( ||f ||22 − f2a )
≤ 1

kε2

if k ≥ 3
ε2 ,

Pr[ | X − E[X] | ≥ ε
√

( ||f ||22 − f2a ) ] ≤ 1

3

Also,

Pr[ |f̂a − fa| ≥ ε
∑
j∈[n]

fj ] ≤ Pr[ | X − E[X] | ≥ ε
√

( ||f ||22 − f2a ) ] ≤ 1

3
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3.1 The Tug-of-War Sketch

Problem: We have a stream a1, a2, ..., am, where each ai has the form (j, c), where j ∈ [n] and c is an
integer. The frequency of element j in the stream is calculated when (j, c) appears in the stream as follows:

fj ← fj + c

Estimate:
F2 =

∑
j∈[n]

f2j = ||f ||22

where f = (f0, f1, ..., fn − 1) is the frequency vector of elements appearing in the stream.

The above formula can be generalized for k ≥ 0 as follows:

Fk =
∑
j∈[n]

fkj

Algorithm 2 Tug-of-War Sketch Algorithm

1. Initialize:
x← 0

Choose random hash function h : [n]→ {−1,+1} from a 4-universal process
3. Process ai = (j, c)

x← x + h(j) ∗ c
5. Output: x2

3.1.1 Analysis

Let X denote x at the end of the stream. Let Yj = h(j). So, X =
∑
j∈[n] fj Yj .

E[X2] =
∑
j∈[n]

f2j E[Y 2
j ] +

∑
i,j∈[n],i6=j

f2i f
2
j E[YiYj ]

note that E[Y 2
j ] = 1, and by pairwise independence E[YiYj ] = 0, hence,

E[X2] =
∑
j∈[n]

f2j + 0 = F2

⇒ var[X2] ≤ 2F 2
2

To reduce the error gap, do:

- Run t parallel, independent copies of Tug − of −War sketch algorithm.

- Return Z, which is the average of the outputs of the t copies.

For Z, E[Z] = F2, which leads to var[Z] ≤ 2F 2
2

t .
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⇒ Pr[|Z − F2| ≥ εF2] ≤ var[Z]

(εF2)2

Pr[|Z − F2| ≥ εF2] ≤ 2F 2
2

tεF 2
2

=
2

tε2

for t ≥ 6
ε2 ,

Pr[ |Z − F2| ≥ εF2 ] ≤ 1/3

For t copies of the algorithm, with 5 items for example,

t ∗


1, 1, −1, 1, −1
.
.
.
.


︸ ︷︷ ︸

M

∗


f1
f2
f3
f4
f5



⇒ Z =
||Mf ||22

t

where

⇒ Z =
||Mf ||22

t
∈ [(1− ε) F2, (1 + ε) F2 ]

by taking square root,

||Mf ||2√
t

∈ [
√

(1− ε) ||f ||2,
√

(1 + ε) ||f ||2 ]

Note: The above operation is called dimension reduction. JohnsonLindenstrauss lemma states that a small
set of points in a high-dimensional space can be embedded into a space of much lower dimension in such a
way that distances between the points are nearly preserved. When t = logn

ε2 , the distance is preserved with
high probability.


