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1 Introduction

We consider the computation of equilibria in two eco-
nomic models that generalize the exchange model
by including production. In the constant returns
model, each producer has a convex, constant-returns-
to-scale, technology. In particular, this means that
if the technology can output a certain quantity of a
good using as input certain quantities of other goods,
then scaling all these quantities by a common, non-
negative, number also results in a technologically fea-
sible plan. The technology also accomodates the no-
free-lunch property, which says that it is not possible
to produce something from nothing. At a given price,
the producer picks a technologically feasible plan that
maximizes her profit. Associated with each consumer
is an initial endowment of goods and a utility func-
tion that describes her preferences between various
bundles of goods. At a given price, the consumer
sells her initial endowment, thus obtaining a certain
income, and demands the bundle of goods maximiz-
ing her utility among all bundles that she can afford
at the given price with her income.

An equilibrium for such an economy is a set of
prices, one for each good, such that utility maximiza-
tion is well-defined for each consumer, profit maxi-
mization is well-defined for each producer, and the
optimal choices made by the consumers and produc-
ers are such that for any good, its total demand, over
all consumer choices as well as input choices of pro-
ducers, is at most the total supply, over all the initial
endowments and the output choices of producers.

This model is widely used in applied general
equilibrium [34]. Conceptually, it is best thought of
as a generalization of the exchange model [21, 11, 10,
16, 19, 35, 17, 8, 6, 4] to include production of the no-
free-lunch type (no outputs possible without inputs).

For economies where the utility functions of
the consumers and the production functions of the
producers are given by a range of CES (constant
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elasticity of substitution) functions (linear functions
are included), as well as the more versatile nested
CES functions, we show that the equilibria can be
characterized by the solutions of convex feasibility
problems. To obtain these results, we build on
the ideas behind the convex programs of Nenakov-
Primak [27], Jain [19], and Codenotti et al. [8] for
the exchange model. In the process, we contribute
significant ideas that are needed to handle not only
production but also an enlarged class of functions.

In the production planning model, we do not
assume that each agent has a fixed initial endowment
of goods. Instead we assume that there are factories
producing goods and each agent has a fixed initial
endowment of shares in various factories. Each
factory can produce a bundle of goods out of many
possibilities e.g., a dairy can either produce ice-
creams or produce butter and skimmed milk. The set
of bundles of goods that can be produced by a factory
is assumed to be a polytope in the positive orthant.
(Thus the polytope is not be thought of as specifying
a technology as in the constant returns case, but as
specifying alternatives for the factory given its stock
of resources.) The agents, or consumers, jointly own
the factories according to specified shares. At a given
price, each factory outputs the bundle that maximizes
its revenue over all bundles in its polytope. This
generates income for each of the agents. Each agent,
who is equipped with her own utility function, asks
for a bundle that maximizes her utility among all
bundles that she can afford, at the given price, with
her income.

An equilibrium is a price vector at which the
actions (optimizations) of each factory and agent are
well defined, and result in bundles that clear the
market. This model has also received significant
attention, see for instance [29, 27, 30, 28].

Our main result for this model is an explicit,
polynomial-sized, convex program that characterizes
the equilibria when the agents have linear utilities.
The exchange model with linear utilities is a special
case of this problem which is recently settled in [19].

Both models correspond to the ones considered
by Arrow and Debreu [1] in their famous paper, where
they show that an equilibrium exists under certain



mild assumptions (See the textbook by Mas-Colell,
Whinston, and Green [26] for a detailed and modern
treatment).

The main products of our work on both models
are convex programs. Polynomial time algorithms
follow from standard convex programming methods.
The equilibria can be irrational and these algorithms
therefore compute approximate equilibria in time
that is also polynomial in the number of bits needed
to encode the rational number specifying the approxi-
mation parameter. The notions of approximate equi-
libria can be given a natural interpretation in the
context of the models, as is the case for the exchange
model [21].

CES and Nested CES Functions. Before
presenting our results and their significance, we de-
scribe the utility and production functions that we
are concerned with. A popular family of functions
is given by CES (constant elasticity of substitution)
functions. Let Rn

+ denote the non-negative orthant
of Rn, the set of points with non-negative coordi-
nates. A function f : Rn

+ → R is a CES function

if it has the form f(x1, . . . , xn) =
(

∑n
j=1 cjx

ρ
j

)
1

ρ

,

where cj ≥ 0, and −∞ < ρ < 1, but ρ 6= 0. The
limiting case ρ = 1 corresponds to a linear function
f(x1, . . . , xn) =

∑

j ajxj , where aj ≥ 0. The lim-
iting case ρ = 0 corresponds to the Cobb-Douglas
function f(x1, . . . , xn) =

∏

j x
αj

j , where αj ≥ 0 and
∑

j αj = 1. The limiting case ρ = −∞ corresponds
to the Leontief function f(x1, . . . , xn) = minj ajxj ,
where aj ≥ 0. For ease of exposition, we sometimes
treat these limiting cases as special cases of CES func-
tions. The quantity 1/(1−ρ) is called the elasticity of
substitution of the CES function f . CES functions are
concave and homogeneous, that is, f(αx) = αf(x) for
any scalar α ≥ 0.

