A Divide-and-Conquer Algorithm for Min-Cost Perfect Match ing in the Plane’
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Abstract problem(MCPM) is to find a perfect matching df whose
cost is the smallest.
Given a sel/ of 2n points in the plane, the min-cost per- The MCPM problem has applications in operations re-

fect matching problem is to pair up the points (intgairs) search, pattern recognition, statistics, and VLSI (se§)[15
so that the sum of the Euclidean distances between theThe problem is used in determining the efficient movement
paired points is minimized. We present@tvn?/2 log® n)- of mechanical plotters, which is a special case of the Chi-
time algorithm for computing a min-cost perfect matching nese postman problem [9]; see the survey by Avis [5]. The
in the plane, which is an improvement over the previous bestfact that MCPM and related problems can be solved in
algorithm of Vaidya [21] by nearly a factor of. Vaidya'’s polynomial time for general graphs is a classical and fun-
algorithm is an implementation of the algorithm of Ed- damental result due to Edmonds [8]. Lawler [13] gave
monds [8], which runs im phases, and computes a match- an O(|V|?) implementation of Edmonds’ algorithm; us-
ing with ¢ edges at the end of thieth phase. Vaidya shows ing this, the MCPM problem in the plane can be solved
that geometry can be exploited to implement a single phasein O(n?) time. The question that motivates us is whether
in roughlyO(n3/2) time, thus obtaining a®(n®/2 log* n)- we can exploit geometry to do much better. (Note that the
time algorithm. We improve upon this in two major ways. complete graph induced by the set2f points is entirely
First, we develop a variant of Edmonds’ algorithm that uses specified by the co-ordinates of the points.)
geometric divide-and-conquer, so that in the conquer step  Since the min-cost, max-cardinality problem can be
we need only)(y/n) phases. Second, we show that a sin- solved for sparse graphs (| E||V|log|V|) time (Galil
gle phase can be implementedtin log” n) time. et al. [11]), there have been attempts at showing that the
min-cost perfect matching in the plane is a substructure
of geometric structures such as the Delaunay triangulation
1. Introduction Counterexamples to several such conjectures were given by
Akl [2]. (Note that the Euclidean minimum spanning tree
is contained in the Delaunay triangulation [19] and Yao's
. ) , graph [22].) Vaidya [21] was the first to show that ge-
a complete undirected graggh(V) (or simplyG) with V.as 5ty can be exploited to get a sub-cubic algorithm; his
follows. The vertex set of7 is the set of_pomt:V, and its O(n%/210g* n)-time algorithm is the best known for Eu-
edge set consists of all unordered paifs, v) such that clidean MCPM.
u,v € V andu # v. Thecostof an edge(u,v) is the
Euclidean distancé(u, v) between: andv. A matchingof
G (or of V) is a collectionM of edges such that no vertex
in V is incident on more than one edge M. A perfect
matching of V' is a matching) in which every vertex in
V is incident onexactlyone edgel/. Note that a perfect
matching ofV' has cardinalityn. We define thecost of a
matchingM tobe} , , <, d(u, v), the sum of the costs of
the edges inV/. The Euclidean min-cost perfect matching

Given a sel/ of 2n points in the plane, we can associate

For the bipartite version of this problem, Agarwal et
al. [1] have given a near-quadratic algorithm that improves
over an earlier sub-cubic algorithm of Vaidya [21]. Atten-
tion has been paid to special cases of the Euclidean MCPM,
for instance the case when all the points are in convex po-
sition; see Marcotte and Suri [15], and Buss and Yiani-
los [6] where near-linear time algorithms are described for
such problems. There has also been considerable amount of
work on approximation algorithms for Euclidean matching;
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is at most(1 + ¢) times the optimal, for any > 0. The 2. A Divide-and-Conquer Framework for
recent algorithm of Arora [3] solves the same problem in Matching
time that is near-linear in, but is exponential in /.

The huge literature on matchings in general graphs is
outside the scope of this paper. We refer the reader to stan
dard books on combinatorial optimization ([13],[18]) and
matching theory ([14]).

