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1 Introduction

Motivated by applications in data mining, statistics, and clustering, we consider the problem
of fitting a flat of a specified dimension to a finite set P of n points in R

d. A flat (resp.,
k-flat) F in R

d is defined to be a translation of a subspace (resp., k dimensional subspace).
Specifically, we are interested in the following approximate flat fitting problem: Given P as
above, an integer 0 ≤ k ≤ d − 1, a measure RD(F ′, P ) of the fit of any flat F ′ to P , and a
parameter ε ≥ 0, find a k-dimensional flat F such that RD(F, P ) ≤ (1 + ε)RD(F ′, P ) for
every k-dimensional flat F ′. We will refer to the special case where ε = 0 as the exact flat
fitting problem.

For each τ ≥ 1, a measure of how well the flat F fits P is RDτ (F, P ) = (
∑

p∈P d(p, F )τ)1/τ ,
where d(p, F ) = minx∈F |px| is the minimum Euclidean distance between p and a point in
F .1 In this article we will consider the flat fitting problem with such measures, a problem
which has received considerable attention, particularly for the cases τ = 1, 2,∞. Our main
result is that for any τ ≥ 1, the approximate flat fitting problem can be solved in O(nd)
time, with the constant of proportionality depending solely on ε, k, and τ . Importantly, note
that the dimension d is considered part of the input and not a constant.

We now review some work on the flat fitting problem, beginning with the case τ = ∞.
When k = 0, the problem corresponds to the minimum enclosing ball problem and can be
solved exactly in polynomial time;2 see for instance [14]. The case k = 1, the minimum
enclosing cylinder problem, is NP-hard [22]. For any fixed k, there are algorithms that solve
the problem in O(ndCε,k) time, where Cε,k is a constant that is exponential in 2k/ε [19, 23].
For large k, the problem becomes hard to approximate in polynomial time to within a factor
of (log n)δ, for some δ > 0 [4, 25]. The best known polynomial time approximation algorithms
yield an approximation guarantee of O(

√
log n) [26]. If d is a constant, the problem can be

solved exactly in polynomial time for every k [16, 11]; ε-approximation algorithms with
running time near linear in n are also known [1].

We now turn to the case τ = 2, focusing on the subspace fitting problem, where some re-
markable algebraic properties help the flat fitting problem. For instance, it is well known that
the optimal k-subspace is obtained by the span of the k right singular vectors corresponding
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that is polynomial in log 1/ε as algorithms that solve the problem exactly.
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to the top k singular values of the singular value decomposition (SVD) of the n × d matrix
whose rows correspond to points in P . This leads to a polynomial (in fact, O(nd min{n, d}))
time algorithm for this problem; see the discussion in [7]. For the ε-approximate problem
for small k, recent works give algorithms that are near linear in ndk

ε
[2, 8, 17, 24].

The case τ = 1 and k = 0 is the Fermat-Weber problem, which reduces to minimizing a
convex function over R

d. A polynomial time algorithm for the problem is given by [5]. The
case k = d − 1 is referred to as the median hyperplane problem. Assuming the input point
set P spans R

d, it was observed that the optimal hyperplane is the span of a subset of d
points of P . Based on this, algorithms that run in O(nd) time are known for this problem;
see the surveys [20, 9]. For 0 < k < d−1, we are not aware of other work on the polynomial-
time solvability of this problem for either the exact or approximate versions. If d is fixed,
ε-approximation algorithms that are near linear in n (but exponential in d) are known, see
[16, 12].

A problem related to the hyperplane problem is the well-studied regression problem; we
refer to [6, 10] for some recent work on this.

Results, Techniques, and Related Work

Our main result, stated for the τ = 1 case, is the following.

Theorem 1.1 There is a randomized algorithm that, given any set P of n points in R
d,

any 1 ≤ k < d and any 0 < ε < 1, runs in O(ndk
ε

log 1
ε
) time and returns with probability

2−O( k
ε

log2 1

ε
) a k-subspace F such that RD1(F, P ) ≤ (1 + ε)kRD1(F

′, P ), for any k-subspace
F ′.3

The theorem generalizes to the case of τ ≥ 1, with the success probability becoming
2−O( τk

ε
log2 1

ε
). For ease of presentation, and due to the similarity of the arguments, we restrict

ourselves to the case τ = 1.
The randomized algorithm referred to in the theorem works by guessing a sequence of

O(1
ε
log 1

ε
) lines such that with probability 2−O( 1

ε
log2 1

ε
) at least one line ` in the sequence has

the property that a k-subspace containing ` is nearly optimal. The algorithm then guesses
` from this sequence, projects to the orthogonal complement of `, and recursively finds a
nearly optimal (k − 1)-subspace. The algorithms returns the k-subspace spanned by ` and
this (k − 1)-subspace.

