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ABSTRACT
There has been much progress on geometric set cover prob-
lems, but most known techniques only apply to the un-
weighted setting. For the weighted setting, very few re-
sults are known with approximation guarantees better than
that for the combinatorial set cover problem. In this arti-
cle, we employ the idea of quasi-uniform sampling to obtain
improved approximation guarantees in the weighted setting
for a large class of problems for which such guarantees were
known in the unweighted case. As a consequence of this
sampling method, we obtain new results on the fractional
set cover packing problem.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

General Terms
Algorithms, Theory

Keywords
Set cover, epsilon nets, approximation

1. INTRODUCTION
The combinatorial set cover problem has a privileged place

in computer science for the wealth of theoretical results
known about it and its applications. Here one is given a
ground set X together with a family F = {S1, S2, . . . , Sn}
where each Si is a subset of X and has associated with it a
non-negative weight w(Si). The family F covers X, that is,
X is contained in the union of the elements of F . The goal is
to find a minimum weight subfamily G ⊆ F that also covers
X. Here, the weight of a subfamily G is simply the sum of
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the weights of the elements in it. This NP-hard problem ad-
mits several different polynomial time algorithms that guar-
antee an approximation factor of O(log |X|) – some of these
are combinatorial greedy algorithms and some are based on
(randomized) rounding of the natural linear programming
relaxation [33]. These results hold for both the weighted
and the unweighted case, which is obtained when w(Si) = 1
for each i. This approximation factor has also been shown
to be the best possible under standard complexity theoretic
assumptions [30].

We are interested in the geometric set cover problem where
X is a (usually finite) subset of some fixed dimensional Eu-
clidean space – in this paper we will assume this to be the
two dimensional plane unless stated otherwise. The family
F of subsets of X is induced by some family of objects, for
example, disks, triangles, or visibility polygons. In the set
cover problem with disks, for instance, we are given a set
{D1, D2, . . . , Dn} of disks along with their weights, and we
wish to find the minimum weight subset of disks that cover
(whose union contains) X. This is clearly an instance of the
combinatorial set cover problem by computing Si = X ∩Di.
Given the constraints imposed by geometry, it is reasonable
to expect that we can obtain approximation factors better
than O(log |X|) for the combinatorial version. Indeed, as
we review below, we now have a few techniques that yield
better approximation factors for certain types of objects.
However, these techniques have hitherto worked only for the
unweighted case. Our main aim in this paper is to extend
some of these techniques to the weighted case.

We now review the techniques that have yielded improved
approximation factors for the unweighted case. Combinato-
rial algorithms cleverly designed for the problem at hand
have been successful for some problems, see for example [22,
6]. Very recently, the general technique of local search has
been shown, quite surprisingly, to yield polynomial time ap-
proximation schemes (PTAS’s) for some problems [9, 27].
For instance, this approach yields a PTAS for set cover with
disks [27]. However, it has recently been shown that such
a PTAS does not exist (unless P = NP) for fairly “nice”
objects, for example, fat triangles of roughly the same size
[19]. An interesting question that is open is whether local
search or other combinatorial approaches can be shown to
give weaker but sub-logarithmic approximation guarantees
for other classes of objects.

Such guarantees can often be obtained by rounding the
natural linear programming relaxation of the set cover prob-
lem. The approximation factor obtained by such rounding is
related to the well known combinatorial problem of bound-



ing the size of an ε-net. Suppose that we have a collection
of n disks and an integer 1 ≤ L ≤ n. An L

n
-net is a subset of

the disks that covers all points in the plane that are L-deep,
that is, contained within at least L of the disks. The question
is, what is a good upper bound on the size of an L

n
-net over

all families of n disks and all 1 ≤ L ≤ n? Clearly this bound
must be at least n

L
and we want to know how much larger

it must be. We know [7, 16] that if for any type of object
(disks, triangles, axes-parallel rectangles) there are L

n
-nets

of size at most n
L

g( n
L

) (and we can efficiently compute such
nets), then the integrality gap and the approximation factor
obtained via the natural linear programming relaxation of
the problem is O(g( n

L
)). Nets of size O( n

L
log n

L
) are known

to exist for fairly general geometric objects, those of “con-
stant description complexity”– this includes disks, triangles,
rectangles, and by far all the types we are concerned with in
this paper [11, 20]. In fact, a random sample of this size is
a net with constant probability. Thus for these objects we
obtain an approximation guarantee of O(log λ∗) where λ∗ is
the size of the optimal solution.