In this section, we present a divide-and-conquer ap-
Pproach for min-cost perfect matching of the set of pofrits
in the plane. We assume in the following that we are dealing
with the graphG(V') = (V, E) associated with the given set
of pointsV. We say that a subs€ C V of V is anodd
Our results. We present arO(n?/?log” n)-time algo-  subsebr anodd-seif |Q| is odd andQ| > 3. ForQ C V,
rithm for computing a min-cost perfect matching in the let£(Q) denote the subset of edgEswith exactly one end-
plane, which is an improvement over the previous best al- pointin@, thatis{(Q) = {(u,v) € E : {u,v}NQ| = 1}.
gorithm of Vaidya [21] by nearly a factor af. Vaidya’'s Let S(p, r) denote the disk of radiuscentered at poing.
algorithm is an implementation of the algorithm of Ed- Edmonds’ algorithm is motivated by duality theory for
monds [8], which runs im phases, and computes a match- linear programs; see [8] and [13] for a discussion of lin-
ing with ¢ edges at the end of thieth phase. Vaidya shows ear programming duality. His algorithm associates a “dual
that geometry can be exploited to implement a single phasevariable” variablew,, for eachv € V and a dual variable
in O(n3/2) time (we use the)() notation when ignoring wq for each odd sef). Sometimes, it will be convenient
polylog-factors), thus obtaining aB(n°/2 log* n)-time al- to denotew, by wy,;. Corresponding to edgeu,v), let
gorithm. We improve upon this in two major ways. First, m,, = w, + w, + Z(u,v)Ef(Q} wg. From duality theory, it
we develop a variant of Edmonds’ algorithm that uses ge- follows that a perfect matching/ is optimal if there exist
ometric divide-and-conquer, so that in the conquer step wevaluesw,, for eachv € V, andwg, for each odd subse},
need onlyO(y/n) phases. (Divide-and-conquer has been such that the following conditions hold:
used before for special cases of MCPM in the plane, forin- EDGE-FEASIBILITY:  my, < d(u,v) foreach(u,v) € E.
stance by Marcotte an_d Suri [15], bu_t these approaches relypg51TIVE-DUAL : wg > 0 for each odd subsed.
heawly on the propertles_o.f the special case_s.) The geomet; i ING-ADMISSIBILITY : (,0) € M = muy =
ric tool that we use for divide-and-conquer is based on the d(u, ).
technique of Miller et al. [16] for finding geometric sepa- '
rators for overlap graphs. Second, we show a single phasé\/'AX”VIA
for ann-point set can be implemented@(n log® n) time.
To do this, we interpret the dual variables geometrically an : : i . .
establish certain nice properties that they exhibit. Weathe |n.Q_|s (|Q|._1)/2' Sincel is a perfect matching,
exploit these properties to show that to implement a sin- this is equivalent tadf N £(Q) = 1.
gle phase, it suffices to look at a subsetifx) candidate Actually, we can prove this using a direct arguement.
edges and not all then(n — 1)/2 edges. The candidate We simply note that thEDGE-FEASIBILITY andPOSITIVE-
edges are not known at the beginning of the phase itself, butbUAL conditions imply that the cost of any perfect match-
are generated as the phase unfolds, using a totél(of ing is at least) .y wo + > o wq, while the conditions
time. Combining this with the data structures of Galil et MATCHING-ADMISSIBILITY andMAXIMALITY imply that
al. [11] for implementing a phase of the matching algorithm the cost ofM is exactlyy _,, w, + ZQ wQ-
for sparse graphs i@(| E|) time, we obtain a® (n log® n)- Like Edmonds’ algorithm, our approach also com-
time implementation of a phase. For generating the candi-putes a perfect matching and a corresponding set of dual
date edges, we introduce a notion calledsbmi-separated  variables such thatDGE-FEASIBILITY, POSITIVE-DUAL,
decompositionwhich is a relaxation of thevell-separated =~ MATCHING-ADMISSIBILITY, andMAXIMALITY are satis-
decompositiomf Callahan and Kosaraju [7]. fied. The difference is that unlike in Edmonds’ algorithm,
In Section 2, we present our divide-and-conquer algo- we use geometric divide-and-conquer for doing this. Be-
rithm for MCPM, and show that only/n phases are needed fore describing our approach, we describe the important no-
in the conquer step for a setoefpoints. In Section 3, we de- tion of blossoms that was introduced by Edmonds. Our de-
scribe our approach for implementing a single phase of thescription of blossoms and other standard components of the
algorithm. In the appendix, we present the proof of the main matching algorithm are based on the presentation of Galil
lemma of Section 3. For lack of space, we have omitted theet al. [11].
proofs of several lemmas from this version.