The CES functions model a wide variety of
preferences. The demand of a consumer with a
CES utility function with ρ ≥ 0 satisfies gross
substitutability (GS) : increasing the price of a good
cannot result in a decrease in her demand for the
other goods. The demand of a consumer with a CES
utility function with ρ < 0 need not satisfies GS. We
refer the reader to [8] for a more detailed exposition
of the usefulness of CES functions.

A nested CES function from Rn
+ → R is defined

recursively: (1) Any CES function is a nested CES
function; and (2) if g : Rt

+ → R is a t-variate CES
function, and h1, . . . , ht are n-variate nested CES
functions, then f(x) = max g(h1(x

1), . . . , ht(x
t)),

over all x1, . . . , xt ∈ Rn
+ such that x1 + · · ·xt =

x, is a nested CES function. In the special case
where for each good j, at most one of the hi’s

depends on its j-th argument, we in fact have f(x) =
g(h1(x), . . . , ht(x)). In what follows, we assume the
special case for ease of exposition. Such a nested
CES function may be visualized using a tree-like
structure, where at each node of the tree we have
a CES function.

Consider for example a consumer with the nested

CES utility function u(x1, x2, x3) = x
1/2
1 x

1/2
2 +x3. At

any price vector, she will spend her income entirely
on either a bundle that consists exclusively of goods 1
and 2, or entirely on a bundle that consists entirely of
good 3. She makes the choice depending on the ‘bang
for the buck’ for each choice. (If the prices are such
that the two choices offer the same bang for the buck,
she can divide her income arbitrarily between the two
choices.) This is a feature of the linear function at
the top nest. If the choice consisting of just goods 1
and 2 is the better one, she will spend half her income
on good 1, and half on good 2, no matter what the
relative prices of these goods: this is a feature of the

Cobb-Douglas function x
1/2
1 x

1/2
2 . It is also easy to

check that gross substitutability does not hold for
this utility function.

As an introduction to the constant-returns model
of production considered in this paper, consider a pro-
ducer who outputs good 4 using goods 1,2, and 3
as inputs using the nested CES production function

f(x1, x2, x3) = x
1/2
1 x

1/2
2 + x3. The production func-

tion says that the producer’s technology can output
f(x1, x2, x3) units of good 4 given x1 units of good 1,
x2 units of good 2, and x3 units of good 3. Reason-
ing as above, we see that at a given (non-degenerate)
price vector, a profit maximizing plan will either use
only goods 1 and 2 as inputs, or only good 3 as input.

Nested CES functions are used extensively to
model both production and consumption in applied
general equilibrium: We refer the reader to the
book by Shoven and Whalley [34] for a sense of
their pervasiveness. The popoular modeling language
MPSGE [32] uses nested CES functions to model
production and consumption.

Our Results and their Significance: The

constant-returns model. We present explicit
convex programs that characterize (and hence
polynomial-time algorithms that compute) the equi-
libria in economies where consumers have nested CES
utility functions, producers have nested CES produc-
tion functions, and the ρ’s at each of the nests of the
functions are between 0 and 1. We also obtain con-
vex programs and polynomial time algorithms when
the ρ’s at each of the nests is between −1 and 0, pro-
vided an additional technical condition holds. For ex-
ample, this condition, specialized to CES functions,



says, loosely speaking, that there is a −1 ≤ ρ < 0
such that for each good, the elasticity of any con-
sumer who demands the good or of any producer who
demands it as input is at least 1/(1 − ρ), while the
elasticity of any producer who supplies the good as
output is at most 1/(1 − ρ). We give significant ex-
amples of economies that satisfy this condition. We
note that convex programs for ρ < −1 are ruled out
even for exchange economies with CES functions by
a result of Gjerstad [18].

To our knowledge, these are the first convex pro-
grams and polynomial-time algorithms for economies
that generalize the exchange model by including no-
free-lunch production technologies. Convex programs
are also known for generalizations of the Fisher model
[15, 12, 9, 7, 35, 3, 17, 4] that include production, see
Polterovich [29], and recently, Jain et al. [22]. In
these models, however, the relative incomes of the
consumers is fixed, and so they do not generalize the
exchange model. Moreover, both the model that we
consider and the functions that we address are widely
employed in applied general equilibrium [23, 34].

If obtaining polynomial time algorithms is sig-
nificantly more difficult for the exchange model in
comparison to the Fisher model, the addition of con-
stant returns to scale production technologies makes
the problem even harder. To appreciate this, let us
consider first the exchange model, in which there is
no production. Here it is well known that if the de-
mand of the consumers satisfies GS, then the set of
equilibrium prices is a convex set [2]. The GS prop-
erty holds in the exchange model for example when
consumers have CES utility functions with ρ from the
range [0, 1].