There is hope that nets of size O( n
L

) should exist for very
general subclasses of these objects, but this is an outstand-
ing open problem. One situation where nets of size better
than O( n

L
log n

L
) are known to exist is when the combina-

torial complexity of the boundary of the union (for brevity,
union complexity) is near-linear [13, 4, 32]. Given m disks,
the boundary of their union is a set of one-dimensional com-
ponents each of which can be obtained by gluing together
pieces of the boundaries of the disks; the union complexity
is roughly the number of such pieces. We refer the reader
to [31] for more precise definitions. If for a certain type of
object, the union complexity of m of the objects is at most
mh(m), then there are L

n
-nets of size O( n

L
log h( n

L
)), and

we thus obtain an O(log h(λ∗)) approximation for the corre-
sponding set cover problem [4]. Objects for which improved
approximation algorithms are obtained using this approach
include disks and fat triangles.

1.1 Our Contribution
Compared to this wealth of results for the unweighted

setting, very few instances are known in the weighted set-
ting where we have an approximation guarantee that is bet-
ter than O(log |X|), where X, we remind the reader, is the
ground set in the input for set cover. Two such instances
are unit disks in the plane, for which constant factor ap-
proximations are known based on dynamic programming [3]
and the linear programming approach [29], and the problem
of guarding a one-dimensional terrain for which a constant
factor approximation is given based on the linear program-
ming approach [15]. A third and somewhat easier instance
is when the objects doing the covering are translates of a
fixed polygon, and here a constant factor approximation is
implied by results in [18]. In these three instances, very spe-
cial structure of the problem at hand is exploited. Thus,
even for arbitrary disks and fat triangles, we do not cur-
rently have an approximation guarantee that is better than
O(log |X|). It is easy to set up examples in the weighted
setting where the basic local search approach doesn’t yield
improved bounds even for object types on which it yields
a PTAS in the unweighted setting. Turning to the linear
programming approach, we are now interested in an upper
bound on the weight of an L

n
-net and not its size. Clearly,

this bound on the weight is at least as large as W
L

, where W

is the total weight of all the objects, and can be shown to
be O(W

L
log n) for fairly general geometric objects [16]. A

bound of O(W
L

g(n)) on the maximum weight of a net implies
an approximation guarantee of O(g(n)) for the correspond-
ing weighted set cover problem. Unfortunately, a bound
better than O(W

L
log n) on the maximum weight of a net

is not known even for objects with small union complexity
such as fat triangles or disks.

Why do the approaches in [13, 4, 32], which yield improved
nets for objects such as fat triangles and disks, fail to do so
in the weighted case? The answer is that they resort to
random sampling methods that are in effect non-uniform.
That is, while they guarantee that the number of objects
in the net is small in the aggregate, they do not bound the
probability of any particular object being in the net. This
shortcoming is explicitly identified in [32].