LITY :  For each odd subs€, if wg > 0, then
the matchingV/ is maximal within@, that is, the
number of edges in{ both of whose endpoints are

— — _ ~ Definition 2.1 For any vertexo € V, let A\(v) = w, +
1Combining the divide-and-conquer approach of this papeth wi

. L - .
Arora’s technique, Pankaj Agarwal and the author have tgcebtained ZUGQ L‘.}Q' .An edge(u7 U) is feasibleif m,, < d(u, v). Itis
an algorithm whose running time is near-lineaniand polynomial inl /¢. admissiblef 7., = d(u,v).



2.1. Blossoms v € V.) We definedisk(v), thedisk of vertexv, to be the
disk of radius\(v) centered av. Since\(v) > 0, disk(v)
During the course of our algorithm, certain odd subsets is well defined. Lemma 2.2 tells us thatqf andv are
of V are designated adossoms The algorithm maintains  vertices in different blossoms, feasibility ¢f;, v) means
the property thatog > 0 for an odd subsef) only if Q thatdisk(u) anddisk(v) do not overlap (although they can
is a blossom. The set of blossoms at any stage have théouch); admissibility of(u, v) meansdisk(u) anddisk(v)
following nestedstructure: For any two distinct blossoms do not overlap but touch. This geometric interpretation is
B and B/, eitherBN B = §),orB C B, or B' C B. due to Junger and Pulleyblank [12]; see also Mirzaian [17].
Eachv € V is a trivial blossom of size one. A non-trivial

blossomB is given by a sequence of blossofg, . .. , B, 2.2. The Divide-and-Conquer Algorithm
wherer = 2k, for £ > 1, and a sequence of admissible

edgesz; = (uj—1,v;), fori =1,...,r +1, such that Let U C V be a subset of the given set of points, and let
) |U| = m. We will describe our divide-and-conquer scheme
1. u;,v; € B, mod (r+1)- _ He
for the setU. In our algorithm, we are also specified a non-
2. Forl <i <r+41, (u_1,v;) € Mifiisevenand negative real numbdimity (u) for eachu € U. (In the

(wi_1,v;) & M if i is odd. beginning, we sefimity (v) = oo for eachv € V and call
the divide-and-conquer procedure withset toV.) The
The blossom$3,, ... , B, are referred to as treubblos- goal in the sub-problem fol/ is to compute a (not nec-

somsof B. A blossom that is not a subblossom of any other essarily perfect) matching/ of U, a set of blossoms in
blossom is called anutermostolossom. Clearly, the out- {7, and a set of dual variables, for eachu ¢ U, and

ermost blossoms induce a partition6f It can be shown ,, for each blossong) (the dual variables of odd sets that

from the properties above that any blosséhtontains an  are not blossoms are assumed ta)peso that (1) the con-
odd number of vertices, and that the matchivigis maxi-  ditionsEDGE-FEASIBILITY, POSITIVE-DUAL, MATCHING-

mal within B. The Unique vertex oB that is not matched ADMISSIBILITY, andMAXIMALITY hold for U, and (2) in
to any other vertex oB? is called itsbase The base canalso  addition, the following two conditions are also satisfied:
be defined by induction on the structure of blossoms as fol- gApjus-coNSTRAINT.  For eachu € U, A(u) <
lows. The base of a trivial blossomis the vertex itself. limity (u).

The base of a blossoifd whose subblossoms are given by EXPOSEDCONSTRAINT
the sequenc8, ... , B, (as above) is the base 6%.

An alternating path between verticag and v, is a
sequence of admissible edges = (v;—1,v;), for i =
1,...,r,suchthatfori = 1,...,r —1,¢; € M if and
only if e;41 ¢ M. In other words, it is a path in which
alternate edges are in the matching. #ternating path be-
tween outermost blossomBg andB,. is given by a sequence

For each exposed blossof
of U, thereis &y € Q such that\(¢) = limity ().

Let us call a blossor@ of U constrainedf @ is exposed
and there is @ € @ such that\(¢) = limity (q); we say
that@ is unconstrained otherwise. Thus the last condition
says that every exposed blossom is constrained.

of admissible edges; = (u;_1,v;), fori = 1,...,r, Separating circle. Let C be a circle in the plane, arid;
and a sequence of outermost blossdBgs. . . , B,, where  (resp.Us) be the subset df’ that liesinside(resp.outsidg
u;,v; € By, andfori =1,...,r—1,e; € M if and only the circleC'. For eachu € U, let 8(u) denote the distance

if e;.1 ¢ M. We say that a vertex is exposedf no edge from v to the circleC'. We callC a separating circlefor U
of the matching)/ is incident onv; an outermost blossom  if the following conditions hold:

B is exposed if no edge of the matchifg is incident on
the base ofB. An alternating path between two exposed
vertices is called aaugmenting path

1. min{|U1|, |2} = |U]/4.