When we add to the model production with con-
stant returns to scale technologies, the demand of
each consumer is identical to the demand of the con-
sumer in an exchange model. Thus it is natural to ask
if the equilibrium prices form a convex set in the pro-
duction context when consumer demands satisfy GS.
It is well known that the answer is quite decisively in
the negative. The survey of Kehoe [23] gives an exam-
ple with two consumers with linear utility functions,
four goods, and a simple constant-returns technology
for which there are multiple disconnected equilibria.
In fact, a necessary condition for ruling out multiple
disconnected equilibria is that the aggregate (excess)
demands of the consumers satisy the weak axiom of
revealed preference property [26]. This is a rather
stringent necessary condition – to ensure this with
the kind of utility functions we consider here, the ini-
tial endowments of the consumers would have to be
proportional, thus fixing the relative incomes of the
consumers.

We are led to the conclusion that the only
reasonable way to ensure uniqueness or connectedness
of equilibria is to restrict the production side as
well [23]. One such restriction is the notion of
a Super Cobb-Douglas economy, due to Mas-Colell
[25]. Using techniques originating from mathematical
index theory, Mas-Colell was able to show that a
(non-degenerate) Super Cobb-Douglas economy has
a unique equilibrium. We do not recite the defintion
of a Super Cobb-Douglas economy here, but note that
an economy with nested CES utility and production
functions with the ρ’s of the nest in the range
[0, 1] is a pre-eminent example of a Super Cobb-
Douglas economy. Mas-Colell’s proof of uniqueness,
however, does not tell us how to efficiently compute
the equilibrium.

Our first result therefore gives convex programs
and polynomial time algorithms for an important
instance of an economy where uniqueness was already
known. On the other hand, our second result, which
addresses the case where the ρ’s are between −1 and
0, yields new results on uniqueness1. The uniqueness
of equilibrium for even for the exchange model with
CES functions was established only recently [8].

We also point out that our work gives the first
convex programs that characterize equilibria for ex-
change economies with nested CES utility functions.
As we argue later, previous methods [27, 19, 8] do
not yield a convex program in this setting. And
as we have already pointed out, GS need not hold,
and therefore methods that exploit this property
[6] do not apply. Quite significantly, our approach
for obtaining convex programs for these exchange
economies requires (for conceptual ease at least) the
machinery of production.

The production planning model. Recall that
in this model, the production polytopes lie in the
positive orthant. Primak [30] gave an infinite linear
program, based on the revealed preference inequal-
ity [2], that characterizes the equilibria of this model
when agents have linear utilities. Recently, Code-
notti et al. [4] extended this to the case where agents
have utilities that satisfy gross substitutability, and
showed that an ellipsoid-based algorithm computes
an approximate equilibrium in polynomial time. An
ellipsoid algorithm is also suggested by Newman and
Primak [28], but it does not guarantee an approxi-
mate equilibrium in polynomial time (see [6]).

Convex programs based on the revealed prefer-
ence inequality do not share some of the advantages

1In this section, we sometimes take uniqueness and the lack
of multiple disconnected equilibria to mean the same thing.
The notions coincide for economies that are regular, that is,
non-degenerate in a technical sense [26].



of explicit convex programs, such as those of Eisen-
berg and Gale’s for the Fisher setting [13, 15], or
Jain’s for the exchange setting [19]. First, these pro-
grams are infinite and necessarily require the use of
the Ellipsoid algorithm. Second, the variables used
in the programs are only for the prices. Prices are
the means not the ends in the study of market equi-
libria. Ideally, we want to get the information about
the assignment variables - i.e., who gets what and
who derives how much utility. Eisenberg and Gale’s
convex program reveals many theorems about these
variables.

Nenakov and Primak [27] give an explicit con-
vex program for the production planning model with
linear utilities. Unfortunately, the number of con-
straints in their program is infinite. Our main con-
tribution here is an explicit, polynomial sized convex
program for this model. This allows the use of effi-
cient interior point methods, such as those developed
by Ye [35]. Our program also reveals many struc-
tural details about the market equilibria, for instance,
convexity in the assignment variables as well as log-
convexity in the price variables. The derivation of the
program makes a subtle use of techniques developed
in [19].

Finally, we wish to stress that our work on both
models is a contribution to the important tradition of
characterizing equilibria via convex programs. While
combinatorial methods are also being explored for
computing equilibria, and these are interesting in
their own right and have their own advantages, con-
vex characterizations have the advantage of shedding
light on the structure of the equilibrium problem. We
have already alluded to the uniqueness issue. In ad-
dition, convex characterizations can be used to estab-
lish revealed-preference type inequalities, which have
consequences for the convergence properties of price
adjustment mechanisms like tatonnement.