The main contribution of this article is a method for com-
puting nets based on quasi-uniform sampling, where the
probability of any object being in the L

n
-net is close to 1

L
,

the natural bound. The method yields low weight nets for
objects with near-linear union complexity, but for concrete-
ness we state it for fat triangles. A triangle is ρ-fat if the
ratio of the radius of its smallest circumscribing circle to the
radius of its largest inscribed circle is bounded by ρ. By a fat
triangle, we mean one that is ρ-fat for some arbitrary con-
stant ρ. The union complexity of m fat triangles is bounded
by O(m log log m) [25]. Our main result is the following the-
orem on computing nets by quasi-uniform sampling:1

Theorem 1. There is a probabilistic polynomial time al-
gorithm that takes as input a set T of n fat triangles and
a parameter 1 ≤ L ≤ n, and outputs a subset T ′ ⊂ T that
covers all points that are L-deep with respect to T , and has
the following property: for any triangle t ∈ T , the probability
that t is in the output T ′ is at most

O(log log log n)

L
.

Clearly, this algorithm outputs an L
n
-net whose expected

weight is O(log log log n)W
L

and we obtain an O(log log log n)
approximation to the weighted set cover problem with fat
triangles. At a high level, the theorem proceeds by showing
a variant of it where we allow the sampling probability to

be O(log L)
L

, but we ensure that L-deep points are log L-deep
with respect to the sample. This variant exploits the sparsity
of the shallow level and in this sense it is similar to [32]
and an algorithm of [9] for the independent set problem.
But there are crucial differences needed to obtain the quasi-
uniformity. The variant is then applied again to the sample,
but with L now set to be log L. (This is similar to [32].)
Three such iterations suffice to obtain the Theorem.

For disks in the plane, our version of the theorem has a

sampling probability bounded by 2O(log∗
n)

L
, and we obtain

a 2O(log∗ n) approximation for the corresponding set cover
problem. For objects with union complexity mh(m), we ob-

tain an approximation factor of 2O(log∗ n) log h(n), but this
bound can sometimes be tightened further.

1The reader may find the flavor of the statement similar to
that in completely different contexts, such as probabilistic
approximation of metrics by tree metrics [5, 17].



1.2 Consequences for Set Cover Packing
In the set cover packing problem, we are given a ground

set X, a family F = {S1, S2, . . . , Sn} where each Si is a
subset of X, and the goal is to partition F into as many
blocks as possible so that each block is a cover for X. In the
fractional set cover packing problem, we want to compute a
set of blocks plus a fraction 0 ≤ f(B) ≤ 1 corresponding to
each block B, so that (a) each block covers X, and (b) for
each i the sum of the fractions of the blocks to which Si be-
longs is at most 1, and the objective is to maximize the sum
of the fractions. One motivation for both problems comes
from the world of sensors [8] – here X is a region that needs
to be monitored, Si is the sub-region monitored by the i-th
sensor, each sensor has a battery life of one time unit, and
the goal is find a schedule for the sensors so that X remains
monitored for as long as possible. The set cover packing
problem corresponds to the non-preemptive scenario where
once a sensor is turned on, it runs for one continuous unit of
time. The fractional version corresponds to the preemptive
scenario where we may turn a sensor on and off as often as
we like.

In the combinatorial setting the best approximations for
these problems is logarithmic (see [1, 8, 14] and the refer-
ences therein). Given the motivation from sensors, geomet-
ric versions of the problem have been extensively studied
recently. Let L denote the load of the instance, that is, the
largest integer value so that each point in X is contained in
at least L of the sets in F . Clearly, the load is an upper
bound on the objective function value in both versions of
the problem. Previous work has shown that we can obtain
a solution whose objective function value is (a) Ω( 1

log(n/L)
)

of the load for the integral problem when the sets Si are
induced by fairly general geometric objects [8]; (b) Ω(1) of
the load for the integral problem when the sets Si are in-
duced by translates of a fixed convex polygon [2, 18]; (c)
Ω(1) of the load for the fractional problem when the sets Si

are induced by unit disks [29].
Our results on quasi-uniform sampling extend the frontier

for such results:

Corollary 2. Given an instance of the fractional set
cover packing problem with X being a set of points in the
plane, and F consisting of subsets induced by a set T of
n fat triangles, there is a solution whose value is at least
Ω( 1

log log log n
) of the load L.