2. LetW C U be any subset of points such that the fam-
Lemma 2.2 Letu and v be points in different outer blos- ily of disks {S(w, G(w))lw € W} has the property
soms. The edger, v) is feasible iffA(u) + A(v) < d(u, v). that any two disks in it have disjoint interiors. Then,
The edgéu, v) is admissible iff\(u) + A(v) = d(u, v). W] = O(/m).

Using the techniques of Miller et al. [16] and Eppstein et

al. [10], we show that a separating circle f@rexists and
can be computed i®(m) time.

Proof: Follows from the fact that if: andv are in different
outer blossomsy,, = A(u) + A(v). O

We show later that throughout our algorithi(w) > 0 o .
foranyv € V. (We actually show that the triangle in- Lemma 2.3 We can compute a separating circle for a given
equality for distances forces, to be non-negative for any ~ S€tU of m points in the plane ifO(m) time.



The divide step. If the setU contains morec points, constrained blossoms is decreased by one or two. Thus,
for some constant, we find a separating circl€’ for each phase decreases the number of violations of the sixth

U that partitionsU into two non-empty set$/; and U, condition EXPOSED-CONSTRAINT, and so the algorithm

as above. We recurse on the €&t with limity, (u) = terminates after a finite number of phases.

min{limity (v), (v)} for eachu € U;. We recurse on the During a phase, some unconstrained outer blossoms are
setUs with limity, (v) = min{limity (u), B(u)} for each labelledas s-blossoms and-blossoms. (An outer blossom

u € Us. is labelled as either ag-blossom or a-blossom, but not

Suppose that the recursive calls return a matching, blos-both.) An unconstrained outer blossom which is not la-
soms, and dual variables fof; (resp.Us;) satisfying the six ~ belled is called dree blossom orf-blossom. §-, ¢-, and
conditions forl; (resp.Us). To begin the conquer step for  f- prefixes are only for unconstrained blossoms.) A vertex
U, we obtain an initial matching, dual variables, and blos- is called ans-vertex,t-vertex, f-vertex, orc-vertex accord-
soms by combining the matching, dual variables, and blos-ing to whether it belongs, respectively, to aiblossom t-
soms forU; andU,. At this stage, it is easy to see that all blossom, f-blossom, orc-blossom. We letS, T, and F’
the six conditions except theXxPOSEDCONSTRAINT are denote, respectively, the set efvertices,t-vertices, and
satisfied forlU. We sketch the proof for the most interesting f-vertices. For any € U, let b(v) denote the outermost
case, which i€EDGE-FEASIBILITY for edge(u,u’) where blossom containing.

u € Uy andu’ € U,. We have A phase is divided int@®)(m) sub-phasesAt the end of
each sub-phase, the following invariants hold. An exposed,
unconstrained blossom is always afblossom. For every
Similarly A(u/) < B(u'). Combining the inequalities, we 5~ OF t-blossomb, there is an alternating pa#ti B', ) be-
have(u) + M) < B(u) + B(u'). Sinceu andu’ lie Fween an exposed,/unconstralned bIosS@'nano_IB. If B

on opposite sides of the circl, we can conclude that 'S ans-blossomp (B', B) hgs even Iength, that is, there are
Bu) + Au') < du,u’). Thus,A(u) + Aw') < d(u,o); an even num/ber of edges in the alternating patli i at-
geometrically, what we have shown is thditk(u) and blossomn(_B , B) has odd Ier_lgth. The- a_lndt-blossqms,
disk(u') do not overlap. Since andw’ are obviously in together with the correspondmg_ alternating paths, induce
different outer blossoms, it follows from Lemma 2.2 that [Orest of rooted trees, a tree being rooted at each exposed,
(u, ') is feasible. unconstrained blossqm. The trees are cali¢tdrnating

Observe that thexPOSEDCONSTRAINTconditionmay €S and the forest is called aalternating forest (The
be violated for a blossor@ of U. The ‘conquer’ stage of c-blossoms are not in the alternating forest.) The leaves of

the divide-and-conquer algorithm féf eliminates the vi- € lternating trees are alwayblossoms.

