
Sampling Based Dimension Reduction

for Subspace Approximation

Amit Deshpande ∗ Kasturi Varadarajan †

Abstract

We give a randomized bi-criteria algorithm for the problem of finding a k-dimensional sub-
space that minimizes the Lp-error for given points, i.e., p-th root of the sum of p-th powers of

distances to given points, for any p ≥ 1. Our algorithm runs in time Õ
(

mn · k3(k/ε)p+1
)

and

produces a subset of size Õ
(

k2(k/ε)p+1
)

from the given points such that, with high probability,
the span of these points gives a (1 + ε)-approximation to the optimal k-dimensional subspace.
We also show a dimension reduction type of result for this problem where we can efficiently
find a subset of size Õ

(

kp+3 + (k/ε)p+2
)

such that, with high probability, their span contains
a k-dimensional subspace that gives (1 + ε)-approximation to the optimum. We prove simi-
lar results for the corresponding projective clustering problem where we need to find multiple
k-dimensional subspaces.

1 Introduction

Low-dimensional representations of massive data sets are often important in data mining, statistics,
and clustering. We consider the problem of subspace approximation, i.e., we want to find a k-
dimensional linear subspace that minimizes the sum of p-th powers of distances to given points
a1, a2, . . . , am ∈ R

n, for p ≥ 1. We also consider the corresponding projective clustering problem
where instead of one k-dimensional subspace we want to find s of them such that the p-th root of
the sum of of the p-th powers of distances from each ai to its nearest subspace is minimized.

The p = 2 case for subspace approximation (also known as low-rank matrix approximation)
is well studied because a k-dimensional subspace that minimizes the sum of squared distances is
spanned by the top k right singular vectors of a matrix A ∈ R

m×n (with rows a1, a2, . . . , am), and
can be computed in time O(min{mn2,m2n}) using Singular Value Decomposition (SVD). Some
recent work on p = 2 case [1, 2, 3, 4, 5, 9, 12], initiated by a result due to Frieze, Kannan, and
Vempala [7], has focused on algorithms for computing a k-dimensional subspace that gives (1 + ε)-
approximation to the optimum in time O(mn·poly(k, 1/ε)), i.e., linear in the number of co-ordinates
we store. Most of these algorithms, with the exception of [1, 12], depend on subroutines that sample
poly(k, 1/ε) points from given a1, a2, . . . , am with the guarantee that, with high probability, their
span contains a k-dimensional subspace that gives (1 + ε)-approximation to the optimum.

When p 6= 2 we have neither the luxury of a tool like SVD, nor any simple description of an
optimal subspace (such as the span of top few right singular vectors). We show that one can get

∗Mathematics Department and CSAIL, MIT. E-mail: amitd@mit.edu. This work was done while the author was

visiting College of Computing, Georgia Institute of Technology.
†University of Iowa, Dept. of Computer Science. E-mail: kvaradar@cs.uiowa.edu

1

around this difficulty by generalizing and modifying some of the sampling techniques used in low-
rank matrix approximation. Our proofs are of geometric nature though, significantly different from
the linear algebraic tools used in low-rank matrix approximation. For a recent review of related
work on the subspace approximation problem, including the cases p = 2 and p = ∞ (where we
want a subspace that minimizes the maximum distance to the points), we refer the reader to [13].

2 Our Results

We state our problems once again.

Subspace Approximation Problem:

Given points a1, a2, . . . , am ∈ R
n and k > 0, we want to find a k-dimensional linear subspace H

that minimizes the Lp-error
(

m
∑

i=1

d(ai,H)p

) 1

p

.

We denote an optimal subspace by H∗
k .

Subspace Projective Clustering:

Given points a1, a2, . . . , am ∈ R
n and k, s > 0, we want to find k-dimensional linear sub-

spaces H[1],H[2], . . . ,H[s] that minimize the error (
∑m

i=1 d(ai,H)p)
1

p , where H denotes H[1] ∪
H[2]∪ · · · ∪H[s]. Let H∗[1], . . . ,H∗[s] denote the optimal subspaces and let H∗ denote their union
H∗[1] ∪ · · · ∪H∗[s].

We now state our results and relate them to other relevant results:

1. We first obtain a bi-criteria result: a randomized algorithm that runs in Õ
(

mn · k3(k/ε)p+1
)

time and finds a Õ
(

k2(k/ε)p+1
)

-dimensional subspace whose error is, with a probability of at
least 1/2, at most (1 + ε) times the error of an optimal k-dimensional subspace, (Note: We
use the notation Õ(·) to hide small polylog(k, 1/ε) factors for the convenience of readers.) We
obtain our results in several steps, using techniques that we believe are of interest:

(a) In Section 3, we prove that the span of k points picked using volume sampling has
expected error (k + 1) times the optimum. Since we do not know how to do volume
sampling exactly in an efficient manner, Section 3.2 describes an efficient procedure to
implement volume sampling approximately with a weaker multiplicative guarantee of
k! · (k + 1).

(b) In Section 4, we show how sampling points proportional to their lengths (or distances
from the span of current sample) can be used to find a Õ

(

k(k/ε)p+1
)

-dimensional sub-

space that gives an additive ε (
∑m

i=1 ‖ai‖
p)1/p approximation to an optimal k-dimensional

subspace.

(c) We call this method of picking new points with probabilities proportional to their dis-
tances from the span of current sample as adaptive sampling. In Section 5, we show
that if we start with an initial subspace V , then using adaptive sampling we can find

2

Õ
(

k(k/ε)p+1
)

additional points so that the span of V with these additional points gives

an additive ε (
∑m

i=1 d(ai, V)p)1/p approximation to an optimal k-dimensional subspace.
Moreover, using t rounds of this procedure, this additive error is brought down to
εt (
∑m

i=1 d(ai, V)p)1/p. The ideas used in this section are adaptations of previous work
for the p = 2 case.

(d) Using O(k log k) rounds of the above procedure on the initial subspace V obtained by
approximate volume sampling (from Procedure 1 above), we get our bi-criteria result.

2. Our next result is a dimension reduction for the subspace approximation problem: We de-
scribe an algorithm that runs in mn · poly(k

ε) time and returns a subspace C of dimension

Õ
(

kp+3 + (k/ε)p+2
)

that, with probability at least 1/2, is guaranteed to contain a k-subspace
whose error is at most (1 + ε)H∗

k , for any ε > 0. This kind of result was known for the
case p = 2, but not for the case p = 1. (For the special case k = 1, it was implicit in [13];
however, that approach does not generalize to larger k.) Its importance is precisely in its
being a dimension reduction result – algorithms developed for the subspace approximation
problem in low or ‘fixed’ dimension, which were designed to optimize the dependence on the
number of points but not the dimension, can be plugged in to obtain algorithms with very
good dependence on the dimension. Approximation algorithms for the k-subspace approxi-
mation problem in fixed dimension are near linear in the number of points but exponential in
the dimension [8] – plugging these in yields algorithms whose running time is comparable to
but not significantly better than the O(mn2poly(k/ε)) algorithm of [13] for p = 1. Note that
the dimension reduction can be seen as reducing to a constrained instance of the problem in
dim(C) + 1 dimensions.

The result is obtained by first using the previous bi-criteria result to obtain a subspace V
of dimension Õ(kp+3) that gives a 2-approximation to the optimal k-dimensional subspace.
Assuming without loss of generality that V has dimension at least k, the algorithm of Section
6 uses adaptive sampling to pick Õ

(

(k/ε)p+2
)

points so that the span of V with these new
points contains a k-dimensional subspace that gives a (1 + ε) approximation to the optimum.

The algorithm of [13], that runs in O(mn2poly(k/ε)) time for p = 1 and returns with probability
at least 1/2 a nearly optimal k-subspace, works by first finding a line ` that lies in a nearly
optimal k-subspace, then a 2-subspace B that lies in a nearly optimal k-subspace, and so on
till it finds a nearly optimal k-subspace. The authors of [13] show that the span of a sample
A1 of O(poly(k/ε)) points contains with high probability such a line `, provided the input
points are sampled in proportion to the norms. However, the algorithm needs ` and not just
A1 – this is because the next stage for finding B needs to sample based on distances from `.
So they guess `, but the guess works with a probability that is only inversely proportional
to 2poly(k/ε). This is why their sampling technique is inadequate for obtaining our dimension
reduction result.