Organization In Section 2, we describe the two
models formally. We address the constant returns
model in Section 3. In Section 3.1, we describe a
simple procedure that simplifies the consumer side of
the economy at the expense of adding more produc-
ers. This step is straightforward, but seems crucial
to obtain our results for even exchange economies.
The step applies to any homogeneous utility func-
tion, and does not use properties of nested CES func-
tions. Its effectiveness suggests that it may be of
independent interest. In Section 3.2, we describe a
system of inequalities that characterize equilibria for
consumers with homogeneous utility functions and
producers with homogeneous production functions.
In Section 3.3, we consider nested CES functions for
positive ρ’s, and show how we derive our convex pro-

grams for this class from the system of inequalities
in Section 3.2. For lack of space, we omit the more
complicated derivation of our programs for negative
ρ. Finally, in Section 4, we derive our convex program
for the production planning model.

2 The Models

Constant Returns Technologies. We con-
sider a model with n goods, m traders, and l produc-
ers. The k’th producer is equipped with a technology
that is capable of producing some good, say ok, using
the n goods as input. The technology is specified by
a concave function fk : Rn

+ → R+ that is assumed to
be homogeneous of degree one. The interpretation is
that given quantity zj ≥ 0 of good j, for 1 ≤ j ≤ n,
the technology can produce upto fk(z1, . . . , zn) units
of good ok.

At a given price vector π = (π1, . . . , πn) ∈ Rn
+,

the producer will choose a technologically feasible
production plan that maximizes her profit. That is,
she will choose z1, . . . , zn ≥ 0 that maximizes the
profit πok

fk(z1, . . . , zn)−
∑n
j=1 πjzj . Now if there is a

choice of z1, . . . , zn ≥ 0 such that πok
fk(z1, . . . , zn)−

∑n
j=1 πjzj > 0, then using inputs αz1, . . . , αzn, for

α > 1, she can obtain a profit of

πok
fk(αz1, . . . , αzn) −

n
∑

j=1

πjαzj

= α(πok
fk(z1, . . . , zn) −

n
∑

j=1

πjzj).

Thus a profit maximizing plan is not defined in this
case. A profit maximizing plan is defined if and only
if no feasible plan can make a strictly positive profit.
In such a case, a profit maximizing plan is one that
makes zero profit. In particular, the trivial choice
zj = 0, for 1 ≤ j ≤ n, for which fk(z1, . . . , zn) = 0
is always a profit maximizing plan whenever profit
maximization is well defined.

It is useful to restate the above in terms of the
unit cost function ck : Rn

+ → R+. This is defined,
at any given price vector (π1, . . . , πn) ∈ Rn

+, to be
the minimum cost for producing one unit of good ok.
That is,

ck(π) = min{
n

∑

j=1

πjzj |zj ≥ 0, fk(z1, . . . , zn) ≥ 1}.

If πok
> ck(π), then profit maximization is unde-

fined. If πok
< ck(π), then the only profit maxi-

mizing plan is the trivial plan. If πok
= ck(π), the

trivial plan, as well as any (x1, . . . , xn) such that



fk(z1, . . . , zn)ck(π) =
∑n

j=1 πjzj , is a profit maxi-
mizing plan.

Each consumer i is equipped with an initial en-
dowment of goods wi ∈ Rn

+ and a concave, homoge-
neous, nonsatiated, utility function ui : Rn

+ → R+.
At a given price vector π, the consumer will choose an
x = (x1, . . . , xn) ∈ Rn

+ that maximizes ui(x) subject
to the constraint

∑n
j=1 πjxj ≤

∑n
j=1 πjwij . That

is, she chooses a utility maximizing bundle among
those bundles that cost no more than her income2
∑n

j=1 πjwij . Such a bundle is said to be her demand
at price π. Analogous to the unit cost function, the
unit expenditure function ei : Rn

+ → R+ is defined,
at any given price vector (π1, . . . , πn) ∈ Rn

+, to be
the minimum expenditure for purchasing one unit of
utility. That is,

ei(π) = min{

n
∑

j=1

πjxj |xj ≥ 0, ui(x1, . . . , xn) ≥ 1}.

Note that (x1, . . . , xn) is the demand of trader i at
price π if and only if ui(x1, . . . , xn)ei(π) =

∑

j πjwij
and

∑

j πjxij =
∑

j πjwij .
An equilibrium is a vector prices π =

(π1, . . . , πn) ∈ Rn
+ at which there is a bundle xi =

(xi1, . . . , xin) ∈ Rn
+ of goods for each trader i and a

bundle zk = (zk1, . . . , zkn) ∈ Rn
+ for each producer

k such that the following three conditions hold: (i)
For each firm k, profit maximization is well-defined3

at π and the inputs zk = (zk1, . . . , zkn) and output
qkok

= fk(zk1, . . . , zkn) is a profit maximizing plan;
(ii) For each consumer i, utility maximization is well-
defined and the vector xi is her demand at price π;
and (iii) for each good j, the total demand is no more
than the total supply; that is, the market clears:

∑

i

xij +
∑

k

zkj ≤
∑

i

wij +
∑

k:j=ok

qkj .