olations of theEXPOSEDCONSTRAINT, thus ‘solving’ the Fr?rheverr]yf-b_lossonc]B, there |shan(t))thegf-bloshsort:10
sub-problem fol/. The ‘conquer’ stage consists of a series SUch thatthere is an edge in matchingbetween the bases

of phases; in each phase the number of exposed, uncon(-)'c B andC. Thatis, M induces a perfect matching on the

strained blossoms, is reduced by either one or two. bases of all th¢f-blossoms.
At the start of the phase, we label each exposed, un-

constrained blossom as arblossom; every other uncon-
strained outer blossom is gftblossom. A sub-phase con-
sists of the following loop, which is repeated until a termi-
nation condition for the phase is met. The above invariants
cr]old at the end of each iteration of the loop. Let

Au) < limity, () = min{limity (uv), B(u)} < B(uw).

Base case. The base case for the divide-and-conquer is
when|U| < ¢. To solve the base case, we initialize the
matching orlJ to be empty, and set all the dual variables to
be zero. The only blossoms 6f are the trivial blossoms,
and these are considered to be exposed and unconstraine
We then execute the algorithm for the ‘conquer’ stage for

U, which we now describe. 6 = Q>

min w
@ a nontrivialt-blossom
2.3. The Conquer Stage 62 = min (d(u,v) — mu),

ueS,veF

As we indicated, the conquer stage consists of b = u,vGS;Hl}%Iul);éb(v)(d(u’U) ~Tw)/2,
phases. Each phase begins with the current match- 6, = min (d(u,v) — Tuw),
ing M, a set of dual variables, and a set of blos- ueS,v ac-vertex
soms. Some of the exposed blossoms are constrained, and 05 = min(limity (u) — A(u)),
are callede-blossoms. The algorithm always maintains ues
the five conditionsEEDGE-FEASIBILITY, POSITIVE-DUAL, and letd = min{dy, d2, I3, 4, 05}
MATCHING-ADMISSIBILITY , MAXIMALITY , andRADIUS- Dual changeLetwg be the dual variable corresponding

CONSTRAINT. In each phase, the number of exposed, un- to the blosson@). (If @ is a trivial blossom consisting of



a vertexv, thenwg = w,.) For eachs-blossom@), we strained blossoms falls by one. Note that in the next phase,

increasewg by d, and for each-blossom(), we decrease A is constrained.

wgq by é. After the dual change, one 6f, 2, 03, 64, Or d5 This completes the description of a phase. At the end

becomes zero. (In case of a tie, we pick an arbitafathiat of the phase, we (recursively) expand all outer blossoms

is zero.) We will be terse about some of the following cases, whose dual variable is zero.

which are standard; see [11]. This also completes our description of the overall divide-
8, = 0: In this case, the dual variahle; corresponding ~ and-conquer scheme for min-cost perfect matching.

to a (non-trivial)t-blossomB becomes zero. We expaiiy

that is, we stop regarding it as a blossom and make its sub--".

blossoms outer blossoms. Some of these new outer bIos-U is O(v/m).

soms become-blossoms, some beconteblossoms, and  proof: Let £ denote the number of exposed, unconstrained
somef-blossoms. blossoms at the beginning of the conquer step. Since each
62 = 0: In this case, an edge:, v), which is now ad-  phase decreases the total number of exposed, unconstrained
missible, between astvertexu and anf-vertexv has been blossoms by one or two, the number of phases is at most
discovered. Twof-blossoms are added to the alternating |£|. Hence it suffices to showe| = O(y/m). To do this,
forest, one as &blossom and the other as aiblossom. we will use the properties of the separating cir€le We
03 = 0: An edge(u,v) which is now admissible has first argue that for eact) € &, there is ag € @ such that
been discovered betweerverticesu andv. Eitheranew  A(¢) = 8(¢). Assume, w.l.o.g., tha®) C U;. Since@
s-blossom is formed, or an alternating path between two is exposed, the conditioBXPOSEDCONSTRAINT for U
exposed, unconstraned blossoms is discovered. The latteimplies that there is a € @ such that
subcase ends the phase and is handled in a manner similar
to the case wher&, = 0. A(g) = limity, (¢) = min{limity (¢), 5(q)}-

d4 = 0: An edge(u,v), which is now admissible, has  gince() is unconstrained at the beginning of the conquer
been discovered between awertexu and ac-vertexwv. Let step forU, A(¢) < limity(g). It follows thatA(g) = B(q).