Our algorithm and analysis draws ideas from several recent papers. Bădoiu et al [3]
highlighted a useful principle when studying related problems for k = 0: if a candidate
point is not nearly optimal, then a point in P that is much closer to the optimal point
compared to the candidate point can, in some sense, be used to make progress from the
current candidate point. Har-Peled and Varadarajan [19], who consider the case τ = ∞,
show how this principle can be refined and usefully applied when k > 0. This principle in
its further refined form plays a role here. Another related idea from Frieze et al [13] and
Bădoiu et al [3] is the possibility of avoiding the curse of dimensionality by working in the
span of a small number of appropriately chosen points from P . Finally, Frieze et al [13] and

3Of course, one can repeat the algorithm 2O( k

ε
log2 1

ε
) times and take the best solution to increase the

success probability to 1/2.
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Deshpande et al [7], addressing the case of τ = 2, use the idea of sampling points from P in
proportion to their squared norms. Our algorithm samples points in proportion to the τ -th
power of their norms to guess the sequence of lines referred to above. Our main contribution
is to show that further development of these ideas along with some new ones has the ability
to address the approximate flat fitting problem for all τ ≥ 1.

A comparison with the results of [8, 17] for the case τ = 2 is useful. These results rely on
Theorem 6 from [7] whose proof exploits the fact that the optimal k-subspace is given by the
SVD. Since such a characterization of the optimal k-subspace is lacking for the case τ 6= 2,
we have to resort to different methods. Another consequence of the SVD is that it allows the
computation of the optimal k-subspace for τ = 2 in O(nd2) time. If one is able to restrict
the search to a space of much smaller dimension, the running time can be improved further.
This is the approach that [8, 17, 24] take, enabling a running time that is nd poly

(

k
ε

)

.
However, for the case of τ = 1, known ε-approximation algorithms are exponential in the
dimension. Hence a reduction of the dimension to O(k log n/ε) would not bring us close to
the results of Theorem 1.1, and a reduction of the dimension to O(k/ε) would not eliminate
the exponential dependence of the running time on k/ε.

The following theorem extends Theorem 1.1 to the affine case. It follows relatively easily
from Theorem 1.1, and we omit its proof from this abstract.

Theorem 1.2 There is a randomized algorithm that, given any set P of n points in R
d,

any 1 ≤ k < d and any 0 < ε < 1, runs in O(ndk
ε

log 1
ε
) time and returns with probability

2−O( k
ε

log2 1

ε
) a k-flat F such that RD1(F, P ) ≤ (1 + ε)k+1RD1(F

′, P ) for any k-flat F ′.

One consequence of our techniques is the following structural result. Although it is
implicit in the proof of Theorem 1.1, we present a separate proof that is not only much
simpler, but which also motivates the algorithm of Theorem 1.1.

Theorem 1.3 Fix τ ≥ 1. Let P be a set of points in R
d and let F ∗ be the k-dimensional flat

that minimizes RDτ (·, P ) over all k-dimensional flats. In the nontrivial case of RDτ (F
∗, P ) >

0, and any 0 < ε < 1, there exists a Q ⊂ P consisting of O( k
ε
log 1

ε
) points such that the span

of Q contains a k-flat F such that RDτ (F, P ) ≤ (1 + ε)k+1RDτ (F
∗, P ).

Similar results for the cases τ = ∞ and τ = 2 were shown by Har-Peled and Varadarajan
[18] and Deshpande et al. [7], respectively. Theorem 1.3 has applications to the projective
clustering problem. For more details we refer to [7, 18].

The remainder of this paper is organized as follows. In Section 2, we describe some useful
geometric concepts and tools. In Section 3, we establish Theorem 1.1. For lack of space, the
proof of Theorem 1.3 is described in the appendix.

2 Preliminaries

The following extends Lemma 2.5 of [19].

Lemma 2.1 Let p∗, p, and q be three points in R
d such that |qp| ≥ (1 + ε)|qp∗|, where 0 <

ε ≤ 1. (i) Then there exists a point r on the segment pq such that |p∗r| ≤ (1− ε/2)|p∗p|. (ii)
Moreover, if e is chosen uniformly at random from the segment pq then |p∗e| ≤ (1−ε/3)|p∗p|
with probability at least ε/4.
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Proof: Let ρ = |qp∗|/|qp|, and let r be the point on the segment pq at a distance ρ|qp∗|
from q. It is easy to see that 4qrp∗ is similar to 4qp∗p with a scaling factor of ρ. Therefore,

|rp∗| = ρ|p∗p| ≤ |p∗p|/(1 + ε) ≤ (1 − ε/2)|p∗p|.