From the nonsatiation of the utility functions,
it follows from standard arguments that a strict in-
equality can hold in the inequality (iii) corresponding
to some good j only if πj = 0.

2Arrow and Debreu [1] allow convex technologies that need
not be of the constant-returns type. In such an economy,
the consumers also derive income from the profit of producers
in accordance with prescribed shares. In a constant-returns
technology, the equilibrium profit is zero, hence there is no
income that consumers may derive from any shares. Yet the
generality of the model of Arrow and Debreu is not lost by
restricting ourselves to constant-returns technologies, see [26],
chapters 5 and 17.

3Note that this requirement means that there is no feasible
plan that makes positive profit. This rules out the trivial
approach of ignoring the production units and computing an
equilibrium for the resulting exchange model.

Production Planning. Our model has m
agents, n goods and l factories. Each factory can pro-
duce one of the possible bundles of the goods. The
set of possible bundles which a factory can produce is
assumed to be a polytope contained in the positive or-
thant. This polytope is called the production polytope
of the factory. Each factory is collectively owned by
the m agents. Let γik denotes the fraction of factory
k owned by agent i. We assume that γik’s are non-
negative and add up to one for any factory k. Each
agent has a linear utility function, ui : Rn

+ → R+ of
the form ui(x) =

∑

j uijxj , given by the coefficients
uij ≥ 0. A market equilibrium is an assignment of
nonnegative prices πj to every good j such that:

• Each factory produces a bundle y ∈ Rn
+ from its

production polytope that maximizes the revenue
π · y at the given price vector. This revenue is
shared by the agents in the ratio of γik’s.

• Each agent buys a bundle of goods that max-
imizes her utility among bundles that cost no
more than the money she received from the fac-
tories. (π should have the property that utility
maximization is well-defined.)

• The market clears.

We assume that each agent owns at least one
factory to a non-zero extent. If an agent does not
own any factory then we can simply remove the agent
from consideration. We also assume that no factory
is capable of producing any good to an unbounded
extent. (This implies that revenue maximization
is well-defined at any price.) If some factory can
produce any good to an unbounded extent then that
good will be priced zero in the equilibrium and we
can remove that good from consideration. We also
assume that uij > 0. This is a simplifying assumption
to make certain that at equilibrium every good has
a non-zero price. We may remove this assumption
along the lines of [19]. Note that utility maximization
is well-defined for each agent at positive prices.

We assume that goods can be freely disposed.
This is again without loss of generality. This assump-
tion means that if a factory can produce a bundle of
goods b then the factory can also produce a bundle of
goods b′, where b′ is not bigger than b on any coor-
dinate. If a factory does not satisfy this assumption
then we can take the disposal closure of its production
polytope. Disposal closure of a polytope is the small-
est polytope satisfying the free disposal assumption
and contains the original polytope. Since the price of
each good is positive, an optimum production point
over the disposal closure will be in the original poly-
tope.



With the assumption of free disposal, production
polytope of a factory k can be written as:

∀t :
∑

j

akjtykj ≤ bkt

∀j : ykj ≥ 0

where ykj is the amount of good j produced
by factory k. Here t varies over the non-trivial
constraints of the production polytope. Here by non-
trivial, we mean the constraints which are other than
non-negativity constraints. Since we assumed free
disposal we get, akjt’s and bkt’s are non-negative. For
notational purposes we will use, i to vary over the
agents, k over the factories, j over the goods and t
over the non-trivial facets of a production polytope.
The range of t is governed by the context.

3 Constant Returns Technologies

In this section, we derive our convex programs for the
constant returns model.

3.1 Simplifying Consumers via Production

Let M denote an economy such as the one described
above with m consumers, n goods, and l producers.
We describe a transformation into an economy M ′

with m consumers, n+m goods, and l+m producers.
For each consumer i, an additional good, which will
be the (n + i)’th good, is added. The new utility
function of the i’th consumer is u′i(x1, . . . , xn+m) =
xn+i; that is, the i’th consumer only wants good
n + i. The new initial endowment w′

i is the same
as the old one; that is w′

ij = wij if j ≤ n, and
w′
ij = 0 if j > n. The first l producers stay

the same. That is, for k ≤ l, the k’th producer
outputs good ok using the technology described by
the function f ′

k(z1, . . . , zn+m) = fk(z1, . . . , zn). For
1 ≤ i ≤ m, the (l + i)’th producer outputs good
n+ i using the technology described by the function
f ′
l+i(z1, . . . , zn+m) = ui(z1, . . . , zn).