A (resp. B) be thes-blossom (respc-blossom) containing Consider the family of disks formed by picking for each
u (resp.v). Let A’ be the exposed, unconstrained blossom Q € & adiskS(q, B(q)) such thay € Q andj(q) = A(q).
which is the root of the alternating tree containidgand let From Lemma 2_’2 and the fact that tEBGE-FEASIBILITY
o(A’, A) deno'Ee the corresponding/even-length alternating congition holds, we see that this family of disks have pair-
path betweenl” andA. Note thatr(4', A), the edgéu, v), wise disjoint interiors. The second property of the separat
and the blossonB together constitute an alternating path ing circle C implies that there are onk(y/m) disks in the

Lemma 2.4 The number of phases in the conquer step for

between the exposed blossorfsand B. We expand this to family. We conclude tha€| = O(,/m). 0O
an alternating path between the exposed basesddfand
B. We augment the current matchirg by excluding all For a fast implementation of one phase of the conquer

edges of\/ belonging tor and including the other edges of  algorithm (or of Edmonds’ algorithm), we need a mecha-
7. Note that the cardinality of the matchidg increases by  nism to quickly compute whe#; becomes zero. As in a
one, and the number of exposed, unconstrained blossomghase of Edmonds’ algorithm, handlidg andd; seem to
falls by one sinced’ is now no longer exposed. We also be the hard cases. We can easily maintairandds in a
change appropriately the bases of all the blossoms throughotal of O(n) per phase, as this involves only the dual vari-
which the augmenting path passes. This ends the currentbles corresponding t0(n) blossoms. We can maintain

phase of the algorithm. 44 efficiently using a data-structure for answering closest
05 = 0: Inthis case)(u) has increased tomity (u) for point queries [4]. Maintaining. andds using such an ap-
ans-vertexu. Let A be thes-blossom containing. Let A’ proach is more problematic because of the way the blos-

be the exposed, unconstrained blossom which is the root ofsoms and the labels change. However, Vaidya [21] showed
the alternating tree containing, and leto(A’, A) denote that geometry can be exploited to maint&jlising a total of
the corresponding even-length alternating path betwten ~ O(m?3/?) time per phase (in Edmonds’ algorithm), thus ob-
andA. We expandr(A’, A) to an even-length alternating  taining a running time 0O (n°/2) for MCPM. In Section 3
pathm between the bases of and A. We alter the cur-  (Lemma 3.9), we show that we can detect whghecomes
rent matchingM by excluding all edges oM belonging zero using a total 0®(m log® m) time per phase (we can
to 7 and including the other edges of We change ap- show this for a phase in Edmonds’ algorithm as well). The
propriately the bases of all the blossoms through which the following theorem results from a careful implementation of
augmenting path passes. This ends the current phase of tha phase, similar to the implementation of a phase of Ed-
algorithm. We can show that the cardinality of the matching monds’ algorithm described by Galil et al. [11] or Vaidya
M remains unchanged, and the number of exposed, unconf21].



Theorem 2.5 Suppose that we can detect whetecomes
zero using a total of)(\) time in a single phase of the con-
quer step forU. Then, one phase can be implemented in
O(mlogm + \) time, wheren = |U]|.

Thus, a phase of the conquer step tak¥sn log® m)
time. As there ar@®(,/m) phases, the conquer step takes
O(m?/?1og® m) time. Since a separating circle foF can
be found inO(m) time, we conclude that the time for solv-
ing the sub-problem fal7, not counting the time for solving
the recursive sub-problenig andUs, is O(m?/? log® m).
Since|U4|,|Us| > |U|/4 (first property of separating cir-
cle), a standard analysis tells us that the overall time eged
to solve the sub-problem fdF is O(m?/2 log® m). Putting
everything together, we conclude:

Theorem 2.6 A min-cost perfect matching of a détof 2n
points in the plane can be computedin®/? log® n) time.

3. Implementing a Phase

In this section, we describe an efficient algorithm for im-
plementing a single phase of the conquer steplforWe
begin by making some useful observations about our algo-

rithm. Some other geometric observations needed for the

correctness of our algorithm are presented in the appendix
The following lemma uses the triangle inequality for dis-
tances in the Euclidean metric.

Lemma 3.1 For any vertexw € V, w,, > 0 at all stages in
the algorithm. Consequently(v) > 0, forall v € V.