We now illustrate how we harness the power of adaptive sampling. Consider the case when
k = 1, and let ` denote the optimal solution, and V a subspace of small dimension whose
error is within a constant factor of that of `. Let ˆ̀ denote the projection of ` onto V – this
can be viewed as V ’s proxy for `. It can be seen that the error of ˆ̀ is within a constant factor
of that of `. But suppose that ˆ̀ is not quite good enough, that is, the error of ˆ̀ is at least
(1 + ε) times that of `. We would like an input point a that is a witness to this – it must

3

satisfy d(a, ˆ̀) > (1+ ε/2)d(a, ˆ̀). Such a point would enlarge V so that the resulting subspace
is closer to ` than V . How can we find a witness given that we know only V and not ` or ˆ̀

? The observation is that adaptive sampling, that is, sampling according to distances from
V , yields a witness with probability Ω(ε). It is via this observation that we combine adaptive
sampling with the analysis techniques in [13] to get our dimension reduction result.

3. The usefulness of the adaptive sampling approach and the flexibility of our analysis are
perhaps best demonstrated by our result for dimension reduction for projective clustering.
In Section 7, we describe a randomized algorithm that runs in O(mn · poly(ks

ε)) time and

returns a subspace spanned by poly(ks
ε) points that is guaranteed, with probability at least

1/2, to contain s k-subspaces whose union is a (1+ ε)-approximation to the optimum H ∗. To
our knowledge, such a dimension reduction result is not known for the projective clustering
problem for any p, including the cases p = 2 and p = ∞. Previous results for the cases
p = 1, 2,∞ [10, 4, 13] only showed the existence of such a subspace spanned by poly(ks

ε)

points – the algorithm for finding the subspace enumerated all subsets of poly(ks
ε) points. Our

dimension reduction result, combined with the recent fixed-dimensional result of [6], yields
an O(mn ·poly(s

ε)+m(log m)f(s/ε)) time algorithm for the projective clustering problem with
k = 1. For lack of space, we do not elaborate on this application to the k = 1 case here.

3 Volume Sampling

In this section, we show how to find a k-subset of the given points such that their span gives a
crude but reasonable approximation to the optimal k-dimensional subspace H ∗

k that minimizes the
sum of p-th powers of distances to the given points.

For any subset S ⊆ [m], we define HS to be the linear subspace, span({ai : i ∈ S}), and
∆S to be the simplex, Conv ({0̄} ∪ {ai : i ∈ S}). By volume sampling k-subsets of [m], we mean
sampling from the following probability distribution:

Pr (picking S) = PS =
vol(∆S)p

∑

T,|T |=k vol(∆T)p
.

3.1 (k + 1)-approximation using k points

Theorem 1. For any a1, a2, . . . , am ∈ R
n, if we pick a random k-subset S ⊆ [m] by volume

sampling then

ES

[

m
∑

i=1

d(ai,HS)p

]

≤ (k + 1)p
m
∑

i=1

d(ai,H
∗
k)p.

Proof.

ES

[

m
∑

i=1

d(ai,HS)p

]

=
∑

S,|S|=k

vol(∆S)p
∑

T,|T |=k vol(∆T)p

m
∑

i=1

d(ai,HS)p

=
(k + 1)p+1

∑

S,|S|=k+1 vol(∆S)p
∑

T,|T |=k vol(∆T)p
(1)

4

For any (k + 1)-subset S, let VS denote an arbitrary but fixed k-dimensional linear subspace of HS

containing the projection of H∗
k on to HS . Now for any (k + 1)-subset S, Lemma 2 gives

vol(∆S) ≤
1

(k + 1)

∑

i∈S

d(ai, VS) vol
(

∆S\{i}

)

.

Hence, taking p-th power we have

vol(∆S)p ≤
1

(k + 1)p

(

∑

i∈S

d(ai, VS) vol
(

∆S\{i}

)

)p

≤
1

(k + 1)p
(k + 1)p−1

∑

i∈S

d(ai, VS)p vol
(

∆S\{i}

)p

(by Hölder’s inequality)

≤
1

(k + 1)

∑

i∈S

d(ai, VS)p vol
(

∆S\{i}

)p

Summing up over all subsets S of size (k + 1) we get

∑

S,|S|=k+1

vol(∆S)p ≤
1

(k + 1)

m
∑

i=1

∑

T,|T |=k

d(ai, VT∪{i})
p vol(∆T)p

≤
1

(k + 1)

m
∑

i=1

∑

T,|T |=k

d(ai,H
∗
k)p vol(∆T)p

=
1

(k + 1)

(

m
∑

i=1

d(ai,H
∗
k)p

)





∑

T,|T |=k

vol(∆T)p



 , (2)

where in the second inequality, the fact that d(ai, VT∪{i}) ≤ d(ai,H
∗
k) is because ai ∈ HT∪{i} and

VT∪{i} contains the projection of H∗
k on to HT∪{i}. Finally, combining equations (1) and (2) we get

ES

[

m
∑

i=1

d(ai,HS)p

]

≤ (k + 1)p
m
∑

i=1

d(ai,H
∗
k)p.

Lemma 2. Let S ⊆ [m] be a (k + 1)-subset and V be any k-dimensional linear subspace of HS.
Then

vol(∆S) ≤
1

(k + 1)

∑

i∈S

d(ai, V) vol(∆S\{i}).

Proof. W.l.o.g. we can identify HS with R
k+1 and the subspace V with span({e2, e3, . . . , ek+1}),

where the vectors {e1, e2, . . . , ek+1} form an orthonormal basis of R
k+1. Let AS ∈ R

(k+1)×(k+1)

be a matrix with rows {ai : i ∈ S} written in the above basis, and let Cij denote its submatrix

5

obtained by removing row i and column j. For any k-subset T ⊆ S, let ∆′
T be the projection of

∆T onto V . Then

vol(∆S) =
1

(k + 1)!
|det(AS)|

=
1

(k + 1)!

∣

∣

∣

∣

∣

∑

i∈S

(−1)i+1(AS)i1 det(Ci1)

∣

∣

∣

∣

∣

≤
1

(k + 1)

∑

i∈S

|(AS)i1| ·
1

k!
|det(Ci1)|

=
1

(k + 1)

∑

i∈S

d(ai, V) vol(∆′
S\{i})

≤
1

(k + 1)

∑

i∈S

d(ai, V) vol(∆S\{i}),

since vol(∆′
S\{i}) ≤ vol(∆S\{i}).

3.2 Approximate Volume Sampling

Here we describe a simple iterative procedure to do volume sampling approximately.

Approximate Volume Sampling

1. Initialize S = ∅. While |S| < k do:

(a) Pick a point from the following distribution:

Pr (picking ai) ∝ d(ai,HS)p.

(b) S = S ∪ {i}.

2. Output the k-subset S.

Theorem 3. Let P̃S denote the probability with which the above procedure picks a k-subset S. Then

P̃S ≤ (k!)p · PS ,

where PS is the true volume sampling probability of S. Thus,

ES

[

m
∑

i=1

d(ai,HS)p

]

≤ (k!)p · (k + 1)p
m
∑

i=1

d(ai,H
∗
k)p,

where the expectation is over the distribution P̃S. This implies that

ES





(

m
∑

i=1

d(ai,HS)p

) 1

p



 ≤ k! · (k + 1)

(

m
∑

i=1

d(ai,H
∗
k)p

) 1

p

6

Proof. W.l.o.g., let S = {1, 2, . . . , k}, and let Πk be the set of all permutations of {1, 2, . . . , k}. For

any τ ∈ Πk, we also use H
(j)
τ to denote span({A(τ(1)), A(τ(2)), . . . , A(τ(j))}).

P̃S =
∑

τ∈Πk

∥

∥aτ(1)

∥

∥

p

∑m
i=1 ‖ai‖

p

d(aτ(2),H
1
τ)p

∑m
i=1 d(ai,H1

τ)p
· · ·

d(aτ(k),H
k−1
τ)p

∑m
i=1 d(ai,H

k−1
τ)p

≤ |Πk|
(k!)p vol(∆S)p

∑m
i=1 ‖ai‖

p ·
∑m

i=1 d(ai,H∗
1)p · · ·

∑m
i=1 d(ai,H∗

k−1)
p

= PS ·
(k!)p+1

∑

S,|S|=k vol(∆S)p
∑m

i=1 ‖ai‖
p ·
∑m

i=1 d(ai,H
∗
1)p · · ·

∑m
i=1 d(ai,H

∗
k−1)

p
.

Therefore,

P̃S

PS
≤

(k!)p+1
∑

S,|S|=k vol(∆S)p
∑m

i=1 ‖ai‖
p ·
∑m

i=1 d(ai,H∗
1)p · · ·

∑m
i=1 d(ai,H∗

k−1)
p
.

Now we claim the following, which completes the proof.
Claim:

k!
∑

S,|S|=k vol(∆S)p
∑m

i=1 ‖ai‖
p ·
∑m

i=1 d(ai,H∗
1)p · · ·

∑m
i=1 d(ai,H∗

k−1)
p
≤ 1.