Note that good n+i is only consumed by the i’th
consumer and produced by the (l+ i)’th producer. It
is not demanded as the input of any producer either.
Also note that the unit expenditure ei(π1, . . . πn)
of trader i, for any i ≤ m, in the market M ,
equals the unit cost c′l+i(π1, . . . , πn, πn+1, . . . , πn+m)
of producer l+i inM ′, for any πn+1, . . . , πn+m ∈ R+.

Lemma 3.1. If π = (π1, . . . , πn) ∈ Rn
+ is an equilib-

rium for M , then π̄ = (π1, . . . , πn, e1(π), . . . , em(π))
is an equilibrium for M ′. Conversely, if π̄ =
(π1, . . . , πn, πn+1, . . . , πn+m) is an equilibrium for
M ′, then π = (π1, . . . , πn) is an equilibrium for M ,
and πn+i = ei(π) for 1 ≤ i ≤ m.

3.2 Inequalities Characterizing Equilibrium

We now characterize the equilibria for the market M ′

in terms of a system G of inequalities, in the following
sets of non-negative variables: (1) π1, . . . , πn+m, for
the prices; (2) xi,n+i, for the demand of consumer i
for the (n+ i)’th good; (3) zk = (zk1, . . . , zkn) ∈ Rn

+,
standing for the inputs used by the k’th production
sector; and (4) qkok

, for the output of the good ok by
the k’th producer.

πn+ixi,n+i ≥
n

∑

j=1

πjwij , for 1 ≤ i ≤ m(3.1)

qkok
≤ fk(zk), for 1 ≤ k ≤ l +m(3.2)

πok
≤ ck(π1, . . . , πn), for 1 ≤ k ≤ l +m(3.3)

∑

k

zkj ≤
∑

i

wij +
∑

k:ok=j

qkj , for 1 ≤ j ≤ n(3.4)

xi,n+i ≤ ql+i,n+i for 1 ≤ i ≤ m(3.5)

Here, ck() denotes the k-th producer’s unit cost
function, which only depends on the prices of the
first n goods. Evidently, any equilibrium is a feasible
solution to this system of inequalities G. What is not
so evident is that any feasible solution of G is an
equilibrium. To see this, we first note that the sets of
inequalities (3.2) and (3.3) imply that no producer
can make positive profit: we have

∑

j≤n πjzkj ≥
πok

qkok
for each producer k. Adding up these

inequalities, as well as the inequailities (3.1), we
get a certain inequality that says that the cost of
the consumer and producer demands is greater than
or equal to the cost of the initial endowments and
producer outputs. Whereas by multiplying each
inequality in (3.4) and (3.5) by the corresponding
price and adding up these inequalities, we get that
the cost of the consumer and producer demands is less
than or equal to the cost of the initial endowments
and producer outputs.

This implies that the two costs must be equal.
From this it follows that

∑

j≤n πjzkj = πok
qkok

for
each producer k. Each production plan makes zero
profit. Since (3.3) ensures that profit maximization
is well defined, these are optimal production plans.
Furthermore, we must have equality in (3.1): xi,n+i

is the demand of good n + i at price π. Since
conservation of goods is assured by (3.4) and (3.5),
we conclude that any solution of G is an equilibrium.



3.3 Implications for Nested CES functions:

Non-negative ρ. Following Nenakov-Primak [27]
and Jain [19], we make the substitution πj = eψj

in the above system of inequalities. This makes all
the constraints convex, except possibly for the ones
in (3.3). Whenever each inequality in the set (3.3)
also becomes a convex constraint, we get a convex
feasibility characterization of positive equilibrium
prices. We show that this is the case when all the
production functions are nested CES with the ρ of
all the nests being non-negative.

Let us first consider what happens to the con-
straint in (3.3) corresponding to a CES production
function fk(z1, . . . , zn) = (

∑

j akjx
ρ
j )

1/ρ, where 0 <
ρ < 1.The corresponding constraint is πok

≤ ck(π) =
(
∑

j a
σ
kjπ

1−σ
j )1/1−σ , where σ = 1/(1 − ρ) (We use a

standard expression for the cost function correspond-
ing to the CES production function fk). Raising both
sides to the power (1−σ), and noting that 1−σ < 0,
this constraint becomes

π1−σ
ok

≥





∑

j

aσkjπ
1−σ
j



 .

It is now easy to see that the substitution πj =
eψj turns this into a convex constraint.

It is also easy to verify, using standard formulas
for the cost functions, that the constraint in (3.3)
corresponding to a linear production function (ρ = 1)
or a Cobb-Douglas production function (ρ = 0) also
becomes convex after the substitution πj = eψj .

We now turn to nested CES functions. Sup-
pose that h1, . . . , ht are n-variate CES functions,
and g is an m-variate CES function. Let the corre-
sponding unit cost functions be ch1

, . . . , cht
and cg.