Definition 3.2 Thetime at any point in a single phase of
the algorithm is the sur_ ¢ of all the dual changes made
by the algorithm since the beginning of the phase. That is,

the time at the beginning of the phase is zero, and each dual

change step increments the timedy

Suppose a dual change step increments the time from
tot; + 9. Foranyt, t1 <t < t; + 6, we define the value of
a dual variableu at timet by linear interpolation between
the values of: at¢; andt; + ¢. Within a single phase, the

Fact 3.3 During a phase, a vertex may change its sta-
tus from anf-vertex to at-vertex (and vice versa) a num-
ber of times. In this part of the phasg(v) can only de-
crease. However, oneebecomes am-vertex, it remains an
s-vertex until the end of the phase. In this part of the phase,
A(v) can only increase. I belongs to a-blossom\(v)
does not change at all during the phase.

Recall that we definedisk(v) to be the disk of radius
A(v) centered at. SinceA(v) > 0 (Lemma 3.1)disk(v) is
well defined. Lemma 2.2 tells us thatifandv are vertices
in different blossomsglisk(u) anddisk(v) do not overlap
(although they can touch). Thus, the question of detecting
whend,, d3, or 6, becomes zero (as a consequence of dual
changes) boils down to detecting when disks of points in
different blossoms touch.

3.1. Candidates

To detect whew,, 43, ord, becomes zero during a phase,
we could ‘monitor’ all the edgesu,v) and detect when
disk(u) anddisk(v) touch. In this section, we show that it is
sufficient to monitor a certain set 6f(n) candidateedges.
This is shown in Lemma 3.8, the main result of this sec-
tion. To prove this result, we use the properties estahlishe
above. Before we can specify how the candidate edges are
generated, we need to introduce a certain cover of the set of
edges.

A semi-separated decomposition. Let C(p,r) denote
the closure ofR? — S(p,r), whereS(p,r) is the disk of
radiusr centered ap. We say that two point setd and B
aresemi-separated there exists a poinp and a real num-
berr > 0 so that

1. AC S(p,r),and

2. B C C(p, sr). Here,s is theseparation constangs-
sumed throughout to be fixed to a constant greater than
1. (For this paper, we take=9.)

Aset{(A;,B1),...,(Ax, Bx)} of pairs is said to be a
semi-separated decompositi@SD) ofU if

dual variables, and the quantities that depend on them, can

now be regarded as functions of time. Hence, we will de-
note byp[t] the value of a dual variable at timet¢ of the

algorithm. We will do the same for quantities that depend
on the dual variables. The following observation depends

on the fact that the algorithm increases the dual variables

corresponding to the-blossoms, decreases the dual vari-
ables corresponding to thieblossoms, and does not change
the dual variables corresponding to tfiblossoms. It also
expresses a property of the algorithm’s labelling scheme.

1. For any edgéu,v) of G(U), there is a paifA4;, B;)
such that either € A; andv € B;, orv € A; and
u € B;.

2. A; andB; are semi-separated, foral=1,... k. Let
p; denote the point and; the radius such thatl; C
S(pi,ri), andB C C(p;, s13)-

Forthe pai( 4;, B;) of the SSD, we will refer tg; as the
centerandr; theradiuscorresponding tdA;, B;). Thesize
of the semi-separated decompositionyis (|A4;| + |Bil)-



Note that the SSD is similar to the well-separated decom- A; as therepresentativeof A;. Letb; € B; be the point
position of Callahan and Kosaraju [7]. In fact, any well- in B; that is closest tg;, and letl; = d(p;,b;) denote
separated decomposition Gfis an SSD of/. Our weaker the Euclidean distance betweknandp;. We letb; be the
notion of an SSD is motivated by the fact that the size (ac- representative of;.

cording to our definition) of any well-separated decomposi-

tion of certainm-pointisQ(m?). (See [7].) In contrast, we There can be two entries in the event queue correspond-
develop a scheme to construct an SSUoivhose size is  ing to the pair(4;, B;). The representative; is present if
O(mlog* m). a; is ans-vertex and\(a;) < 2r;. We define thepriority

of a; to be2r; — A(a;). The representativg is present if
Lemma 3.4 Given a seU of m points in the plane, we can  , is ans-vertex and\(b;) < 0¢; 4+ 3r;; here,d is the an-
construct, inO(mlog” m) time, an SSD of whose size is  gular constant of the RSSD. We define the prioritypfo
O(mlog" m). bedt; + 3r; — A(b;). (The entry corresponding i@ (resp.
b;) is there to detect the event whaiu, ) increases t@r;
(resp. \(b;) increases t@/; + 3r;).) Note that the prior-
ities of all the entries in the event queue are non-negative.
Also, the priorities decrease uniformly with time, because
the disks ofs-vertices grow uniformly with time. When the
priority of an entry becomes zero, it is removed from the
event queue.