Now we will prove the above claim using induction on k. The k = 1 case is obvious. For k > 1, we
can proceed as for equation (2) (replacing k + 1 with k) to get

k!
∑

S,|S|=k vol(∆S)p
∑m

i=1 ‖ai‖
p ·
∑m

i=1 d(ai,H
∗
1)p · · ·

∑m
i=1 d(ai,H

∗
k−1)

p

≤
(k − 1)!

(

∑

T,|T |=k−1 vol(∆T)p
)

(
∑m

i=1 d(ai,H
∗
k−1)

p
)

∑m
i=1 ‖ai‖

p ·
∑m

i=1 d(ai,H
∗
1)p · · ·

∑m
i=1 d(ai,H

∗
k−1)

p

≤
(k − 1)!

∑

T,|T |=k−1 vol(∆T)p
∑m

i=1 ‖ai‖
p ·
∑m

i=1 d(ai,H
∗
1)p · · ·

∑m
i=1 d(ai,H

∗
k−2)

p

≤ 1,

by induction hypothesis for the (k − 1) case.

4 Additive Approximation

We prove bounds on the subspaces that we find in terms of any k-subspace H of R
n, which therefore,

also hold for the optimal subspace H∗
k .

4.1 Finding a close line

Given any k-dimensional subspace H and a line l, we define Hl as follows. If l is not orthogonal to
H, then its projection onto H is a line, say l′. Let H ′ be the (k − 1)-dimensional subspace of H
that is orthogonal to l′. Then we define Hl = span(H ′ ∪ l). In short, Hl is a rotation of H so as
to contain line l. In case when l is orthogonal to H, we define Hl = span(H ′ ∪ l), where H ′ is any
(k − 1)-dimensional subspace of H.

7

Lemma 4. Let S be a sample of O ((2k/ε)p (k/ε) log(k/ε)) i.i.d. points from a1, a2, . . . , am using
the following distribution:

Pr (picking ai) ∝ ‖ai‖
p

then, with probability at least 1− (ε/k)k/ε, HS contains a line l such that

(

m
∑

i=1

d(ai,Hl)
p

) 1

p

≤

(

m
∑

i=1

d(ai,H)p

) 1

p

+
ε

k

(

m
∑

i=1

‖ai‖
p

) 1

p

,

where Hl is defined as above.
Remark: It means that there exists a k-dimensional subspace Hl, within an additive error of the
optimal, that intersects HS in at least one dimension.

Proof. Let l1 be the line spanned by the first point in our sample, and let θ1 be its angle with H.
In general, let lj be the line in the span of the first j sample points that makes the smallest angle
with H, and let θj denote this smallest angle.

Consider the (j + 1)-th sample point for some j ≥ 1, and assume that

(

m
∑

i=1

d(ai,Hlj)
p

) 1

p

>

(

m
∑

i=1

d(ai,H)p

) 1

p

+
ε

k

(

m
∑

i=1

‖ai‖
p

) 1

p

. (3)

Define BAD = {i : d(ai,Hlj) >
(

1 + ε
2k

)

d(ai,H) and GOOD = [m] \ BAD. We claim that

∑

i∈BAD

‖ai‖
p >

(ε

2k

)p
m
∑

i=1

‖ai‖
p . (4)

Because, otherwise, using Minkowski’s inequality, the triangle inequality for the Lp norm,

(

m
∑

i=1

d(ai,Hlj)
p

)1/p

≤

(

∑

i∈GOOD

d(ai,Hlj)
p

)1/p

+

(

∑

i∈BAD

d(ai,Hlj)
p

)1/p

≤
(

1 +
ε

2k

)

(

∑

i∈GOOD

d(ai,H)p

)1/p

+

(

∑

i∈BAD

‖ai‖
p

)1/p

≤
(

1 +
ε

2k

)

(

m
∑

i=1

d(ai,H)p

)1/p

+
ε

2k

(

m
∑

i=1

‖ai‖
p

)1/p

≤

(

m
∑

i=1

d(ai,H)p

)1/p

+
ε

k

(

m
∑

i=1

‖ai‖
p

)1/p

,

contradicting our assumption about Hlj as in equation (3).
Inequality (4) implies that with probability at least (ε/2k)p we pick as our (j + 1)-th point ai

with i ∈ BAD and by definition

d(ai,Hlj) ≥
(

1 +
ε

2k

)

d(ai,H).

8

Now, by Lemma 13, there exists a line l′ in span({ai} ∪ lj) such that the sine of the angle that l′

makes with H is at most (1− ε/4k) sin θj. This implies that

sin θj+1 ≤
(

1−
ε

4k

)

sin θj.

Let us call the (j + 1)-th sample a success if either (a) the inequality (3) fails to hold, or (b)
the inequality (3) holds but sin θj+1 ≤ (1− ε/4k) sin θj. We conclude that the probability that the
(j + 1)-th sample is a success is at least (ε/2k)p.

Let N denote the number of times our algorithm samples, and suppose that there are Ω ((k/ε) log(k/ε))
successes among the samples 2, . . . , N . If inequality (3) fails to hold for some 1 ≤ j ≤ N − 1, then
HS contains a line, namely lj, that satisfies the inequality claimed in the Lemma. Let us assume
that the inequality (3) holds for every 1 ≤ j ≤ N − 1. Clearly, we have sin θj+1 ≤ sin θj for each
1 ≤ j ≤ N − 1 and furthermore we have sin θj+1 ≤ (1 − ε/4k) sin θj if the (j + 1)-th sample is a
success. Therefore

sin θN ≤
(

1−
ε

4k

)Ω((k/ε) log(k/ε))
sin θ0 ≤

ε

k
.

Now using Minkowski’s inequality we have

(

m
∑

i=1

d(ai,HlN)p

) 1

p

≤

(

m
∑

i=1

d(ai,H)p

) 1

p

+

(

m
∑

i=1

d(āi, a
′
i)

p

) 1

p

,

where āi is the projection of ai onto H, and a′i is the projection of āi onto HlN . But d(āi, a
′
i) ≤

sin θN ‖ai‖, which implies

(

m
∑

i=1

d(ai,HlN)p

) 1

p

≤

(

m
∑

i=1

d(ai,H)p

) 1

p

+
ε

k

(

m
∑

i=1

‖ai‖
p

) 1

p

.

Thus HS contains the line lN that satisfies the inequality claimed in the Lemma.
Our algorithm samples O ((2k/ε)p(k/ε) log(k/ε)) times, and the probability that a sample is a

success is at least (ε/2k)p. Using the Chernoff inequality with some care, we conclude that with a
probability of at least 1−(ε/k)k/ε, there are at least Ω ((k/ε) log(k/ε)) successes among the samples
2, . . . , N . This completes the proof.

9

4.2 From line to subspace

Additive Approximation

Input: a1, a2, . . . , am ∈ R
n, k > 0.

Output: a subset S ⊆ [m] of Õ
(

k · (k/ε)p+1
)

points.

1. Repeat the following O(k log k) times and pick the best sample S amongst
all that minimizes

∑m
i=1 d(ai,HS)p.

2. Initialize S = S0 = ∅, δ = ε/ log k. For t = 1 to k do:

(a) Pick a sample St of O ((2k/δ)p(k/δ) log(k/δ)) points from the fol-
lowing distribution:

Pr (picking ai) ∝ d(ai,HS)p.

(b) S ← S ∪ St.

Theorem 5. The above algorithm returns a subset S ⊆ [m] of O (k · (2k/δ)p(k/δ) log(k/δ)) points
such that

(

m
∑

i=1

d(ai,HS)p

)
1

p

≤

(

m
∑

i=1

d(ai,H)p

)
1

p

+ ε

(

m
∑

i=1

‖ai‖
p

)
1

p

.

with probability at least 1− 1/k.

Proof. For a start, let us only look at step 2. From Lemma 4, we know that there exists a k-
dimensional subspace F1 such that dim(F1 ∩HS1

) ≥ 1 and

(

m
∑

i=1

d(ai, F1)
p

)
1

p

≤

(

m
∑

i=1

d(ai,H)p

)
1

p

+
δ

k

(

m
∑

i=1

‖ai‖
p

)
1

p

,

with probability at least

1−

(

δ

k

)k/δ

.