To show (ii), first note that |rp|/|pq| = 1 − ρ2 ≥ 3ε/4. Let e be a point on the segment
rp and α ∈ [0, 1] be such that e = αr + (1 − α)p. Then

|p∗e|
|p∗p| =

||α(r − p∗) + (1 − α)(p − p∗)||
|p∗p| ≤ α

|rp∗|
|p∗p| + (1 − α) ≤ 1 − εα/2,

where the last inequality used (i).
Thus, if α ≥ 2/3, we have |p∗e| ≤ (1−ε/3)|p∗p|. Now the probability that e = αr+(1−α)p

for 2/3 ≤ α ≤ 1 when e is chosen uniformly at random from the segment pq is at least
(1 − 2/3)|rp|/|pq| ≥ ε/4.

Lemma 2.2 Let F be a k-flat in R
d, p a point not on F , G the translation of F through p,

and q a point such that d(q, G) ≥ (1 + ε)d(q, F ). Then there exists a point r on the segment
pq such that d(r, F ) ≤ (1 − ε/2)d(p, F ). (ii) Moreover, if e is chosen uniformly at random
from the segment pq then d(e, F ) ≤ (1 − ε/3)d(p, F ) with probability at least ε/4.

Proof: Let π be the linear projection onto the orthogonal complement of (the subspace
parallel to) F . Any translate F ′ of F is mapped to a point, that is, π(F ′) is a point. Moreover
for any a ∈ R

d, d(a, F ′) equals the distance between the points π(F ′) and π(a).
Therefore, we have |π(q)π(G)| ≥ (1 + ε)|π(q)π(F )|. From Lemma 2.1 (i), there exists

a point r′ on the segment π(G)π(q) such that |π(F )r′| ≤ (1 − ε/2)|π(F )π(G)|. We have
d(p, F ) = |π(G)π(F )|. Since π(G) = π(p), the segment π(G)π(q) is the same as the segment
π(p)π(q). Suppose r′ = απ(p) + (1 − α)π(q) for some 0 ≤ α ≤ 1. Then r′ = π(r),
where r = αp + (1 − α)q is a point on segment pq. We have |π(F )r′| = d(r, F ). Thus,
d(r, F ) ≤ (1 − ε/2)d(p, F ).

To prove part (ii), we proceed as above using Lemma 2.1 (ii), and the observation that
picking a point uniformly at random from the segment pq is the same as picking a point e′

uniformly at random from π(p)π(q) and returning the point e such that π(e) = e′.

The following lemma is in the same spirit as Lemma 2.4 of [19].

Lemma 2.3 Let dG be the distance function to a flat G. Let x, y ∈ R
d be any two points,

and let w, z be any two points on the line through x and y. Then

|dG(z) − dG(w)|
|zw| ≤ dG(x) + dG(y)

|xy| .

Proof: We assume without loss of generality that G is a subspace. For a point a ∈ R
d,

let aG and aG⊥(= a − aG) be the projections of a onto G and G⊥ respectively, where G⊥ is
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the orthogonal complement of G. Also note that dG(a) = ||aG⊥||. We have

|dG(z) − dG(w)|
|zw| ≤ ||zG⊥ − wG⊥||

|zw| =
||xG⊥ − yG⊥||

|xy|

≤ ||xG⊥|| + ||yG⊥||
|xy| =

dG(x) + dG(y)

|xy| .

We conclude this section by defining notion of the rotation of a k-subspace F through
a line ` that passes through the origin. If the projection of ` onto F is the origin, then we
take any (k − 1)-subspace H of F , and define the rotation to be the k-subspace spanned by
H and `. Otherwise, the projection of ` onto F is a line `′. We take H to be the orthogonal
complement of `′ in F , and the rotation to be the k-subspace spanned by H and `.

3 Efficient Computation of Good Subspaces

In this section, we describe the algorithm and the analysis needed to establish Theorem 1.1.
Throughout this section, we use RD(·, ·) to mean RD1(·, ·).

