Algorithmic Excursions: Topics in Computer Science II Spring 2016

Lecture 13 & 14 : Estimating the number of distinct elements in a stream.

Lecturer: Kasturi Varadarajan Scribe: Albert Giegerich

In the last lecture, we looked at an algorithm for approximating the number of elements in a stream.

Algorithm:
Let a be a stream of d elements.
For any integer p >= 0, Let zeroes(p) be the maximum element in the set {i|2¢ divides p}

Pick a random hash function A : [n] — [n] from a 2-universal family.
Z <+ 0
for each a; in the stream do
if zerores(h(a;)) > Z then
Z <+ zeroes(h(a;))
return 24+1/2

Analysis:
For the analysis we’ll need to introduce two types of random variables, X, ; and Y.

X, ; =1if zeroes(h(j)) >=r

Xr,; = 0 otherwise

The only randomness for X, ; comes from the choice of hash function h : [n] — [n]
Zr; is a random variable with respect to that space.

Yo=Y X

J:f3>0

where f; is the frequency of j.

Example:

Let our stream be a = {17,2,3,17,2,5,7,5}

j | zeroes(h(j))
0

1713

3 1

5 |1

7T 12

3-1

3-2

So Yy = 5 because zeroes(h(j)) >= 0 for all 5 elements, similarly

Y1 =4
Yy =2
Yy =1
Y, =0
Y5 =0
Yis3=0

Claim
Let t denote the value of Z at the end of the execution of the algorithm.

Y, >0 < t>r

Y,=0 <<= t<r-1

We want to find E[Y;] for some fixed r.

EY,]

> E[X,]

3:fi>0

> Pr(X,; =1]

= ZPT[QT divides h(j)]
J
1

2r

°
2r

One way we can think of this is that every element will contribute to Yj, an element will contribute to Yy
with a probability of %, an element will contribute to Y5 with a probability of i, etc. That is,

P’I‘[Xo’j = 1] =1

PT[XLJ' = 1] =

NG R

PT[XQJ' = 1] =

etc.

Because of this 2" - Y, is a good estimator for d.
Assuming any two variables are independent,

VarlY,] = Z Var[X, ;]|
< ZE[(XW-)?] (Because Var(z) = E(2?) — E(2)?)

= ZE[XW»] (Because X, ; is a 01 random variable.)

J
d

T

Pr[Y, > 0] = Pr[Y, > 1]
< E[Y;]
d
T

PrlY, =0 < Pr{lY, — E[Y,]| >

d
= 2r
< Var[Y,]
—(d/2r)?
27‘

d

]

(By Chebyshev's inequality)

IN

So the transition from Y, going from 0 to nonzero happens around r = log(d)

We now want to show why we output 2¢+1/2 instead of 2!

Let d = 2t+1/2 (estimate of d output by algorithm)
Let a be the smallest integer such that 2a+1/2 > 3¢

Pr[d > 3d) = Pr[t >
PrY, > 0]

IN

IN
o[l

Let b be the largest integer such that 2071/2 < g

Prld < =] = Pr[t <]

= PrlYys1 = 0]
2b+1

d
9b+1/2

<

ol

So returning 2¢+1/2 instead of 2¢ allows us to get a slightly tighter bound. (3d rather than somewhere around
4d-5d)

When running the algorithm we’ll get an estimate within the bounds % < d < 3d with strictly more than 50%
probability. To increase this probability to 1-6 we must run log(%) independent instances of the algorithm
and return the median of the estimates.

Definition of 2-Universal

Let X and Y be finite sets.
Let Y be the set of all functions from X to Y.

H C YX is said to be 2-universal if for all z,2’ € X (z # 2’) and y,y' € Y

Prih(z) =y A (') = o] = ﬁ
Prih(z) = y] = ﬁ
N L

Choosing a Hash Function
Now we’ll look at how we can pick the random hash function h : [n] — [n].

Each j € [n] can be represented as a length t 0-1 vector. So if t = 4, j might be

—_—_0 -

One choice of hash function might be a h(x) = Az + b where A is a ¢t x ¢ matrix and b is a length ¢ vector.

3-5

A A Alt T1 b1
h(.’IJ) _ A21 A22 Agt To + bQ
An Ap .. Ay Tt by

The hash function A is fixed if you know A and b. You can randomly select A and b by randomly selecting
each element of A and b to be 0 or 1 with equal probability.

It takes log?n bits to remember this hash function.

A family of hash functions can be created by taking every possible combination of A and b. We can then
select one function from this family at random for our algorithm.

Homework Problem: (Source: Problem 2-1, Lecture 2, Amit Chakrabarh)

Treat the elements of X and Y as column vectors with 0/1 entries. For a matrix A € {0,1}**" and vector
b € {0,1}*, define the function hap: X — Y by hap(x) = Az + b, where all additions and multiplications
are performed mod2.

Prove that the family of functions H = {ha : A € {0,1}F*" b € {0,1}*} is 2-universal.

Another Streaming Problem: Finding Frequent Elements
Let the stream be o0 =< a1, as, ..., a,, > where each a; € [n]

In practice stream elements can be any type of object. We assume that we can hash any of these objects to
an integer for the purposes of our algorithm.

We define f = (fo, f1, .- fn—1) where f; is the frequency of ¢ in the stream for some i.

Given € > 0, we want to identify all j such that f; > e-m

The Misra-Gries Algorithm

First we’ll give a deterministic algorithm for finding an estimate fa of the frequency f, for some a.
We'll maintain a dictionary A where the keys of A = [n].

For a key j, A[j] is an estimate for f;.

We don’t want to maintain a dictionary with all n keys so we’ll restrict ourselves to some k keys.

1: Initialize empty dictionary A
2: Pick k

3: if a; € keys(A) then

5: else if |keys(A)| < k —1 then
6: A[al] —1

7: else

8: for each ¢ € keys(A) do

9: All] + A[f) -1

10: if A[{] =0 then

11: Remove ¢ from A

12: return On query a if a € keys(A) report f, = Ala] else fu =0

Claim: For each j € [n]

fi—

=3
IA
IA
Sh

where d is the number of unique elements in the stream.

Let a be the number of times we subtract 1 from the estimated frequency of j. Each time we subtract 1
from the estimated frequency of j we subtract 1 from the estimate of k — 1 other elements.
Thus

As a consequence of this,

Itk = % then

3

fi—

w'
IN
<
IN
N

If f; > €-m then

e
vV
) et
vV
[0}
3

3-7

Turnstile Model
Let 0 =< aq,as, ..., a,, > be our stream.

Each a; is a pair (j,c) where j € [n] and c is an integer. (positive or negative)
An element f; of the frequency vector f is the sum of all ¢’s in each pair (j,¢) in o for which j = 3.
This ”turnstile model” is a generalized version of the previous model. In the previous model ¢ is always 1.

We want to find the highest f; in f. For now we’ll assume that all elements of the frequency vector f will
always be non-negative.

C1...k] «+ [0,0,...,0]
Choose a random hash function h : [n] — [k]
Choose a random hash function g : [n] = {—1,+1}
for ecach a; = (j,¢) € 0 do

Clh(j)] < CIh(j)] + - 9(3)
return On query a report f, = g(a) - C[h(a)]

In the analysis of this algorithm we’ll want to show E[f,] = fa

