All Nearest Neighbours via Quadtrees

Kasturi Varadarajan

May 2, 2013

We are given a set P of n points in the plane. We assume that the *spread* of the point set P, the ratio of the largest interpoint distance to the smallest interpoint distance, is bounded by a polynomial in n, say n^5 . We describe a quadtree based algorithm that finds, for each $q \in P$, its closest point in $P \setminus \{q\}$. We will show that the running time of the algorithm is $O(n \log n)$. For an $O(n \log n)$ algorithm without this assumption on the spread, see the original paper of Vaidya [1].

1 Quadtree Construction

We first construct the quadtree corresponding to P – this will be a 4-ary tree, where each internal node can have up to four children. Each node of the quadtree will be associated with a square. The set of squares at nodes that are at depth j from the root will be denoted by F_j . It will be convenient to describe the tree in a top-down fashion, starting from the root. The root corresponds to any smallest axis-parallel square containing the point set P; F_0 is a singleton set containing just this square. For this square \Box , let $pts(\Box) = P$.

Now if $|P| \ge 2$, we will partition this root square into four equal squares, which will be the elements of F_1 . In general, suppose $j \ge 1$, and we have already obtained F_0, \ldots, F_{j-1} ; that is, the quadtree has been described upto depth j - 1. We construct F_j as follows: Each $\Box \in F_{j-1}$ with $|\text{pts}(\Box)| \le 1$ will be a leaf of the quadtree. For each $\Box \in F_{j-1}$ with $|\text{pts}(\Box)| > 1$, we partition \Box into four equal squares \Box_1, \Box_2, \Box_3 and \Box_4 , which will become the children of \Box . We partition $\text{pts}(\Box)$ into four sets $\text{pts}(\Box_1)$, $\text{pts}(\Box_2)$, $\text{pts}(\Box_3)$, and $\text{pts}(\Box_4)$ so that $\text{pts}(\Box_i) \subseteq \text{pts}(\Box) \cap \Box_i$. The squares \Box_1, \Box_2, \Box_3 , and \Box_4 are added to F_j . See Figure 1.

At each node \Box of the quadtree, we store the information determining the square itself, plus a representative point rep(\Box) \in pts(\Box) if pts(\Box) is non-empty. Thus, for a leaf square \Box with $|\text{pts}(\Box)| = 1$, the representative rep(\Box) will be the only point in pts(\Box). A leaf square \Box with $|\text{pts}(\Box)| = 0$ has no representative point. Notice that any internal node \Box has $|\text{pts}(\Box)| \ge 2$, and thus has a representative point.

Our assumption about the spread being polynomially bounded implies that the depth of the quadtree is $O(\log n)$. This implies that the total number of nodes in the quadtree is $O(n \log n)$. This is because the number of squares in any F_j is O(n) (Why?). Notice that a node \Box in the quadtree does not explicitly store $pts(\Box)$; it only stores $rep(\Box)$. Finally,

Figure 1: Quadtree for the set of seven points

it is not too hard to see that constructing the quadtree in the straightforward way takes $O(n \log n)$ time.

2 Nearest Neighbor Queries

Now let us see how we can use the quadtree to find, for each $q \in P$, a nearest point in $P \setminus \{q\}$. This is accomplished by the query algorithm $\operatorname{Query}(q)$. Let L denote the number of levels in the quadtree. The algorithm explores E_0, E_1, \ldots, E_L where $E_j \subseteq F_j$. We start with $E_0 = F_0$. To compute E_j , we first compute $\operatorname{best}_{j-1}$, the closest point to q among the representatives of squares in $E_0 \cup E_1 \cup \cdots \cup E_{j-1}$. Notice that for $j \geq 2$ this is simply the closest among $\operatorname{best}_{j-2}$ and the representatives of squares in E_{j-1} , so this can be done in $|E_{j-1}|$ time. We then look at every child of a square in E_{j-1} and include it in E_j provided the distance of q from the square is at most $d(q, \operatorname{best}_{j-1})$. Here the distance of q from square \Box is the minimum distance of q to any of the uncountably infinitely many points in \Box .

The running time of the query algorithm is $O(|E_0| + |E_1| + \cdots + |E_L|)$. As an aside, the query algorithm can terminate once some E_j is empty, since subsequent E_i 's will be empty as well.

Algorithm 1 Query(q)

1: $E_0 \leftarrow F_0$ 2: for all $j \leftarrow 1$ to L do 3: best_{j-1} \leftarrow closest point to q in $\{rep(\Box) \mid \Box \in E_0 \cup E_1 \cdots E_{j-1}\} - \{q\}$ 4: $E_j \leftarrow \{\Box \mid \Box \text{ is child of some square in } E_{j-1} \text{ and } d(q, \Box) \leq d(q, best_{j-1})\}$ 5: Return best_{L+1}.

Figure 2: Assume that the representative point in any square is the last point by alphabetic order. Then in this example for Query(a), $best_1 = c$. This is used to compute the squares in E_2 , which are the shaded ones that intersect the circle.

The algorithm returns the closest point among the representatives of the squares in any of the E_j 's. That the call to $\operatorname{Query}(q)$ actually returns a closest point in $P \setminus \{q\}$ is implied by the following lemma. The proof of the lemma was done in class but is omitted here. Note that the lemma implies that $\operatorname{Query}(q)$ does explore the leaf cell containg a closest point q'to q, and the representative of such a cell is of course q' itself.

Lemma 2.1 Fix $1 \leq j \leq L$. Then $\Box \in F_j$ belongs to E_j if and only if $d(q, \Box) \leq d(q, best_{j-1})$.

3 Running Time for All Queries

Let us bound the running time for performing $\operatorname{Query}(q)$ over all $q \in P$. For this, it will be convenient to denote by $E_j(q)$ the set E_j encountered within $\operatorname{Query}(q)$. We partition $E_j(q)$ into two sets: $\operatorname{Near}_j(q) = \{\Box \in E_j(q) \mid d(q, \Box) \leq 10 * \operatorname{diam}(\Box)\}$, and $\operatorname{Far}_j(q) = E_j(q) \setminus \operatorname{Near}_j(q)$. Note that $\operatorname{Near}_j(q)$ is the set of squares in E_j whose distance from q is within 10 times the diameter of a level j square. By a simple packing argument, $|\operatorname{Near}_j(q)| \leq c$, where c is some constant. On the other hand, the size of $\operatorname{Far}_j(q)$ need not be bounded by a constant, particularly when $\operatorname{Near}_j(q)$ is non-empty. Fix $0 \leq j \leq L$. We have

$$\begin{split} \sum_{q \in P} |E_j(q)| &= \sum_{q \in P} |\operatorname{Near}_j(q)| + \sum_{q \in P} |\operatorname{Far}_j(q)| \\ &\leq \sum_q c + \sum_{\square \in F_j} |\{q \in P \mid \square \in \operatorname{Far}_j(q)\}| \\ &\leq \sum_q c + \sum_{\square \in F_j} c' \\ &= O(n) + O(|F_j|). \end{split}$$

Here, we use the fact that for any $\Box \in F_j$, the number of points q for which it is far (belongs to $\operatorname{Far}_j(q)$) is bounded by a constant c'. This fact is not obvious at all, but I still hope it is true, and you should try to prove it.

The overall running time of the query algorithm is then

$$\sum_{j} \sum_{q} |E_{j}(q)| = \sum_{j} O(n + |F_{j}|) = O(n \log n).$$

References

 Pravin M. Vaidya. An O(n log n) algorithm for the all-nearest-neighbors problem. Discrete and Computational Geometry, 4:101–115, 1989.