The Algorithm

We now describe a recursive algorithm, Good-Subspace, that takes as arguments a subspace
S of R

d, a (multi-) set P of points lying on S, an integer 1 ≤ k < dim(S), and a parameter
0 < ε < 1. It returns a k-dimensional subspace F of S, and we will later argue that
RD(F, P ) ≤ (1 + ε)kRD(F ′, P ) for any k-dimensional subspace F ′ of S with a reasonably
large probability. The parameter on which the algorithm recurses is k; the base case will be
k = 1.

If every point in the multiset P is the same as o, we return any k-subspace lying in S.
Otherwise, we first compute a sequence `0, . . . , `i of lines, where i = d c

ε
log 1

ε
e and c > 0 is

an appropriately chosen constant. The sequence is not deterministic, but a function of the
probabilistic choices made by the algorithm. We first pick a random point p from P so that
the probability of picking q ∈ P is |oq|

P

p∈P | |op|
and set `0 = `(p). Having picked `0, . . . , `j,

where 0 ≤ j ≤ i − 1, we pick `j+1 as follows. We pick a random point r from P according
to the same distribution used above. Let u and v be unit vectors in the direction `j and
`(r), respectively. We choose one of the following two segments with equal probability: the
segment uv and the segment (−u)v. We then pick a point uniformly at random from the
chosen segment, and let `j+1 be the line through o and the chosen point.

Having computed the sequence `0, . . . , `i, we pick a line ` uniformly at random from this
sequence.

If k = 1, we simply return the line `. Otherwise, let S ′ denote the orthogonal complement
of ` in S. Let π denote the projection function onto S ′. We recursively call Good-Subspace
with the parameters S ′, π(P ), k − 1, and ε. The recursive call returns a (k − 1)-subspace G
of S ′. The subspace G and ` together span a k-subspace of S. This is what the algorithm
returns.
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Running Time

It is clear that the computation of each line in the sequence can be done in O(nd) time. It
also takes O(nd) time to set up the recursive call once we have `. Thus the running time,
excluding the time taken by the recursive call, is O(nd

ε
log 1

ε
). Since the depth of the recursion

is k, the overall running time of the algorithm is O(ndk
ε

log 1
ε
).

Performance

Let F ∗ denote the k-subspace in S that minimizes RD(·, P ). Let Fj denote the rotation of
F ∗ through `j, for 1 ≤ j ≤ i, and F the rotation of F ∗ through `. For a point p 6= o, we let
`(p) denote the line through o and p. The following lemma is the essence of the performance
guarantee of the algorithm.

Lemma 3.1 Suppose that P contains some point that is different from o. With a prob-
ability of at least (ε3/1728)i/2, there exists a j between 0 and i such that RD(Fj, P ) ≤
(1 + ε)RD(F ∗, P ). Consequently, with a probability of at least (ε3/1728)i/2(i + 1), we have
RD(F, P ) ≤ (1 + ε)RD(F ∗, P ).

Proof: For any p ∈ R
d, let p̄ denote its projection onto F ∗. For any line ` through the

origin, let α(`) denote the sine of the angle between ` and F ∗. That is, α(`) = |pp̄|/|op| for
any point p 6= 0 on `. A calculation shows that

(
∑

p∈P

|op|)E[α(`0)] = RD(F ∗, P ).

Using Markov’s inequality, we conclude that with a probability of at least 1/2, we have

(
∑

p∈P

|op|)α(`0) ≤ 2RD(F ∗, P ) (1)

We also need the following claim, whose proof we describe after showing how it implies
the lemma.

Claim: For any 1 ≤ j ≤ i, suppose `0, . . . , `j−1 are such that `0 satisfies the inequality
(1), α(`j′) ≤ α(`j′−1) for 1 ≤ j ′ ≤ j − 1, and RD(Fj−1, P ) > (1 + ε)RD(F ∗, P ). Then the
probability that α(`j) ≤ (1 − ε/20)α(`j−1), given such `0, . . . , `j−1, is at least ε3/1728.

Assuming the claim, it follows that with a probability of at least (ε3/1728)i/2, the fol-
lowing events simultaneously occur:

1. (
∑

p∈P |op|)α(`0) ≤ 2RD(F ∗, P ), and

2. For 1 ≤ j ≤ i, either RD(Fj−1, P ) ≤ (1 + ε)RD(F ∗, P ) or α(`j) ≤ (1 − ε/20)α(`j−1).

We argue that these events imply that RD(Fj, P ) ≤ (1+ε)RD(F ∗, P ) for some j between
0 and i. If this inequality holds for some 0 ≤ j ≤ i − 1, we are done. Otherwise, we have

α(`i) ≤ (1 − ε/20)iα(`0) ≤
ε

2
α(`0)
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by our choice of i. Denoting by p′ the projection of p̄ onto Fi, we have

RD(Fi, P ) ≤
∑

p∈P

(|pp̄| + |p̄p′|) ≤ RD(F ∗, P ) +
∑

p∈P

|op̄|α(`i)

≤ RD(F ∗, P ) +
ε

2
α(`0)

∑

p∈P

|op| ≤ (1 + ε)RD(F ∗, P ).