Then the unit cost function for the n-variate nested
CES function f(x) = g(h1(x), . . . , ht(x)) is given by
cf (π) = cg(ch1

(π), . . . , cht
(π)).

To write the constraint πo ≤ cf (π) corresponding
to f , we may introduce t new variables πh1

, . . . , πht
,

and write the set of constraints

πo ≤ cg(πh1
, . . . , πht

),

and

πhi
≤ chi

(π), for 1 ≤ i ≤ t.

If g and h1, . . . , ht are CES functions with ρ ≥
0, our discussion above implies that this set of
inequalities becomes convex after the substitution
πj = eψj and πhi

= eψhi . It is clear that our
discussion, which focussed on 2-level nested CES
functions, generalizes to arbitrary nesting structures.

Let P denote the above system of inequalities
thus derived from G.

Theorem 3.1. If each production function in the
market M ′ is nested CES with each nest having a
non-negative ρ, then the above system of inequalities
P characterize the positive price equilibria of the
market M ′.

We note that this yields the first convex programs
even when the original economy M is an exchange
model with such nested CES functions. To see that
the programs of Nenakov-Primak [27] and Jain [19]
do not work in this case, consider the nested CES

function u(x1, x2, x3) = x
1/2
1 x

1/2
2 + x3. Then the log

of the function

∑3
j=1 xj

∂u(x)
∂xj

∂u(x)
∂xj

= 2(x1 +
x

1/2
1 x3

x
1/2
2

),

is easily seen to be not a concave one even in the
variables x3 and x2.

4 Production Planning with Linear Utilities

In this section, we derive a polynomial sized convex
program whose solutions correspond to the equilibria
of the production planning model with linear utilities
(recall Section 2).

Let πj ’s denote the prices at an equilibrium.
Each factory, k, solves the following maximization
problem.

maximize
∑

j

πjykj(4.6)

∀t :
∑

j

akjtykj ≤ bkt

∀j : ykj ≥ 0

Its dual is:

minimize
∑

t

bktαkt(4.7)

∀j :
∑

t

akjtαkt ≥ πj

∀t : αkt ≥ 0

From the weak duality theorem of linear pro-
gramming we know that the dual solution is at least
as big as the primal solution. If we enforce the pri-
mal to be as big as dual then we get the optimality
condition for producer k.

∑

j

πjykj ≥
∑

t

bktαkt(4.8)



We will use this as a certification of optimality. We
can also use the dual to derive an upper bound on
the money available to an agent. An upper bound on
the money available to an agent i is:

∑

k

γik
∑

t

bktαkt.

We also need to argue that the agents are con-
suming optimally. Let us write agents optimality con-
ditions as a linear program too. For an agent i we
have:

maximize
∑

j

uijxij(4.9)

∑

j

πjxij ≤
∑

k

γik
∑

t

bktαkt

∀j : xij ≥ 0

Here xij is the amount of good j consumed by i.
Its dual program is:

minimize λi
∑

k

γik
∑

t

bktαkt(4.10)

∀j : πjλi ≥ uij

λi ≥ 0

Again using the weak duality theorem of linear
programming we know that the dual solution is at
least as big as the primal solution. So if we enforce
the primal to be as big as dual then we get optimality
condition for agent i. This gives us for an agent i:

∑

j

uijxij ≥ λi
∑

k

γik
∑

t

bktαkt(4.11)

The market equilibrium problem becomes finding
feasible solutions of linear programs 4.6, 4.7, 4.9, and
4.10 together with their optimality condition 4.8 and
4.11 and the following global condition of market
clearing.

∀j :
∑

i

xij =
∑

k

ykj

Note that we are already given γik’s such that

∀k :
∑

i

γik = 1(4.12)

It turns out that the global market clearing condition
is quite powerful and helps simplifying the other
conditions. We do that in the next section.

4.1 A Simple Non-Convex Program First let
us simplify an agent i dual program. Agent i dual
program gives λi = maxj{uij/πj}. Eliminating λi
simplifies condition 4.11 to:

∀j′ :
∑

j

uijxij ≥
uij′

πj′

∑

k

γik
∑

t

bktαkt(4.13)

We do not need the primal feasibility to be
enforced explicitly in the primal programs of agents.
Instead we will show that it follows from other
constraints. We enforce the feasibility of primal and
dual programs for factories but drop the optimality
condition 4.8. We will show that even this condition
follows. All together we get the following non-convex
program:

∀i, j′ :
∑

j

uijxij ≥
uij′

πj′

∑

k

γik
∑

t

bktαkt(4.14)

∀k, t :
∑

j

akjtykj ≤ bkt(4.15)

∀k, j :
∑

t

akjtαkt ≥ πj(4.16)

∀j :
∑

i

xij =
∑

k

ykj(4.17)

∀j : πj > 0(4.18)

∀i, j, k, t : xij , αkt, ykj ≥ 0(4.19)

Theorem 4.1. All the market equilibria satisfy the
non-convex program 4.14–4.19 and conversely all the
feasible solutions of the non-convex program 4.14–
4.19 are the market equilibria.