Let π1 be the orthogonal projection onto (HS1
)⊥. Consider a new set of points π1(ai) and a new

subspace π1(F1) of dimension j ≤ k − 1. Using Lemma 4 for the new points and subspace, we get
that there exists a j-dimensional subspace F2 in (HS1

)⊥ such that dim(F2 ∩ π1(HS2
)) ≥ min{j, 1}

and

(

m
∑

i=1

d(π1(ai), F2))
p

) 1

p

≤

(

m
∑

i=1

d(π1(ai), π1(F1))
p

) 1

p

+
δ

k − 1

(

m
∑

i=1

‖π1(ai)‖
p

) 1

p

≤

(

m
∑

i=1

d(ai, F1)
p

)
1

p

+
δ

k − 1

(

m
∑

i=1

‖ai‖
p

)
1

p

≤

(

m
∑

i=1

d(ai,H)p

) 1

p

+ δ

(

1

k
+

1

k − 1

)

(

m
∑

i=1

‖ai‖
p

) 1

p

,

10

with probability at least
(

1−

(

δ

k

) k
δ

)(

1−

(

δ

k − 1

)
k−1

δ

)

.

Proceeding similarly for k steps, we have a subspace Fk in the orthogonal complement of HS1∪···∪Sk−1

such that (1) dim(Fk) ≤ 1, (2) dim(Fk∩πk−1(HSk
)) ≥ min{dim(Fk), 1}, where πt denotes projection

to the orthogonal complement of HS1∪···∪St , and (3)

(

m
∑

i=1

d(πk−1(ai), Fk)p

) 1

p

≤

(

m
∑

i=1

d(ai,H)p

) 1

p

+ δ

(

1

k
+

1

k − 1
+ · · · + 1

)

(

m
∑

i=1

‖ai‖
p

)
1

p

,

with probability at least
(

1−
δ

k

)(

1−
δ

k − 1

)

· · · ≥
1− δ

k
≥

1

2k
.

The conditions (1) and (2) imply that Fk ⊆ πk−1(HSk
). Therefore with S = S1 ∪ · · · ∪ Sk, we

have d(ai,HS) = ‖πk(ai)‖ ≤ d(πk−1(ai), πk−1(HSk
)) ≤ d(πk−1(ai), Fk), for all i. Hence,

(

m
∑

i=1

d(ai,HS)p

) 1

p

≤

(

m
∑

i=1

d(ai,H)p

) 1

p

+ δ O(log k)

(

m
∑

i=1

‖ai‖
p

) 1

p

=

(

m
∑

i=1

d(ai,H)p

)
1

p

+ ε

(

m
∑

i=1

‖ai‖
p

)
1

p

,

with probability at least 1/2k. Repeating this O(k log k) times boosts the success probability to
1− 1/k.

5 Adaptive Sampling

By adaptive sampling we mean picking a subset S of points and then sampling new points with
probabilities proportional to their distances from HS. The benefits of doing this were implicit in the
previous sections, but here we introduce the most important one: additive error drops exponentially
with the number of rounds of adaptive sampling.

5.1 Exponential drop in additive error

Proposition 6. Suppose we have an initial subspace V of R
n. Then we can find a sample S of

Õ
(

k · (k/ε)p+1
)

rows such that

(

m
∑

i=1

d(ai, span(V ∪HS))p

)
1

p

≤

(

m
∑

i=1

d(ai,H)p

)
1

p

+ ε

(

m
∑

i=1

d(ai, V)p

)
1

p

,

with probability at least 1− 1/k.

11

Proof. Use a new points set π(ai) and a new subspace π(H), where π(·) is orthogonal projection
onto V ⊥. Now using Theorem 5 we get

(

m
∑

i=1

d(π(ai), π(HS))p

) 1

p

≤

(

m
∑

i=1

d(π(ai), π(H))p

) 1

p

+ ε

(

m
∑

i=1

‖π(ai)‖
p

) 1

p

.

And the proof follows by using

d(ai, span(V ∪HS)) ≤ d(π(ai), π(HS)), for all i.

Theorem 7. Suppose we have an initial subspace V of R
n. Then using t rounds of adaptive

sampling we can find subsets S1, S2, . . . , St ⊆ [m] with

|S1 ∪ S2 ∪ · · · ∪ St| = Õ
(

tk · (k/ε)p+1
)

,

such that

(

m
∑

i=1

d(ai, span(V ∪HS1∪···∪St))
p

) 1

p

≤
1

1− ε

(

m
∑

i=1

(ai,H)p

) 1

p

+ εt

(

m
∑

i=1

d(ai, V)p

) 1

p

,

with probability at least (1− 1/k)t.

Proof. using Proposition 6 in t rounds by induction.

5.2 Combining volume and adaptive sampling

We can combine volume sampling and adaptive sampling to give a bi-criteria algorithm for subspace
approximation. The algorithm (implicit in Theorem 8 below) finds a
Õ
(

k2(k/ε)p+1
)

-dimensional subspace whose error is at most (1 + ε) times the error of the best
k-dimensional subspace.

Theorem 8. Let V = span(S0), where S0 is a k-subset of rows picked by Approximate Volume
Sampling procedure (see Subsection 3.2), t = O(k log k), and S1, S2, . . . , St as in Theorem 7. Then

(

m
∑

i=1

d(ai,HS0∪···∪St)
p

) 1

p

≤ (1 + ε)

(

m
∑

i=1

d(ai,H)p

) 1

p

,

with probability 1/k. Repeating O(k) times we can boost this success probability to 3/4, and the
subset we find is of size

|S0 ∪ S1 ∪ . . . ∪ St| = Õ
(

k2(k/ε)p+1
)

.

Computation of these subsets takes time effectively Õ
(

mn · k3(k/ε)p+1
)

.

Proof. Immediate from Theorem 7.

12

6 Dimension Reduction for

Subspace Approximation

Dimension Reduction

Input: a1, a2, . . . , am ∈ R
n, k > 0, and a subspace V of dimension at least k.

Output: a subset S ⊆ [m] of O
(

(k/ε)p · k2/ε · log(k/ε)
)

.

1. Initialize S = ∅. While |S| < O
(

(20k/ε)p · k2/ε · log(k/ε)
)

do:

(a) Pick a point ai from the following distribution:

Pr (picking ai) ∝ d(ai, span(V ∪HS))p.

(b) S ← S ∪ {ai}.

2. Output S.

Theorem 9. Using a subspace V of dimension at least k with the guarantee

(

m
∑

i=1

d(ai, V)p

) 1

p

≤ 2

(

m
∑

i=1

d(ai,H
∗
k)p

) 1

p

,

the above algorithm finds, with probability that is at least 1− (ε/2k)2k2/ε, S such that span(V ∪HS)
contains a k-dimensional subspace H ′ satisfying

(

m
∑

i=1

d(ai,H
′)p

)
1

p

≤ (1 + ε)

(

m
∑

i=1

d(ai,H
∗
k)p

)
1

p

.

Proof. Let δ = ε
2k . For simplicity, we divide the steps of our algorithm into phases. Phase j, for

0 ≤ j ≤ k, means that for the current sample S, there exists a k-dimensional subspace Fj such that
dim(Fj ∩ span(V ∪HS)) ≥ j and

(

m
∑

i=1

d(ai, Fj)
p

)
1

p

≤ (1 + δ)j

(

m
∑

i=1

d(ai,H
∗
k)p

)
1

p

.

So once a step is in phase j, all the steps following it must be in phase j ′, for some j ′ ≥ j. Reaching
phase k implies that we are done because then Fk ⊆ span(V ∪HS) and

(

m
∑

i=1

d(ai, Fk)
p

) 1

p

≤ (1 + δ)k

(

m
∑

i=1

d(ai,H
∗
k)p

) 1

p

≤ (1 + ε)

(

m
∑

i=1

d(ai,H
∗
k)p

)
1

p

.

At the beginning of the algorithm, say dim(V ∩ H ∗
k) = j. Then we attempt to execute the first

step of the algorithm in phase j by taking Fj = H∗
k .

13

Consider the situation when we are attempting to execute the first step in phase j. Let us call
G = Fj ∩ span(V ∪ HS); G will be a j-dimensional subspace. Let F o

j and V o be the orthogonal
complements of G in Fj and span(V ∪ HS), respectively. Let l be the line in F o

j that makes the
smallest angle with V o, and lo be the line in V o that makes this angle with l. This smallest
angle must be positive because we are trying to execute in phase j. Let F̂ o be the rotation of
F o

j so as to contain lo, and F̂ be the k-dimensional subspace given by span(F̂ o ∪ G). Note that

dim(F̂ ∩ span(V ∪HS)) = j′, for some j ′ > j. If
(

∑m
i=1 d(ai, F̂)p

)1/p
≤ (1+ δ) (

∑m
i=1 d(ai, Fj)

p)1/p,

then we do not execute in phase j but attempt to execute it in phase j ′ with Fj′ = F̂ .
Now consider the situation after zero or more steps have executed in phase j, when we may

have added a few dimensions to get our new span(V ∪HS). Let l be the line in F o
j that is closest

to the new V o, i.e., orthogonal complement of the old G in the new span span(V ∪HS), and α′
j be

the sine of its angle to the new V o, i.e., there exists a line lo in V o such that α′
j is the sine of the

angle between l and lo. There are some cases:

1. α′
j = 0 means that dim(Fj ∩ span(V ∪ HS)) = j′, for some j ′ > j and we will attempt to

execute the next step in phase j ′ with Fj′ = Fj .