Proof of Claim: Let us call a point p ∈ P a witness if d(p, Fj−1) > (1 + ε/2)d(p, F ∗)
and let Pj−1 be the set of all witnesses. We claim that

∑

p∈Pj−1

|op| ≥ ε

4

∑

p∈P

|op|. (2)

If this does not hold, then

∑

p∈P

d(p, Fj−1) ≤ (1 + ε/2)
∑

p∈P\Pj−1

d(p, F ∗) +
∑

p∈Pj−1

(|pp̄| + d(p̄, Fj−1))

≤ (1 + ε/2)
∑

p∈P

d(p, F ∗) +
∑

p∈Pj−1

|op̄|α(`j−1)

≤ (1 + ε/2)
∑

p∈P

d(p, F ∗) + α(`0)
∑

p∈Pj−1

|op̄|

≤ (1 + ε/2)
∑

p∈P

d(p, F ∗) +
ε

4
α(`0)

∑

p∈P

|op̄|

≤ (1 + ε/2)
∑

p∈P

d(p, F ∗) + (ε/2)RD(F ∗, P ) ≤ (1 + ε)RD(F ∗, P ),

where the penultimate inequality used the fact that `0 satisfies inequality (1). But we have
arrived at a contradiction to the assumption that RD(Fj−1, P ) > (1 + ε)RD(F ∗, P ).

The inequality (2) means that the point r chosen by the algorithm in constructing `j

from `j−1 has a probability of at least ε/4 of being a witness. Let us assume that this event
happens, that is, let us condition on it.

Recall that Fj−1 is the rotation of F ∗ through `j−1. Let H denote the (k−1)-subspace of
Fj−1 and F ∗ that is used in the definition of the rotation. Observe that H is the orthogonal
complement of `j−1 in Fj−1 and also in F ∗, the latter holding provided the projection of `j−1

onto F ∗ is a line. Let πH(·) denote the projection onto H. Of course, πH(`j−1) is just the
origin o.

Let r′ denote the projection of r̄ onto Fj−1, where r̄, recall, is the projection of r onto
F ∗. Since r is a witness, we have |rr′| > (1 + ε/2)|rr̄|. From Lemma 2.1, there is a point s
on the segment r′r such that |r̄s| ≤ (1 − ε/4)|r̄r′|.

Let r̂ = πH(r) = πH(r̄) = πH(r′). We verify that the point q′ = r′ − r̂ lies on the line
`j−1. Considering 4rr′q′, and recalling that s lies on r′r, we see that there is a point q on
the segment q′r such that q − s is a scaling of −r̂. (If r̂ = o, q ′ and q degenerate to r′ and
s respectively.) Let e be the point on the line {r̄ − tr̂|t ∈ R} closest to q. (If r̂ = o, then
e = r̄.) It is easy to verify that |eq| ≤ |r̄s| since r̄ and s are on lines parallel to −r̂ and |eq|
is the distance between these lines. Finally, let e′ be the projection of e onto Fj−1. Since e
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is a translation of r̄ by a vector that is scale of −r̂ and which therefore lies in Fj−1, we have
|r̄r′| = |ee′|. So we have

|eq| ≤ |r̄s| ≤ (1 − ε/4)|r̄r′| = (1 − ε/4)|ee′|.

To bound α(`(q)), it is enough to bound the sine of the angle between `(q) and `(e), since
e lies on F ∗. Thus

α(`(q)) ≤ |eq|
|oe| ≤ (1 − ε/4)

|ee′|
|oe| ≤ (1 − ε/4)α(`j−1), (3)

where the last inequality can be seen from the facts that e lies on F ∗, e′ is the projection of
e onto Fj−1, and Fj−1 is the rotation of F ∗ through `j−1.

We have so far shown that `(q) is a line lying on the span of `j−1 and the sampled point
r, and `(q) makes a significantly smaller angle with F ∗ than `j−1. Our next step is to show
that the `j chosen by the algorithm is close to `(q) with a reasonable probability.