Proof. Consider the algorithm of Theorem 1 for com-
puting an L

n
-net for T , and the distribution over covers of

all L-deep points that it induces. For any cover B that is
output by this distribution, set f(B) = Pr(B) ∗ L

c log log log n
,

where c > 0 is a sufficiently large constant, and Pr(B) is the
probability that B is output.

The algorithm that outputs this fractional set cover pack-
ing is of course not polynomial, because it needs to compute
the distribution corresponding to the output of the algo-
rithm of Theorem 1. However, as we describe in some detail
in this paper, we can obtain a randomized polynomial al-
gorithm that computes a packing that is nearly as good by
sampling from this distribution.
Organization of the Paper. In Section 2 we review some
rather standard notions that we need. In Section 3, we es-
tablish Theorem 1. In Sections 4 and 5, we derive its conse-
quences for the weighted set cover problem and the fractional

set cover packing, respectively. We conclude in 6 with some
remarks on generalizing these results to object families with
small union complexity and with some open problems.

2. PRELIMINARIES
In this section, we review the notion of an arrangement

of triangles in the plane, and state the well known result
bounding the number of shallow cells when the triangles are
fat.

A triangle t can be partitioned into seven features – the
three vertices, the three edges (we don’t include the end-
points of an edge when we talk about it as a feature), and
its interior. Now given a set T of triangles in the plane,
we can define an equivalence relation on the plane – two
points are related if they are contained in exactly the same
set of features. The connected components of the resulting
equivalence classes are the cells in the arrangement of T . A
cell can be a point (thus zero-dimensional), a line segment
(thus one-dimensional), or an open polygonal region (thus
two-dimensional).

We define the level or depth of a point in a given set T
of triangles to be the number of triangles it is contained in.
Note that two points that belong to the same cell have the
same level, because they are contained in the same set of
triangles. Thus we can speak of the level or depth of a cell.
The level of a point is an integer between 0 and |T |. We will
say that a point is k-deep with respect to a set T of triangles
if its level is at least k.

We will need the following well known result, which follows
from the fact that the union complexity of m fat triangles is
O(m log log m) [25] and a certain application of the proba-
blistic method [12]. The lemma bounds the number of cells
that are at level at most α, and it is through this that the
union complexity comes into play in our results.

Lemma 3. Let F be a set of m ρ-fat triangles in general
position, and 1 ≤ α ≤ m be a parameter. The number
of cells with level at most α in the arrangement of F is
O(αm log log m

α
).

3. QUASI-UNIFORM SAMPLING
In this section, we establish the main result of this pa-

per, which is Theorem 1. Throughout this section, let φ(x)
denote the function log log x. We first need the following:

Theorem 4. Let F be a set of fat triangles in the plane,
and let 1 ≤ α ≤ |F | be a parameter. There is a probabilistic
polynomial-time algorithm that outputs a subset F ′ of F that
has at least log α triangles covering each α-deep point in F ,
and has the following property: For any triangle t ∈ F , the

probability that t ∈ F ′ is at most O(max{log α,log φ(|F |/α)})
α

.

Proof. For notational convenience, let m = |F |. To
prove the theorem we first describe a probabilistic process
that outputs a cover that has at least log α triangles covering
each cell of the arrangement of F whose depth is between α
and 2α. With this in mind, let β = max{log α, log φ(m/α)}.
We need a certain ordering of the triangles in F .

Let N = F initially. Let C denote the set of cells in the
arrangement of N with level at most 2α. So the size of
C is O(|N |αφ(|N |/α)), due to Lemma 3. The number of
pairs in (t, τ ) ∈ N × C such that triangle t contains cell τ is

bounded by |C| · 2α ≤ d|N |α2φ( |N|
α

), where d > 0 is some



constant. So there is a triangle in N that contains at most

dα2φ( |N|
α

) ≤ dα2φ(m
α

) cells in C.
We remove such a triangle t from N , and recursively com-

pute a sequence for the resulting N and append this se-
quence to t. By “recursively compute a sequence for N”, we
simply mean: find a triangle t′ in the new N that contains
at most dα2φ(m

α
) cells in the arrangement of the new N

with level at most 2α, recursively compute a sequence for
N \ {t′}, and append to it t′. The recursion bottoms out
when all triangles have been removed, that is, N becomes
empty.