2. α′
j > 0. As before, let F̂ o be the rotation of F o

j so as to contain lo, and F̂ be the k-dimensional

subspace given by span(F̂ o ∪G).

(a) If it is the case that
(

∑m
i=1 d(ai, F̂)p

)1/p
≤ (1 + δ) (

∑m
i=1 d(ai, Fj)

p)1/p, then as before

we consider the next step in some phase j ′ > j with Fj′ = F̂ .

(b) Otherwise, we consider the next step in phase j itself.

Once we attempt to execute a step in phase k, then all subsequent steps will simply execute
in phase k. Thus we have completely classified all the steps of our algorithm into (k + 1) phases.
Now we will show that the algorithm succeeds, i.e., it executes some step in phase k, with high
probability. To do this, we need to show that each phase contains few steps. Let us call a step of
the algorithm good if (i) either the step executes in phase k, or (ii) the step executes in some phase
j < k and the point ai sampled in the step has the property that d(ao

i , F̂
o) > (1 + δ/2)d(ao

i , F
o
j),

where for any point ai, ao
i denotes the projection of ai into the orthogonal complement of G.

Consider some phase j < k in which we execute one or more steps. We bound the number of
good steps in phase j. Let us use αj to denote the sine of the angle between `o and ` before the
execution of the first step in the phase, and α′

j to denote the same quantity at any subsequent
point in the phase. We first bound αj . Let āi denote the projection of ai onto Fj , and āo

i denote
the projection of āi into the orthogonal complement of G. Focussing on the beginning of phase j,
we have

14

αj

(

m
∑

i=1

‖āo
i ‖

p

)
1

p

≤

(

m
∑

i=1

d(āo
i , V

o)p

)
1

p

=

(

m
∑

i=1

d(āi, span(V ∪HS))p

)
1

p

≤

(

m
∑

i=1

d(āi, ai)
p

) 1

p

+

(

m
∑

i=1

d(ai, span(V ∪HS))p

) 1

p

(by Minkowski’s inequality)

=

(

m
∑

i=1

d(ai, Fj)
p

)
1

p

+

(

m
∑

i=1

d(ai, span(V ∪HS))p

)
1

p

≤
(

2 + (1 + δ)j
)

(

m
∑

i=1

d(ai,H
∗
k)p

) 1

p

≤ 4

(

m
∑

i=1

d(ai,H
∗
k)p

)
1

p

, (5)

where in the penultimate inequality we use δ < 1/2k and our initial assumption about V .
If a step in phase j is good, then by Lemma 13, there is a line in span(ao

i , l
o) for which the sine

of its angle with F o
j is at most (1− δ/4) times the value of α′

j before the step. (Here ai is the point
that is sampled in the good step.) That is, the value of α′

j after the step is at most (1− δ/4) times
its previous value.

Hence, if we encounter O(1/δ log 1/δ) good steps in phase j, then after these steps we have

15

α′
j ≤ (δ/4)αj . Hence,

(

m
∑

i=1

d(ai, F̂)p

) 1

p

≤

(

m
∑

i=1

d(ai, āi)
p

) 1

p

+

(

m
∑

i=1

d(āi, F̂)p

) 1

p

(by Minkowski’s inequality)

≤

(

m
∑

i=1

d(ai, Fj)
p

)
1

p

+

(

m
∑

i=1

d(āi, F̂)p

)
1

p

=

(

m
∑

i=1

d(ai, Fj)
p

) 1

p

+

(

m
∑

i=1

d(āo
i , F̂

o)p

) 1

p

≤

(

m
∑

i=1

d(ai, Fj)
p

)
1

p

+ α′
j

(

m
∑

i=1

‖āo
i ‖

p

)
1

p

≤

(

m
∑

i=1

d(ai, Fj)
p

) 1

p

+
δ

4
αj

(

m
∑

i=1

‖āo
i ‖

p

) 1

p

≤ (1 + δ)

(

m
∑

i=1

d(ai, Fj)
p

)
1

p

,

where in the last inequality we used equation (5). This implies that the next step will be in phase
j′, for some j ′ > j, according to our case analysis of phases. We conclude that a phase will not see
more than O(1/δ log 1/δ) good steps.

Our algorithm executes N = O ((10/δ)p · k/δ · log(1/δ)) steps. The event that it fails to reach
phase k in these many steps implies the event that it had less than O(k/δ log 1/δ) good steps in its
entire execution. From Lemma 10, we know that a step is good with probability at least (δ/10)p.
Thus the probability that the algorithm fails to reach phase k in N steps is bounded by δk/δ.

Therefore, with probability at least 1 − δk/δ, in the end span(V ∪HS) contains a subspace H ′

of dimension k such that
(

m
∑

i=1

d(ai,H
′)p

)
1

p

≤ (1 + δ)k

(

m
∑

i=1

d(ai,H
∗
k)p

)
1

p

≤ (1 + ε)

(

m
∑

i=1

d(ai,H
∗
k)p

) 1

p

.

Lemma 10. Suppose that the current step of our algorithm is in phase j < k. Then with probability
at least (δ/10)p, the point ai sampled in the step has the property that d(ao

i , F̂
o) > (1+δ/2)d(ao

i , F
o
j).

Proof. We must have

(

m
∑

i=1

d(ai, F̂)p

) 1

p

> (1 + δ)

(

m
∑

i=1

d(ai, Fj)
p

) 1

p

, (6)

16

according to our case analysis of phases. We call a point ai “witness” if

d(ai, F̂) >

(

1 +
δ

2

)

d(ai, Fj).

Let W ⊆ [m] correspond to the set of all “witness” points. We claim that

(

∑

i∈W

d(ai, span(V ∪HS))p

) 1

p

≥
δ

10

(

m
∑

i=1

d(ai, span(V ∪HS))p

) 1

p

,

for the current sample S, that is, with probability at least (δ/10)p our algorithm picks a “witness”
point ai in the next step. Suppose this is not the case. Then, let hi be the projection of ai onto
span(V ∪HS).

We have d(ai, F̂) ≤
(

1 + δ
2

)

d(ai, Fj) for i ∈ [m] \W , and for i ∈W , we have

d(ai, F̂) ≤ d(ai, hi) + d(hi, F̂)

≤ d(ai, hi) + d(hi, Fj)

(because for any h ∈ span(V ∪HS), d(h, F̂) ≤ d(h, Fj))

≤ 2d(ai, hi) + d(ai, Fj)

≤

(

1 +
δ

2

)

d(ai, Fj) + 2d(ai, hi).

Using these with Minkowski’s inequality, we get

(

m
∑

i=1

d(ai, F̂)p

) 1

p

≤

(

1 +
δ

2

)

(

m
∑

i=1

d(ai, Fj)
p

) 1

p

+ 2

(

∑

i∈W

d(ai, hi)
p

) 1

p

≤

(

1 +
δ

2

)

(

m
∑

i=1

d(ai, Fj)
p

) 1

p

+
2δ

10

(

m
∑

i=1

d(ai, span(V ∪HS))p

)
1

p

≤

(

1 +
δ

2

)

(

m
∑

i=1

d(ai, Fj)
p

) 1

p

+
2δ

5

(

m
∑

i=1

d(ai,H
∗
k)p

) 1

p

(by initial assumption on V in Theorem 9)

≤ (1 + δ)

(

m
∑

i=1

d(ai, Fj)
p

)
1

p

,

which is a contradiction to our assumption (see equation (6)).
Therefore, with probability at least (δ/10)p, the point ai picked in the next step is a “witness”

point. This means

d(ao
i , F̂

o) = d(ai, F̂) >

(

1 +
δ

2

)

d(ai, Fj) =

(

1 +
δ

2

)

d(ao
i , F

o
j).

17

7 Dimension Reduction for Projective Clustering

Let A = {a1, . . . , am} ⊆ R
n be the set of input points, and k, s > 0 be integer parameters.

We wish to find subspaces H[1], . . . ,H[s] that minimize (
∑m

i=1 d(ai,H)p)1/p where, H denotes
H[1] ∪ · · · ∪H[s]. Let H∗[1], . . . ,H∗[s] denote the optimal set of subspaces, and H∗ denote their
union. Let µ = ε/4k, and let δ = µ/16k.