Following the notation of the algorithm, let u and −u denote the unit vectors lying on `j−1,
and v the unit vector r

|or|
. Suppose that the inner product r ·u > 0, and that in fact the angle

uor is at most π/4. In this case, we argue that q′ lies on the ray {tu|t > 0}. First, observe that
r̄ · u > 0, because if this is not the case we will have d(r, F ∗) = |rr̄| ≥ d(r, `j−1) ≥ d(r, Fj−1),
contradicting the fact that r is a witness. Now since the vectors r′ − r̄ and q′ − r′ are
orthogonal to `j−1, we have q′ · u > 0, that is, q′ lies on the ray {tu|t > 0}.

Let w = u/ − u be the unit vector such that q′ lies on the ray {tw|t ≥ 0}. We have
just argued that the angle wov is at most 3π/4. Since q lies on the segment q ′r, the line
`(q) intersects the segment wv at some point, call it z. There is a segment ab containing

z and contained in wv so that |ab|
|wv|

= ε2

216
. We show that for any point f in this segment,

α(`(f)) ≤ (1− ε/20)α(`j−1). This will finish the proof of the claim, because the probability
α(`j) ≤ (1− ε/20)α(`j−1) is bounded below by the probability of choosing a witness r times
the probability of choosing the point that defines `j from the segment ab given that r was a
witness, and this is at least (ε/4) ∗ (ε2/216) ∗ (1/2).

Since r is a witness, ε
2
|or|α(`(r)) = ε

2
|rr̄| ≤ |r̄r′| ≤ |or̄|α(`j−1) ≤ |or|α(`j−1), so α(`(r)) ≤

2
ε
α(`j−1). Using Lemma 2.3, we see that if f is a point on the segment ab, then

|f f̄ | − |zz̄| ≤ |ab|
|vw|(|vv̄| + |ww̄|) ≤ ε2

216

4

ε
α(`j−1) =

ε

54
α(`j−1).

Observe that |ab| ≤ ε2

216
|vw| ≤ ε2

108
. Also, for any point f on wv, we have |of | ≥ 1/3 as a

consequence of the angle vow being at most 3π/4. Thus for any f ∈ ab, we have

|of | ≥ |oz| − |fz| ≥ |oz| − ε2

108
≥ |oz|(1 − ε2

36
).
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So for any f ∈ ab,

α(`(f)) − α(`(z)) =
|f f̄ |
|of | −

|zz̄|
|oz|

≤ |f f̄ |
(1 − ε2/36)|oz| −

|zz̄|
|oz|

≤ |f f̄ |(1 + ε2/18) − |zz̄|
|oz|

≤ (1 + ε2/18)(|zz̄| + (ε/54)α(`j−1)) − |zz̄|
|oz|

≤ ε2

18

|zz̄|
|oz| +

ε

54

α(`j−1)

|oz| +
ε3

18 ∗ 54

α(`j−1)

|oz|

≤ ε2

18
α(`j−1) +

ε

18
α(`j−1) +

ε3

162
α(`j−1)

≤ ε

5
α(`j−1)

So for any f ∈ ab, we have

α(`(f)) ≤ α(`(z)) +
ε

5
α(`j−1) ≤ (1 − ε/4)α(`j−1) + (ε/5)α(`j−1) ≤ (1 − ε/20)α(`j−1).

Lemma 3.2 For any inputs P , S, 1 ≤ k ≤ dim(S), and 0 < ε < 1, the algorithm
Good-Subspace returns with probability at least δk, where δ = ((ε3/1728)i/2(i + 1)) a k-
subspace F ′ of S such that RD(F ′, P ) ≤ (1 + ε)kRD(F ∗, P ).

Proof: The lemma clearly holds if P contains no point different from the origin. So
henceforth we assume that this is not the case and prove by induction on k. The base case,
k = 1, is furnished by Lemma 3.1. For the induction step, assume k > 1. By Lemma 3.1 we
have that RD(F, P ) ≤ (1 + ε)RD(F ∗, P ) with a probability of at least δ. Given this event,
π(F ) is a (k−1)-subspace of S ′ such that RD(π(F ), π(P )) = RD(F, P ) ≤ (1+ε)RD(F ∗, P ).
Thus by induction hypothesis, the (k− 1)-subspace G returned by the recursive call satisfies
RD(G, π(P )) ≤ (1 + ε)kRD(F ∗, P ) with a (conditional) probability of at least δk−1. It
follows that RD(F ′, P ) = RD(G, π(P )) ≤ (1 + ε)kRD(F ∗, P ) with a probability of at least
δk.

Theorem 1.1 immediately follows from this Lemma.
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[2] M. Bădoiu and P. Indyk. Fast approximation algorithms for the hyperplane fitting
problem. Manuscript, 2006.