Now, let σ be the reverse of the sequence of triangles we
just computed. Recall that our goal is a probabilistic al-
gorithm that outputs a cover with at least log α triangles
covering any point at depth between α and 2α in F . We
consider the triangles of σ in order and looking at each one
we make an instant decision about adding it to our cover.
When considering triangle t, we add it if t covers some point
p at depth between α and 2α in F , and not adding t would
result in having less than log α triangles covering p in our
cover. More precisely, suppose that n1 triangles that con-
tain p have been already added to the cover, and there are
n2 triangles that contain p and have not yet been consid-
ered; we add t if n1 +1+n2 ≤ log α. Let us call this a forced
addition of t. If t is not forced, we add it with probability
cβ
α

, where c is a sufficiently large positive constant.
Clearly, at the end we have a cover that has at least log α

triangles covering each point whose depth in F is between α
and 2α. Fix a triangle t. We argue that the probability that

t is added to the cover is O(β)
α

. Clearly, it suffices to show
that the probability of a forced addition of t is bounded by
1/α.

Consider the set N corresponding to which t makes an
appearance in (the reverse of) sequence σ. So t is a triangle
that contains at most dα2φ(m

α
) cells in the set C of cells in

the arrangement of N with depth at most 2α. For any cell
τ in the set C, let Zτ denote the triangles in N containing
τ , minus the triangle t itself.

If t is forced, there is a point p contained in some cell
τ ∈ C so that (a) t contains τ , (b) |Zτ | ≥ α− log α, and (c)
less than log α triangles in Zτ have been added.

Consider a cell τ for which (a) and (b) hold. We can
now bound the probability that (c) happens. Note that
|Zτ | ≥ α − log α ≥ α

2
. The probability that (c) happens

is upper bounded by the probability that in a sequence of α
2

independent and identical coin tosses with a probability of
heads being cβ

α
, less that log α coins turn up heads. The ex-

pected number of heads in such a sequence is µ ≡ cβ
2

. Since
log α ≤ β = max{log α, log φ(m/α)}, it suffices to bound the
probability that there are fewer than β heads. For c suffi-
ciently large, β ≤ µ/2. By applying the Chernoff bound (see
for instance Theorem 4.5 (2) of [26]), we can thus bound the

probability of (c) by 1/ecβ/16, which is at most 1
d(αφ(m/α))4

for c sufficiently large. Since there are at most dα2φ(m/α)
cells in C for which (a) and (b) hold, the probability of a
forced addition of t is at most

dα2φ(m/α)

(αφ(m/α))4
≤

1

α
.

Thus we have a probabilistic algorithm that outputs a
set that covers points at depth between α and 2α in F at
least log α times, and has the property that the probability

that a given triangle is added to our cover is bounded by
O(max{log α,log φ(m/α)})

α
.

We repeat the same algorithm for points at depth between
αi and 2αi in F , for each 1 ≤ i ≤ log2 m, where αi =
2iα. For a fixed value of i, we output a set that covers any
point at such a depth at least log(αi) times; the probability
that a certain triangle t is added to the set is bounded by
O(max{log αi,log φ(m/αi)})

αi
.

We output F ′, the union of the sets output for each i. A
summation over i shows that the probability of a particular
triangle being in F ′ is still bounded by

O(max{log α, log φ(m/α)})

α
.

3.1 Proof of Theorem 1
The following is the algorithm that corresponds to Theo-

rem 1. Recall that the input to this algorithm is a set T of
n fat triangles and a parameter 1 ≤ L ≤ n.