Proof. Forward direction is clear and already argued
to be correct. For the reverse direction note that
α’s form a feasible dual to 4.7 hence using the
weak duality theorem of linear programming and
constraint 4.14 we get:

∀i, j′ :
∑

j

uijxij ≥
uij′

πj′

∑

k

γik
∑

j

πjykj

Multiply the above inequality by xij′πj′ and add
over j′. We get, for all i:

∑

j′

xij′πj′
∑

j

uijxij ≥
∑

j′

uij′xij′ (
∑

k

γik
∑

j

πjykj)

Canceling
∑

j uijxij on both sides we get:

∀i :
∑

j

xijπj ≥
∑

k

γik
∑

j

πjykj

Summing this over i we get:



∑

i,j

xijπj ≥
∑

i,k,j

γikπjykj

Using 4.12, we get:

∑

i,j

xijπj ≥
∑

k,j

πjykj

Using 4.17, the above inequality must have been
equality. This means it must have been equality
all the way. This means the instances of weak
duality must have been strong duality. Which gives
the optimality of the production for factories. We
already assumed the strong duality for the agent’s
program (constraint 4.14). Though we did not
assume the primal feasibility for an agent’s program.
Note that an agent has only one constraint in the
primal program. If that constraint is violated then
the primal would be strictly bigger than the dual
- since all the complementary slackness conditions
hold. Since this is not the case we have primal
feasibility for an agent’s program. Further details of
this argument can be found in [19]. This proves the
theorem.

4.2 Compact Convex Program. In this section
we give a compact convex program which can be
efficiently solved using interior point methods [35].
The main idea in this section is to introduce a new
set of variables ξktj for αkt/πj . Note that ξ variables
are neither primal nor dual variables. We will rewrite
the linear programs 4.6 and 4.7 for factories to give
ξ a dual interpretation and that’s the reason to use
Greek letter instead of Latin. With new variables
ξktj , constraints 4.14 becomes:

∀i, j′ :
∑

j

uijxij ≥ uij′
∑

k

γik
∑

t

bktξktj′(4.20)

It is very tempting to replace constraints 4.16 by:

∀k, j :
∑

t

akjtξktj ≥ 1

It is not clear whether this transformation would
work. If this transformation could have worked then
we would get a linear program instead of a convex
program. We actually do the following transforma-
tion to constraints 4.16:

∀k, j, j′ :
∑

t

akjtξktj′ ≥ πj/πj′(4.21)

Theorem 4.2. . All the market equilibria satisfy the
non-convex program 4.15, 4.17–4.19, 4.20, and 4.21.

Conversely all the feasible solution of the non-convex
program are the market equilibria.

Proof. Let us rewrite a factory’s primal program 4.6
several times. Each time we use the unit of value a
good j′ instead of money. This gives us the following
set of primal programs:

maximize
∑

j

πj
πj′

ykj(4.22)

∀t :
∑

j

akjtykj ≤ bkt

∀j : ykj ≥ 0

It is clear that the above linear program is
optimized simultaneously for all j ′. Its dual has the
variable ξktj′ .

minimize
∑

t

bktξktj′(4.23)

∀j :
∑

t

akjtξktj′ ≥
πj
πj′

∀t : ξktj′ ≥ 0

Now let us repeat the proof of Theorem 4.1. As
in Theorem 4.1 forward direction is clear. For the
reverse direction note that ξktj′ ’s form a feasible dual
to 4.23 hence using the weak duality theorem of linear
programming and constraint 4.20 we get:

∀i, j′ :
∑

j

uijxij ≥
uij′

πj′

∑

k

γik
∑

j

πjykj

The rest of the proof of this theorem is the same
as the proof of Theorem 4.1

The substitution πj = eψj turns the non-convex
program in Theorem 4.2 into the following convex
program:

∀i, j′ :
∑

j

uijxij ≥ uij′
∑

k

γik
∑

t

bktξktj′(4.24)

∀k, t :
∑

j

akjtykj ≤ bkt

∀k, j, j′ :
∑

t

akjtξktj′ ≥ eψj−ψj′

∀j :
∑

i

xij =
∑

k

ykj

∀i, k, j, j′, t : xij , ξktj′ , ykj ≥ 0

Theorem 4.3. Given any feasible solution ψ, x, y, ξ
to the convex program (4.24), the price vector
(eψ1 , . . . , eψn) is an equilibrium for the production



planning economy. Conversely, any equilibrium price
vector (eψ1 , . . . , eψn) of the production planning econ-
omy can be extended to a solution ψ, x, y, ξ to the
convex program (4.24).
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