Dimension Reduction for Projective Clustering

Input: a1, a2, . . . , am ∈ R
n, k, s > 0, and a subspace V of dimension at least k.

Output: a subset S ⊆ [m] of size O(
(

10
δ

)p k2s
δ log 1

δ) = O(
(

640k2

ε

)p
k4s
ε log k

ε)

1. Initialize S = ∅. Until |S| < O(
(

10
δ

)p k2s
δ log 1

δ) do:

(a) Pick a point ai from the following distribution:

Pr (picking ai) ∝ d(ai, span(V ∪HS)).

(b) S ← S ∪ {ai}.

2. Output S.

Theorem 11. Using a subspace V of dimension at least k with the guarantee

(

m
∑

i=1

d(ai, V)p

)1/p

≤ 2

(

m
∑

i=1

d(ai,H
∗)p

)1/p

,

the above algorithm finds, with probability at least 1− 1/4ks, S such that span(V ∪HS) contains a
s k-dimensional subspaces H ′[1], . . . ,H ′[s] satisfying

(

m
∑

i=1

d(ai,H
′)p

)1/p

≤ (1 + ε)

(

m
∑

i=1

d(ai,H
∗)p

)1/p

,

where H ′ denotes H ′[1] ∪ . . . ∪H ′[s].

Proof. Let Ind[λ] denote the set of those indices i such that H ∗[λ] is the closest subspace to
ai in the optimal solution. The steps of the algorithm are partitioned into epochs, and each
epoch involves the notion of phases. At the beginning of epoch κ, for 0 ≤ κ ≤ k, there are
s k-subspaces H∗

κ[1], . . . ,H∗
κ[s] such that (1) for the current sample S, span(V ∪ HS) intersects

each H∗
κ[λ] in a subspace of dimension at least κ, and (2)

(

∑s
λ=1

∑

i∈Ind[λ] d(ai,H
∗
κ[λ])p

)1/p
≤

(1+µ)κ
(

∑s
λ=1

∑

i∈Ind[λ] d(ai,H
∗[λ])p

)1/p
. The existence of s such k-subspaces is only a necessary

condition for the algorithm entering epoch κ – it is quite possible for a successful execution of
the algorithm to occur while being entirely in epoch 0. Note that the algorithm would satisfy the
guarantee of the theorem if it reaches epoch k. The algorithm begins to execute in epoch 0 with
H∗

0 [λ] = H∗[λ]

18

Within each epoch κ < k, each λ ∈ {1, . . . , s} executes in some phase j, where 0 ≤ j ≤ k. The
index λ executing in phase j, for 0 ≤ j ≤ k, means that for the current sample S, there exists a
k-dimensional subspace Fj [λ] such that dim(Fj [λ] ∩ span(V ∪HS)) ≥ j and





∑

i∈Ind[λ]

d(ai, Fj [λ])p





1/p

≤





∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+ 2δj





∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+ 2δj





∑

i∈Ind[λ]

d(ai, V)p





1/p

.

Once λ executes in phase j in some step, in all the following steps in epoch κ it executes in phase
j′, for some j ′ ≥ j. If each λ reaches phase k in epoch κ, then the algorithm is successful because
Fj [λ] ⊆ span(V ∪HS) and

19





s
∑

λ=1

∑

i∈Ind[λ]

d(ai, Fj [λ])p





1/p

=







s
∑

λ=1











∑

i∈Ind[λ]

d(ai, Fj [λ])p





1/p






p





1/p

≤







s
∑

λ=1











∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+ 2δj





∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+ 2δj





∑

i∈Ind[λ]

d(ai, V)p





1/p






p





1/p

≤







s
∑

λ=1











∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p






p





1/p

+







s
∑

λ=1






2δj





∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p






p





1/p

+







s
∑

λ=1






2δj





∑

i∈Ind[λ]

d(ai, V)p





1/p






p





1/p

=





s
∑

λ=1

∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+ 2δj





s
∑

λ=1

∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+ 2δj





s
∑

λ=1

∑

i∈Ind[λ]

d(ai, V)p





1/p

≤ (1 + µ)





s
∑

λ=1

∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+ µ

(

m
∑

i=1

d(ai, V)p

)1/p

≤ (1 + µ)k





s
∑

λ=1

∑

i∈Ind[λ]

d(ai,H
∗[λ])p





1/p

+ 2µ





s
∑

λ=1

∑

i∈Ind[λ]

d(ai,H
∗[λ])p





1/p

≤ (1 + ε/2)





s
∑

λ=1

∑

i∈Ind[λ]

d(ai,H
∗[λ])p





1/p

+
ε

2





s
∑

λ=1

∑

i∈Ind[λ]

d(ai,H
∗[λ])p





1/p

≤ (1 + ε)





s
∑

λ=1

∑

i∈Ind[λ]

d(ai,H
∗[λ])p





1/p

.

At the beginning of an epoch κ, say dim(span(V ∪HS)∩H∗
κ[λ]) = j. Then the first step in the

epoch attempts to execute with λ in phase j by taking Fj [λ] = H∗
κ[λ].

Consider the situation when we are attempting to execute for the first time in the current epoch
with λ in phase j < k. Let us call G[λ] = Fj [λ]∩ span(V ∪HS); G will be a j-dimensional subspace.
Let F o

j [λ] and V o[λ] be the orthogonal complements of G[λ] in Fj [λ] and span(V ∪HS), respectively.
Let l[λ] be the line in F o

j [λ] that makes the smallest angle with V o[λ], and lo[λ] be the line in V o[λ]
that makes this angle with l[λ]. This smallest angle must be positive because we are trying to
execute with λ in phase j. Let F̂ o[λ] be the rotation of F o

j [λ] so as to contain lo[λ], and F̂ [λ] be the

k-dimensional subspace given by span(F̂ o[λ]∪G[λ]). Note that dim(F̂ [λ]∩ span(V ∪HS)) = j′, for

some j′ > j. If
(

∑

i∈Ind[λ] d(ai, F̂ [λ])p
)1/p

≤ (1 + δ)
(

∑

i∈Ind[λ] d(ai, Fj [λ])p
)1/p

, then we do not

20

execute with λ in phase j but attempt to execute with λ in phase j ′ with Fj′ [λ] = F̂ [λ]. Note that





∑

i∈Ind[λ]

d(ai, F̂ [λ])p





1/p

≤ (1 + δ)





∑

i∈Ind[λ]

d(ai, Fj [λ])p





1/p

≤ (1 + δ)











∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+ 2δj





∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+2δj





∑

i∈Ind[λ]

d(ai, V)p





1/p






=





∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+ δ





∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+ (2δj + 2δ2j)





∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+ +(2δj + 2δ2j)





∑

i∈Ind[λ]

d(ai, V)p





1/p

≤





∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p



+ 2δ(j + 1)





∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+ 2δ(j + 1)





∑

i∈Ind[λ]

d(ai, V)p





1/p

,

where the penultimate inequality used the fact that δ is small enough that 2δj < 1.
Now consider the situation after zero or more steps have executed with λ in phase j < k,

when we may have added a few dimensions to get our new span(V ∪HS). Let l[λ] be the line in
F o

j [λ] that is closest to the new V o[λ], i.e., orthogonal complement of the old G[λ] in the new span
span(V ∪HS), and α′

j[λ] be the sine of its angle to the new V o[λ], i.e., there exists a line lo[λ] in
V o[λ] such that α′

j [λ] is the sine of the angle between l[λ] and lo[λ]. There are some cases:

1. α′
j [λ] = 0 means that dim(Fj [λ] ∩ span(V ∪HS)) = j′, for some j ′ > j and we will attempt

to execute the next step with λ in phase j ′ with Fj′ [λ] = Fj [λ].

2. α′
j [λ] > 0. As before, let F̂ o[λ] be the rotation of F o

j [λ] so as to contain lo[λ], and F̂ [λ] be the

k-dimensional subspace given by span(F̂ o[λ] ∪G[λ]).

(a) If
(

∑

i∈Ind[λ] d(ai, F̂ [λ])p
)1/p

≤ (1 + δ)
(
∑

i∈λ d(ai, Fj [λ])p
)1/p

, then as before we con-

sider the next step with λ in some phase j ′ > j with Fj′ [λ] = F̂ [λ].

(b) Otherwise, we execute the next step with λ in phase j itself, subject to the epoch check.

21

Once we attempt to execute a step with λ in phase k, then all subsequent steps in the epoch
will execute with λ in phase k.