1. Let F ← T and α← L.

2. While α > log φ(n):

(a) Run the algorithm of Theorem 4 with F and α to
obtain output F ′,

(b) Reset F ← F ′, and reset α← log α.

3. Return T ′ = F .

From the guarantee of Theorem 4, it follows that the T ′

that is output is a cover for all points that are L-deep with
respect to T . We now bound the probability that a partic-
ular triangle t is part of T ′.

Let τ denote the number of times the body of the While
loop is executed. If in an iteration of this loop we have
α ≤ φ(|F |/α) in Step 2a, then this is the final iteration of
the loop. This is because the next time the condition in
the While statement is checked, we will have α ≤ log φ(n).
Thus, in all iterations but the last, we can invoke Theorem
4 to bound the probability that t is output by the algorithm
in Step 2a (conditioned on t being in F ) by

O(max{log α, log φ(|F |/α)})

α
=

O(log α)

α
.

In the last iteration, we bound this probability simply by

O(max{log α, log φ(|F |/α)})

α
.

A simple calculation shows that the probability that t ∈ T ′

is bounded above by

2O(τ) log φ(n)

L
.

(Illustration: if τ = 3, the probability that t ∈ T ′ is
bounded by

O(log L)

L
×

O(log log L)

log L
×

O(max{log log log L, log φ(|F |/ log log L)})

log log L
,

where F denotes its value the last time Step 2a is executed.)
Now, τ is at most 3, since α ≤ n initially and the While

loop terminates when α ≤ log φ(n). Thus the probability

that t is output is at most O(log φ(n))
L

.



4. WEIGHTED SET COVER
Suppose we are given a set P of k points in the plane,

and a set T1 of fat triangles, each triangle t with a positive
integer weight w(t). The union of the triangles covers P , and
we seek the minimum weight subset of T1 that also covers
P . We now describe an efficient approximation algorithm
for the problem that is based on solving the natural linear
programming relaxation and then applying Theorem 1 to
do the rounding. As we have remarked in Section 1, the
fact that an algorithm for constructing nets can be used for
rounding is well known [7, 23, 16].

Since two triangles that contain the same subset of P are
equivalent, we may assume that |T1| ≤ k6. (This may be
seen by an ad hoc argument; for a more principled deriva-
tion, we can use the methods in Chapter 10 of [24].) Let λ∗

denote the weight of the optimal cover. Solving in polyno-
mial time the linear programming relaxation of the set cover
problem, we find numbers 0 ≤ xt ≤ 1 for each t ∈ T1, so
that

X

t∈T1:p∈t

xt ≥ 1 for each p ∈ P,

and λ ≡
P

t∈T1
w(t)xt ≤ λ∗. For each t such that xt ≥

1
2k6 ,

we make
j

xt

1/(2k6)

k

copies of it, each with weight w(t). For

each t with xt < 1
2k6 , we make no copy (we discard it). Let T

denote the resulting set of triangles. Clearly, w(T ) ≤ 2k6λ.
For any p ∈ P , the number of triangles in T containing p is
at least

X

t∈T1:p∈t,xt≥
1

2k6

—

xt

1/(2k6)

�

≥ k6
X

t∈T1:p∈t,xt≥
1

2k6

xt

≥ k6

0

B

@
1−

X

t∈T1:p∈t,xt< 1
2k6

xt

1

C

A

≥ k6

„

1−
|T1|

2k6

«

≥
k6

2
.

We also have |T | ≤ 2k6|T1| ≤ 2k12. Applying the algo-
rithm in Theorem 1 with L = k6/2, we get a cover of P
whose expected weight is at most

O(log log log |T |)
w(T )

L
= O(log log log k) · λ

= O(log log log k) · λ∗.

We conclude:

Theorem 5. Given a set P of k points in the plane, and
a set T1 of fat triangles, each with a positive weight, whose
union covers P , we can, in polynomial time, compute a sub-
set of T1 with expected weight O(log log log k)∗λ∗ that covers
P , where λ∗ is the weight of the min-weight subset of T1 that
covers P .