9
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Appendix: Existence of Good, Anchored k-Flats

In this section, we prove Theorem 1.3. Let us fix any τ ≥ 1 and let RD(·, ·) stand for
RDτ (·, ·) throughout this section.

Finding a Point on a Nearly Optimal Flat

Lemma 3.3 Let F ∗ be the k-flat that minimizes RD(F, P ) for all k-flats F . For any 0 <
ε < 1, there exists a set of O( 1

ε
log 1

ε
) points of P whose convex hull contains a point q such

that the translation F ∗
q of F ∗ through q satisfies RD(F ∗

q , P ) ≤ (1 + ε)RD(F ∗, P ).

Proof: We construct a sequence q0, . . . , qi of points, where i = d c
ε
log 1

ε
e and c > 0 is an

appropriate constant, such that

1. q0 is the point in P closest to F ∗.

2. qj is in the convex hull of at most j + 1 points from P .

3. Let Fj denote the translate of F ∗ through qj. For 1 ≤ j ≤ i, if RD(Fj−1, P ) >
(1 + ε)RD(F ∗, P ) then d(qj, F

∗) ≤ (1 − ε/2)d(qj−1, F
∗).

The sequence consisting of just the one point q0 clearly satisfies the last two conditions.
Supppose that we have inductively constructed the sequence q0, . . . , qj−1, where j ≥ 1. We
descibe how to extend the sequence. If RD(Fj−1, P ) ≤ (1 + ε)RD(F ∗, P ) this is trivial
because we can take qj to be any point of P . If RD(Fj−1, P ) > (1 + ε)RD(F ∗, P ), there
exists a point q ∈ P such that d(q, Fj−1) > (1+ε)d(q, F ∗). Applying Lemma 2.2, there exists
a point r on the segment qj−1q such that d(r, F ∗) ≤ (1 − ε/2)d(qj−1, F

∗). We set qj to be r.
The extended sequence clearly satisfies condition (3). Since qj−1 is in the convex hull of at
most j points of P , and qj is in the convex hull of qj−1 and q, condition (2) also follows.

We now argue that at least one of the flats Fj satisfies RD(Fj, P ) ≤ (1 + ε)RD(F ∗, P ),
thus proving the lemma. If F0, . . . , Fi−1 do not satisfy this requirement then condition (3)
tells us that d(qk, F

∗) ≤ (1 − ε/2)id(q0, F
∗) ≤ εd(q0, F

∗) by our choice of i. Then for any
p ∈ P , we have d(p, Fi) ≤ d(p, F ∗) + d(qk, F

∗) ≤ d(p, F ∗) + εd(q0, F
∗) ≤ (1 + ε)d(p, F ∗),

where the last inequality follows from the choice of q0. But then it follows that RD(Fi, P ) ≤
(1 + ε)RD(F ∗, P ).

Anchoring a Nearly Optimal Line

Lemma 3.4 Let P be a set of points in R
d, and let `∗ be the line that minimizes RD(`, P )

over all lines ` through the origin o. Assume that RD(`∗, P ) > 0. There exists a constant
c > 0 such that for any 0 < ε < 1, there exists a set of at most c

ε
log 1

ε
points in P whose

span contains a point t 6= o such that RD(`(t), P ) ≤ (1 + ε)RD(`∗, P ), where `(p) denotes
the line through p (assumed different from o) and o.

Proof: For any p ∈ R
d, let p̄ denotes its projection onto `∗. For any line ` through the

origin, let α(`) denote the distance |xx̄|, where x is a point on ` at distance 1 from o. Note
that α(`) stands for the sine of the angle between ` and `∗.
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We construct a sequence q0, . . . , qi of points different from o, where i = d c
ε
log 1

ε
e and

c > 0 is an appropriate constant, such that

1. q0 is the point in P that minimizes α(`(p)) over each p ∈ P distinct from o.

2. qj is in the span of at most j + 1 points from P .

3. For 1 ≤ j ≤ i, if RD(`(qj−1), P ) > (1+ε)RD(`∗, P ) then α(`(qj)) ≤ (1−ε/2)α(`(qj−1)).

The sequence consisting of just the point q0 clearly satisfies conditions (2) and (3). Sup-
pose that we have inductively constructed the sequence q0, . . . , qj−1, where j ≥ 1. We descibe
how to extend the sequence. If RD(`(qj−1), P ) ≤ (1 + ε)RD(`∗, P ), this is trivial because
we can take qj to be any point of P different from o. Otherwise, there is a point q ∈ P
such that d(q, `(qj−1)) > (1 + ε)d(q, `∗). Let q′ denote the projection of q̄ onto `(qj−1). We
have |qq′| > (1 + ε)|qq̄|. From Lemma 2.1, there is a point r on the segment q ′q such that
|q̄r| ≤ (1 − ε/2)|q̄q′|. Let qj = r. Since |q̄qj| < |q̄q′| ≤ |q̄o|, qj is different from o. We have

d(q̄, `(qj)) ≤ |q̄r| ≤ (1 − ε/2)|q̄q′| = d(q̄, `(qj−1)).