Once we have determined for each λ the phase j(λ) in which it will execute the next step, we
ask if j(λ) ≥ k for each λ. If so, the algorithm continues to execute in epoch κ for all the remaining
steps. Otherwise, we perform the the epoch check that asks whether





s
∑

λ=1

∑

i∈Ind[λ]

d(ai, F̂ [λ])p





1/p

> (1 + δ)





s
∑

λ=1

∑

i∈Ind[λ]

d(ai, Fj(λ)[λ])p





1/p

.

Note that if j(λ) = k, F̂ [λ] is the same as Fj(λ)[λ]). If the answer to the epoch check is yes, we
execute the next step in the current epoch κ itself. Otherwise, we execute the next step in epoch
κ + 1, taking H∗

κ+1[λ] = F̂ [λ] for each λ. Note that

dim(H∗
κ+1[λ] ∩ span(V ∪HS)) ≥ min{k,dim(Fj(λ)[λ] ∩ span(V ∪HS)) + 1}

≥ min{k,dim(H∗
κ[λ] ∩ span(V ∪HS)) + 1}

22

And





s
∑

λ=1

∑

i∈Ind[λ]

d(ai,H
∗
κ+1[λ])p





1/p

≤ (1 + δ)





s
∑

λ=1

∑

i∈Ind[λ]

d(ai, Fj(λ)[λ])p





1/p

= (1 + δ)







s
∑

λ=1











∑

i∈Ind[λ]

d(ai, Fj(λ)[λ])p





1/p






p





1/p

≤ (1 + δ)







s
∑

λ=1











∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+ 2δj





∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+2δj





∑

i∈Ind[λ]

d(ai, V)p





1/p






p





1/p

≤ (1 + δ)















s
∑

λ=1











∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p






p





1/p

+







s
∑

λ=1






2δj





∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p






p





1/p

+







s
∑

λ=1






2δj





∑

i∈Ind[λ]

d(ai, V)p





1/p






p





1/p








= (1 + δ)





s
∑

λ=1

∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+ (1 + δ)2δj





s
∑

λ=1

∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+ (1 + δ)2δj





s
∑

λ=1

∑

i∈Ind[λ]

d(ai, V)p





1/p

≤ (1 + δ +
µ

4
)





s
∑

λ=1

∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+
µ

4

(

m
∑

i=1

d(ai, V)p

)1/p

≤ (1 + δ +
µ

4
)





s
∑

λ=1

∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+
µ

2





s
∑

λ=1

∑

i∈Ind[λ]

d(ai,H
∗[λ])p





1/p

≤ (1 + µ)





s
∑

λ=1

∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

≤ (1 + µ)κ+1





s
∑

λ=1

∑

i∈Ind[λ]

d(ai,H
∗[λ])p





1/p

.

23

Once we enter epoch k, all subsequent steps of the algorithm execute in epoch k. Each λ is
regarded as executing in phase k in every step of the k-th epoch. Thus we have specified for each
step of the algorithm which epoch it executes in, and for each λ which phase it executes in.

Let us call a step of the algorithm good if (i) either the step executes in epoch k, or (ii) the step
executes in some epoch κ < k but each λ executes in phase k, or (iii) the step executes in some
epoch κ < k, there is some λ that executes in phase j < k, and the point ai sampled in the step
has the property that d(ao

i , F̂
o[λ(i)]) > (1 + δ/2)d(ao

i , F
o
j [λ(i)]). Here, λ(i) is the index λ such that

i ∈ Ind[λ], and ao
i denotes the projection of ai into the orthogonal complement of G[λ(i)]. Note that

in case (iii), λ(i) must be executing in some phase strictly smaller than k, since F̂ [λ(i)] = Fj [λ(i)]
if λ(i) executes in phase k. We say that the good step impacts λ(i) in this case.

We now show that a λ cannot be impacted by too many good steps while executing in some
phase j < k (within some epoch κ < k.) Let us use αj [λ] to denote the sine of the angle between
`o[λ] and `[λ] before the execution of the first step in the phase, and α′

j [λ] to denote the same
quantity at any subsequent point in the phase. We first bound αj . Let āi denote the projection
of point ai onto Fj [λ(i)], and āo

i denote the projection of āi into the orthogonal complement of
G[λ(i)]. Focussing on the first step when λ executes in phase j, we have

αj [λ]





∑

i∈Ind[λ]

‖āo
i ‖

p





1/p

≤





∑

i∈Ind[λ]

d(āo
i , V

o[λ])p





1/p

=





∑

i∈Ind[λ]

d(āi, span(V ∪HS))p





1/p

≤





∑

i∈Ind[λ]

(d(āi, ai) + d(ai, span(V ∪HS)))p





1/p

=





∑

i∈Ind[λ]

(d(ai, Fj [λ]) + d(ai, span(V ∪HS)))p





1/p

≤





∑

i∈Ind[λ]

d(ai, Fj [λ])p





1/p

+





∑

i∈Ind[λ]

d(ai, span(V ∪HS))p





1/p

≤





∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+ 2δj





∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+ 2δj





∑

i∈Ind[λ]

d(ai, span(V ∪HS))p





1/p

+





∑

i∈Ind[λ]

d(ai, span(V ∪HS))p





1/p

≤ 2





∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+ 2





∑

i∈Ind[λ]

d(ai, span(V ∪HS))p





1/p

.

24

Hence

αj [λ]





∑

i∈Ind[λ]

‖āo
i ‖

p





1/p

≤ 2





∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+ 2





∑

i∈Ind[λ]

d(ai, span(V ∪HS))p





1/p

.

(7)

If a good step impacts λ in phase j, then by Lemma 13, there is a line in span(ao
i , l

o[λ]) for
which the sine of its angle with F o

j [λ] is at most (1− δ/4) times the value of α′
j [λ] before the step.

(Here ai is the point that is sampled in the good step.) That is, the value of α′
j [λ] after the step is

at most (1− δ/4) times its previous value.
Hence, if O(1/δ log 1/δ) good steps impact λ in phase j, then after these steps we have α ′

j [λ] ≤
(δ/4)αj [λ]. Hence,





∑

i∈Ind[λ]

d(ai, F̂ [λ])p





1/p

≤





∑

i∈Ind[λ]

(

d(ai, āi) + d(āi, F̂ [λ])
)p





1/p

≤





∑

i∈Ind[λ]

d(ai, āi)
p





1/p

+





∑

i∈Ind[λ]

d(āi, F̂ [λ])p





1/p

≤





∑

i∈Ind[λ]

d(ai, Fj [λ])p





1/p

+





∑

i∈Ind[λ]

d(āi, F̂ [λ])p





1/p

=





∑

i∈Ind[λ]

d(ai, Fj [λ])p





1/p

+





∑

i∈Ind[λ]

d(āo
i , F̂

o[λ])p





1/p

≤





∑

i∈Ind[λ]

d(ai, Fj [λ])p





1/p

+ α′
j [λ]





∑

i∈Ind[λ]

‖āo
i ‖

p





1/p

≤





∑

i∈Ind[λ]

d(ai, Fj [λ])p





1/p

+
δ

4
αj[λ]





∑

i∈Ind[λ]

‖āo
i ‖

p





1/p

≤





∑

i∈Ind[λ]

d(ai, Fj [λ])p





1/p

+
δ

2





∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+
δ

2





∑

i∈Ind[λ]

d(ai, span(V ∪HS))p





1/p

≤





∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+ 2δ(j + 1)





∑

i∈Ind[λ]

d(ai,H
∗
κ[λ])p





1/p

+ 2δ(j + 1)





∑

i∈Ind[λ]

d(ai, V)p





1/p

,

where in the penultimate inequality we used equation (7). This implies that in the next step λ will
execute in phase j ′, for some j ′ > j, according to our case analysis of phases. We conclude that not
more than O(1/δ log 1/δ) good steps can impact any λ in phase j < k (within some epoch κ < k.)

25

Our algorithm executes N = O(
(

10
δ

)p k2s
δ log 1

δ) steps. The event that it does not succeed, that
is, it fails to reach epoch k or execute with each λ in phase k within some epoch κ < k implies the
event that it had less than k2s

δ log 1
δ good steps in its entire execution. From Lemma 12, we know

that a step is good with probability at least (δ/10)p. Thus the probability that the algorithm does
not succeed is bounded by 1/4ks.

Therefore, with probability at least 1 − 1/4ks, in the end span(V ∪HS) contains k-subspaces
H ′[1], . . . ,H ′[s] such that

(

m
∑

i=1

d(ai,H
′)p

)1/p

≤ (1 + ε)

(

m
∑

i=1

d(ai,H
∗)p

)1/p

.

