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We are given a set P of n points in the plane. We assume that the spread of the point set
P , the ratio of the largest interpoint distance to the smallest interpoint distance, is bounded
by a polynomial in n, say n5. We describe a quadtree based algorithm that finds, for each
q ∈ P , its closest point in P \ {q}. We will show that the running time of the algorithm
is O(n logn). For an O(n logn) algorithm without this assumption on the spread, see the
original paper of Vaidya [1].

1 Quadtree Construction

We first construct the quadtree corresponding to P – this will be a 4-ary tree, where each
internal node can have up to four children. Each node of the quadtree will be associated
with a square. The set of squares at nodes that are at depth j from the root will be denoted
by Fj . It will be convenient to describe the tree in a top-down fashion, starting from the
root. The root corresponds to any smallest axis-parallel square containing the point set P ;
F0 is a singleton set containing just this square. For this square ✷, let pts(✷) = P .

Now if |P | ≥ 2, we will partition this root square into four equal squares, which will be
the elements of F1. In general, suppose j ≥ 1, and we have already obtained F0, . . . , Fj−1;
that is, the quadtree has been described upto depth j − 1. We construct Fj as follows:
Each ✷ ∈ Fj−1 with |pts(✷)| ≤ 1 will be a leaf of the quadtree. For each ✷ ∈ Fj−1 with
|pts(✷)| > 1, we partition ✷ into four equal squares ✷1, ✷2, ✷3 and ✷4, which will become
the children of ✷. We parttion pts(✷) into four sets pts(✷1), pts(✷2), pts(✷3), and pts(✷4)
so that pts(✷i) ⊆ pts(✷) ∩ ✷i. The squares ✷1, ✷2, ✷3, and ✷4 are added to Fj . See
Figure 1.

At each node ✷ of the quadtree, we store the information determining the square itself,
plus a representative point rep(✷) ∈ pts(✷) if pts(✷) is non-empty. Thus, for a leaf square
✷ with |pts(✷)| = 1, the representative rep(✷) will be the only point in pts(✷). A leaf
square ✷ with |pts(✷)| = 0 has no representative point. Notice that any internal node ✷

has |pts(✷)| ≥ 2, and thus has a representative point.
Our assumption about the spread being polynomially bounded implies that the depth

of the quadtree is O(logn). This implies that the total number of nodes in the quadtree is
O(n logn). This is because the number of squares in any Fj is O(n) (Why?). Notice that
a node ✷ in the quadtree does not explicitly store pts(✷); it only stores rep(✷). Finally,
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Figure 1: Quadtree for the set of seven points

it is not too hard to see that constructing the quadtree in the straightforward way takes
O(n logn) time.

2 Nearest Neighbor Queries

Now let us see how we can use the quadtree to find, for each q ∈ P , a nearest point in
P \ {q}. This is accomplished by the query algorithm Query(q). Let L denote the number
of levels in the quadtree. The algorithm explores E0, E1, . . . , EL where Ej ⊆ Fj . We start
with E0 = F0. To compute Ej , we first compute bestj−1, the closest point to q among the
representatives of squares in E0 ∪ E1 ∪ · · · ∪ Ej−1. Notice that for j ≥ 2 this is simply the
closest among bestj−2 and the representatives of squares in Ej−1, so this can be done in
|Ej−1| time. We then look at every child of a square in Ej−1 and include it in Ej provided
the distance of q from the square is at most d(q, bestj−1). Here the distance of q from square
✷ is the minimum distance of q to any of the uncountably infinitely many points in ✷.

The running time of the query algorithm is O(|E0|+ |E1|+ · · ·+ |EL|). As an aside, the
query algorithm can terminate once some Ej is empty, since subsequent Ei’s will be empty
as well.

Algorithm 1 Query(q)

1: E0 ← F0

2: for all j ← 1 to L do

3: bestj−1 ← closest point to q in {rep(✷)| ✷ ∈ E0 ∪ E1 · · ·Ej−1} − {q}
4: Ej ← {✷ | ✷ is child of some square in Ej−1 and d(q,✷) ≤ d(q, bestj−1)}
5: Return bestL+1.
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Figure 2: Assume that the representative point in any square is the last point by alphabetic
order. Then in this example for Query(a), best1 = c. This is used to compute the squares
in E2, which are the shaded ones that intersect the circle.

The algorithm returns the closest point among the representatives of the squares in any
of the Ej ’s. That the call to Query(q) actually returns a closest point in P \ {q} is implied
by the following lemma. The proof of the lemma was done in class but is omitted here. Note
that the lemma implies that Query(q) does explore the leaf cell containg a closest point q′

to q, and the representative of such a cell is of course q′ itself.

Lemma 2.1 Fix 1 ≤ j ≤ L. Then ✷ ∈ Fj belongs to Ej if and only if d(q,✷) ≤
d(q, bestj−1).

3 Running Time for All Queries

Let us bound the running time for performing Query(q) over all q ∈ P . For this, it will
be convenient to denote by Ej(q) the set Ej encountered within Query(q). We partition
Ej(q) into two sets: Nearj(q) = {✷ ∈ Ej(q) | d(q,✷) ≤ 10 ∗ diam(✷)}, and Farj(q) =
Ej(q) \ Nearj(q). Note that Nearj(q) is the set of squares in Ej whose distance from
q is within 10 times the diameter of a level j square. By a simple packing argument,
|Nearj(q)| ≤ c, where c is some constant. On the other hand, the size of Farj(q) need not
be bounded by a constant, particularly when Nearj(q) is non-empty. Fix 0 ≤ j ≤ L. We
have
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∑
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|Ej(q)| =
∑

q∈P

|Nearj(q)|+
∑

q∈P

|Farj(q)|

≤
∑

q

c+
∑

✷∈Fj

|{q ∈ P | ✷ ∈ Farj(q)}|

≤
∑

q

c+
∑

✷∈Fj

c′

= O(n) +O(|Fj |).

Here, we use the fact that for any ✷ ∈ Fj , the number of points q for which it is far
(belongs to Farj(q)) is bounded by a constant c′. This fact is not obvious at all, but I still
hope it is true, and you should try to prove it.

The overall running time of the query algorithm is then

∑

j

∑

q

|Ej(q)| =
∑

j

O(n+ |Fj |) = O(n logn).
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