This implies that α(`(qj)) ≤ (1 − ε/2)α(`(qj−1)), and so the extended sequence satisfies
condition (3). Since qj−1 is in the span of at most j points from P , and qj lies in the span
of qj−1 and q, qj lies in the span of at most j + 1 points from P . So the extended sequence
also satisfies condition (2).

We now argue that at least one of the lines `(qj) satisfies RD(`(qj), P ) ≤ (1+ε)RD(`∗, P ),
thus proving the lemma. If `(q0), . . . , `(qi−1) do not satisfy this requirement then condition
(3) tells us that α(`(qi)) ≤ (1 − ε/2)iα(`(q0)) ≤ εα(`(q0)) by our choice of i. Then for any
p ∈ P , we have

d(p, `(qi)) ≤ |pp̄|+|op̄|α(`(qi)) ≤ |pp̄|+|op|εα(`(q0)) ≤ |pp̄|+ε|op| |pp̄||op| = (1+ε)|pp̄| = (1+ε)d(p, `∗),

where the third inequality follows from the choice of q0. It then follows that RD(`(qi), P ) ≤
(1 + ε)RD(`∗, P ).

Anchoring a Nearly Optimal k-Subspace

Lemma 3.5 Let P be a set of points in R
d and let F ∗ be the k-subspace that minimizes

RD(F, P ) over all k-subspaces F , where k ≥ 1. Assume that RD(F ∗, P ) > 0. For any
0 < ε < 1, there exists a set of at most ck

ε
log 1

ε
points in P whose span contains a k-subspace

G such that RD(G, P ) ≤ (1+ε)kRD(F ∗, P ). Here c > 0 is the constant appearing in Lemma
3.4.

Proof: The proof is by induction on k. The base case of k = 1 is furnished by Lemma
3.4. So we suppose that k > 2.

Let e1, . . . , ek denote a set of orthogonal unit vectors on F ∗. Let π denote the projection
to the orthogonal complement of the subspace spanned by e1, . . . , ek−1. The key property
of π is that for any k-subspace F in R

d that contains e1, . . . , ek−1 and any point p, we have
d(p, F ) = d(π(p), π(F )). Note that for such a k-subspace F , π(F ) is a line.
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Using Lemma 3.4, there exists a set Q1 ⊆ P of at most c
ε
log 1

ε
points such that the

span of π(Q1) contains a line ` such that RD(`, π(P )) ≤ (1 + ε)RD(π(F ∗), π(P ). Let F
be the k-flat in R

d spanned by ` and e1, . . . , ek−1. The key property of π implies that
RD(F, P ) ≤ (1 + ε)RD(F ∗, P ). Using the linearity of π and its key property, we can also
conclude that there is a line `′ through o that is contained in F as well as the span of Q1.

Now consider the projection π′ to the orthogonal complement of `′. We have RD(π′(F ), π′(P )) =
RD(F, P ), π′(F ) is a (k−1)-subspace, and RD(H, π′(P )) > 0 for any (k−1)-subspace H in

R
d−1. Inductively, we obtain a set Q2 ⊆ P of at most (k−1)c

ε
log 1

ε
points such that the span

of π′(Q2) contains a (k − 1)-flat H such that RD(H, π′(P )) ≤ (1 + ε)k−1RD(π′(F ), π′(P )).
Let G be the k-flat such that π′(G) = H. We have RD(G, P ) = RD(H, π′(P )) and so

RD(G, P ) ≤ (1 + ε)k−1RD(π′(F ), π′(P )) = (1 + ε)k−1RD(F, P ) ≤ (1 + ε)kRD(F ∗, P ).

Since `′ lies in the span of Q1, and H lies in the span of π′(Q2), we can conclude that G lies
in the span of Q = Q1 ∪ Q2. Clearly, |Q| ≤ |Q1| + |Q2| ≤ ck

ε
log 1

ε
.

Proof of Theorem 1.3: The proof follows by combining Lemma 3.3 and Lemma 3.5.
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