5. FRACTIONAL SET COVER PACKING
In this section, we show how the fractional set cover pack-

ing problem with fat triangles can be approximated via The-
orem 1. An instance of such a fractional set cover packing
problem consists of a set X of points in the plane, and a

family F consisting of subsets induced by a set T of n fat
triangles. The goal is to compute B1, B2, . . . , Bτ , where each
Bi ⊆ T covers X, together with non-negative fractions f(Bi)
so that

P

i f(Bi) is maximized subject to the constraint that
for each t ∈ T ,

P

i:t∈Bi
f(Bi) ≤ 1.

Let L be the load, that is, the largest integer so that each
x ∈ X is in at least L of the triangles in T . The load L
is clearly an upper bound on the objective function value.
In Section 1, we saw that there is a solution with value
Ω( L

log log log n
), but this may take exponential time to con-

struct.
We now describe a variant that runs in polynomial time

and returns a solution that is nearly as good with high prob-
ability. Let N be a sufficiently large integer, to be chosen
below. We run the algorithm of Theorem 1 N times inde-
pendently; if B is a cover output by the algorithm, then we
set

f(B) =
No. of times B is output

N
∗

L

c log log log n
,

where c > 0 is a sufficiently large constant.
We readily check that the objective function value of this

solution to the fractional set cover problem is Ω( L
log log log n

).
To show that the packing constraint is satisfied for each

triangle, it suffices to argue that with high probability no

triangle is chosen in more than O(log log log n)
L

∗N of the covers
that are output. We choose N = c1L log n for sufficiently
large c1 > 0. Fix a triangle t. Since the probability that it

is part of a single cover is O(log log log n)
L

, a Chernoff-bound

argument implies that with probability at least 1− 1
n2 , it is

chosen in at most O(log log log n)
L

∗N of the covers. The union
bound implies that with probability at least 1 − 1/n, this
event happens for every triangle in T .

Theorem 6. For the fractional set cover packing problem
with points X and a set T of n fat triangles, there is a ran-
domized polynomial time algorithm that with high probability
outputs a solution that is within a factor of O(log log log n)
of the load (and hence the best possible solution).

6. CONCLUSIONS
We now state our result on quasi-uniform sampling for a

family of disks in the plane.

Theorem 7. There is a probabilistic polynomial time al-
gorithm that takes as input a set D of n disks and a param-
eter 1 ≤ L ≤ n, and outputs a subset D′ ⊂ D that covers
all points that are L-deep with respect to D, and has the fol-
lowing property: for any disk d ∈ D, the probability that it
is output is at most

2O(log∗ n)

L
.

The proof for this is almost exactly the same as that for
fat triangles in Section 3: we just let the function φ(x) = 2,
since the version of Lemma 3 for disks has the number of
cells at level at most α being O(mα). This in turn follows
from the fact that union complexity for m disks is O(m)
[21].

We obtain corresponding a approximation guarantee of
2O(log∗ n) for the weighted set cover problem and the frac-
tional set cover packing problem with disks.



Similar remarks apply to other object families with near-
linear union complexity, e.g., half-spaces in ℜ3. One ques-
tion that remains is whether the approximation guarantee
can be improved to match that of the unweighted case in [4].
Can we obtain an O(1) guarantee for disks, for instance? A
natural idea is to try to employ shallow cuttings as in [10],
but at present, we do not know how to do this effectively.

Another interesting direction concerns the fractional set
cover packing problem. Can we find interesting and natural
geometric examples where the ratio of the load to the best
fractional packing is not bounded by a constant? By an
interesting example, we mean one for which we do not yet
have super-linear lower bounds on the size of an epsilon net.
Our hope is that perhaps this question is more tractable
than super-linear lower bounds on epsilon nets. We note
that there are already good lower bounds for integral set
cover packing [28], but these do not work for the fractional
case.
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