Lemma 12. Suppose that the current step of our algorithm is in some epoch κ < k, and also that
there is some λ ∈ {1, . . . , s} such that λ executes the current step in some phase strictly less than
k. Then with probability at least (δ/10)p, the point ai sampled in the current step has the property
that d(ao

i , F̂
o[λ(i)]) > (1 + δ/2)d(ao

i , F
o
j [λ(i)]). Here, λ(i) is the index λ such that i ∈ Ind[λ].

Proof. Since the epoch check passes, we must have





s
∑

λ=1

∑

i∈Ind[λ]

d(ai, F̂ [λ])p





1/p

> (1 + δ)





s
∑

λ=1

∑

i∈Ind[λ]

d(ai, Fj(λ)[λ])p





1/p

. (8)

We call a point ai a “witness” if

d(ai, F̂ [λ(i)]) > (1 + δ/2)d(ai, Fj [λ(i)]).

Let W ⊆ [m] correspond to the set of all “witness” points. We claim that

(

∑

i∈W

d(ai, span(V ∪HS))p

)1/p

≥
δ

10

(

m
∑

i=1

d(ai, span(V ∪HS))p

)1/p

,

for the current sample S, i.e., with probability at least (δ/10)p our algorithm picks a “witness”
point ai in the current step. Suppose this is not the case. Then, let hi be the projection of ai onto
span(V ∪HS). We have d(ai, F̂ [λ]) ≤

(

1 + δ
2

)

d(ai, Fj [λ]) for i ∈ [m] \W . For i ∈W , we have

d(ai, F̂ [λ]) ≤ d(ai, hi) + d(hi, F̂ [λ(i)])

≤ d(ai, hi) + d(hi, Fj [λ(i)])
(

because for any h ∈ span(V ∪HS) and any λ, d(h, F̂ [λ]) ≤ d(h, Fj [λ])
)

≤ 2d(ai, hi) + d(hi, Fj [λ(i)])

≤

(

1 +
δ

2

)

d(hi, Fj [λ(i)]) + 2d(ai, hi).

26

Using these with Minkowski’s inequality, we get





s
∑

λ=1

∑

i∈Ind[λ]

d(ai, F̂ [λ])p





1/p

≤

(

1 +
δ

2

)





s
∑

λ=1

∑

i∈Ind[λ]

d(ai, Fj [λ])p





1/p

+ 2

(

∑

i∈W

d(ai, hi)
p

)1/p

≤

(

1 +
δ

2

)





s
∑

λ=1

∑

i∈Ind[λ]

d(ai, Fj [λ])p





1/p

+
2δ

10

(

m
∑

i=1

d(ai, span(V ∪HS))p

)1/p

≤

(

1 +
δ

2

)





s
∑

λ=1

∑

i∈Ind[λ]

d(ai, Fj [λ])p





1/p

+
2δ

5

(

m
∑

i=1

d(ai,H
∗)p

)1/p

(by initial assumption on V in Theorem 11)

≤ (1 + δ)





s
∑

λ=1

∑

i∈Ind[λ]

d(ai, Fj [λ])p





1/p

,

which is a contradiction to our assumption (see equation (8)).
Therefore, with probability at least δ/10, the point ai picked in the step is a “witness” point.

(Note in passing that this necessarily means that λ(i) executes in some phase strictly less than k
in the current step; otherwise Fj [λ(i)] = F̂ [λ(i)].)

This means

d(ao
i , F̂

o[λ(i)]) = d(ai, F̂ [λ(i)]) > (1 + δ/2)d(ai, Fj [λ(i)]) = (1 + δ/2)d(ao
i , F

o
j [λ(i)]).

Acknowledgements We thank Santosh Vempala and Sariel Har-Peled for various comments and
suggestions.

References

[1] D. Achlioptas, F. McSherry. Fast Computation of Low Rank Approximations. Proc. of the
33rd ACM Symposium on Theory of Computing (STOC), 2001.

[2] P. Drineas, R. Kannan, M. Mahoney. Fast Monte Carlo Algorithms for Matrices II: Computing
a Low-Rank Approximation to a Matrix. Yale University Technical Report, YALEU/DCS/TR-
1270, 2004.

[3] P. Drineas, M. Mahoney, S. Muthukrishnan. Polynomial time algorithm for column-row based
relative error low-rank matrix approximation. DIMACS Technical Report 2006-04, 2006.

[4] A. Deshpande, L. Rademacher, S. Vempala, G. Wang. Matrix Approximation and Projec-
tive Clustering via Volume Sampling. Proc. of the 17th ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2006.

[5] A. Deshpande, S. Vempala. Adaptive Sampling and Fast Low-Rank Matrix Approximation.
Proc. of 10th International Workshop on Randomization and Computation (RANDOM), 2006.

27

[6] D. Feldman, A. Fiat, and M. Sharir. Coresets for weighted facilities and their applications.
Proc. of IEEE Symposium on Foundations of Computer Science (FOCS), 2006.

[7] A. Frieze, R. Kannan, S. Vempala. Fast Monte-Carlo Algorithms for Finding Low-Rank Ap-
proximations. Proc. of IEEE Symposium on Foundations of Computer Science (FOCS), 1998.

[8] S. Har-Peled. How to get close to the median shape. Proc. of ACM Symposium on Computa-
tional Geometry (SOCG), 2006.

[9] S. Har-Peled. Low-Rank Matrix Approximation in Linear Time. manuscript.

[10] S. Har-Peled and K. R. Varadarajan. Projective clustering in high dimensions using core-sets.
Proc. of ACM Symposium on Computational Geometry (SOCG), 2002, pp. 312–318.

[11] S. Har-Peled and K. Varadarajan. High-Dimensional Shape Fitting in Linear Time. Discrete
& Computational Geometry, 32(2), 2004, pp. 269–288.

[12] T. Sarlos. Improved Approximation Algorithms for Large Matrices via Random Projections.
Proc. of IEEE Symposium on Foundations of Computer Science (FOCS), 2006.

[13] N. D. Shyamalkumar and K. Varadarajan. Efficient Subspace Approximation Algorithms. Proc.
of ACM-SIAM Symposium on Discrete Algorithms (SODA), 2007.

A Angle-Drop Lemma

Lemma 13. Let F be a k-subspace in R
n for some k > 0, l′ be any line, α(l′) the sine of the angle

that l′ makes with F , l the projection of l′ onto F (if α(l′) = 1 then take l to be any line in F),
E the orthogonal complement of l in F , and F̂ the subspace spanned by E and l′. That is, F̂ is
the rotation of F so as to contain l′. Suppose that a ∈ R

n is such that d(a, F̂) > (1 + δ/2)d(a, F).
Then there is a line l′′ in the subspace spanned by l′ and a such that α(l′′), the sine of the angle
made by l′′ with F , is at most (1− δ

4)α(l′).

Proof. The proof is from [13], and is presented here for completeness. Let πE(·) denote the pro-
jection onto E. Note that πE(l′) is just the origin o. Let ā denote the projection of a onto F ,
and a′ the projection of ā onto F̂ . Since d(a, F̂) > (1 + δ/2)d(a, F), we have |aa′| > (1 + δ/2)|aā|.
Elementary geometric reasoning about the triangle 4aa′ā (see for example Lemma 2.1 of [13]) tells
us that there is a point s on the segment a′a such that |ās| ≤ (1− δ/4)|āa′|.

Let â = πE(a) = πE(ā) = πE(a′). We verify that the point q′ = a′ − â lies on the line l′.
Considering 4aa′q′,

28

and recalling that s lies on a′a, we see that there is a point q on the segment q ′a such that q− s
is a scaling of −â. (If â = o, q′ and q degenerate to a′ and s respectively.) Let e be the point on
the line {ā− tâ|t ∈ R} closest to q. (If â = o, then e = ā.) It is easy to verify that |eq| ≤ |ās| since
ā and s are on lines parallel to −â and |eq| is the distance between these lines. Finally, let e ′ be
the projection of e onto F̂ . Since e is a translation of ā by a vector that is scale of −â and which
therefore lies in F̂ , we have |āa′| = |ee′|. So we have

|eq| ≤ |ās| ≤

(

1−
δ

4

)

|āa′| =

(

1−
δ

4

)

|ee′|.

We take l′′ to be the line through q. Note that l′′ indeed lies in the span of l′ and a. To bound
α(l′′), it is enough to bound the sine of the angle between l ′′ and l(e), the line through e, since e
lies on F .

α(l′′) ≤
|eq|

|oe|
≤

(

1−
δ

4

)

|ee′|

|oe|
≤

(

1−
δ

4

)

α(l′), (9)

where the last inequality can be seen from the facts that e lies on F , e′ is the projection of e onto
F̂ , and F̂ is the rotation of F through `′.

29