Let 8 = 2n/h, whereh is a sufficiently large integer
constant. We refine the SSD as follows. Assume that for
the semi-separated pdid;, B;), A; C S(p;,r) andB; C
C(p;, sr), for some poinp; andr > 1. We subdivide the
plane intoh conesc;, ... , ¢y, such that each; hasp; has
its apex and an angular openingéfLet D(j) = B; N ¢,
denote the set of points iB; that are contained in the cone
¢;. We replace each pait4;, B;) in the original SSD by
the set of pair A;, D(j)), for1 < j < h to obtain the  Generation of candidates. We now describe how the
refined semi-separated decompositi®5SD) ofU. See candidates are generated during a phase. At the begin-
Figure 1 at the beginning of the appendix for an illustration ning of the phase, we use the dual variables to compute
We define the center and radius(ef;, D(j)), for1 < j < A(v), for each pointv € V. We generate an initial set
h, to be the center and radius @d;, B;). We will refer to of candidate edges by examining each gy, B;) of the
6 as theangular constanbf our RSSD. (In this paper, we RSSD as follows. IfA(a;) > 2r;, we execute the pro-
choosed = 1/18 radians.) In the description that follows, cedureGener at e- candi dat es(A;, B;) described be-
we assume that we have computed an RSSID athose low. If A(b;) > 60¢; + 3r;, we execute the procedure
size isO(mlog* m). Using the algorithm of Lemma 3.4, Gener at e- candi dat es(B;, A;).
we can compute the RSSD @(m log® m) time. As mentioned before, the other candidates are generated
as the phase unfolds, when certain events are triggered.
Such an event occurs when the priority of some element
in the event-queue becomes zero (as a consequence of a
change in the dual variables). When this happens, the el-
ement is removed from the event queue. Suppose the el-
ement corresponds to some péait;, B;) of the RSSD of
U. If the element is the representative &f (resp. B;),
we first compute\(a), for eacha € A; (resp. A(b), for
eachb € B;). We then generate a set of candidates by
calling the procedur€ener at e- candi dat es(A4;, B;)
(resp. Gener at e- candi dat es(B;, 4;)). To complete
Figure 1: A pair(A;, B;) in the SSD; and its refinementto  the description of our scheme for candidate generation, we
get the RSSD. now describe the procedu@ner at e- candi dat es.

Definition 3.6  For any pointp and anyv € V, the

The event queue. We do notknow all the candidate edges eighted distance of from v, denoted ww, p), equals
at the beginning of the phase itself. Rather, we generate thed(v,p) — \(v).

candidates as the phase progresses, when certain ‘events’
occur. We maintain aavent-queuso detect these events.  Gener at e- candi dat es(X,Y): We assume thax(z)

is known for eachr € X. For eachy € Y, we find
Definition3.5 Let{(A1,B1),...,(Ar, Bx)} bean RSSD the ‘closest point’ inX, that is,z € X that minimizes
of the given set of point¥. Consider a paif4;, B;) with wd(z,y) = d(z,y) — M«), and add(z,y) to the list
centerp; and radiusr;. We pick an arbitrary point; € of candidate edges. For an efficient implementation, we



compute, inO(|X|log|X]|) time, the weighted Voronoi- Lemma 3.9 During a single phase of the conquer step for
diagram of X, where the weight of an elemente X is a setU of m points, we can detect whey) becomes zero
A(z). (See [4] for a survey of results on weighted Voronoi using a total 0f0(m log® m) time.

diagrams.) For any, the ‘closest point’ inX can be
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A. Proof of Lemma 3.8

Lemma 3.8 Suppose that at some timé during the
phase, there are two verticesand v in different maximal
blossoms\/ and N, repectively, such that,, = d(u,v).

Then there is a candidate edge,y) € C(¢') such that
x e M,ye N,andm,,[t'] = d(z,y).

Before proving the lemma, we state some additional
properties of the matching algorithm that are needed in the

proof. The following is a useful corollary of Lemma 2.2 and
Lemma 3.1.

Corollary A.1 Foranyu,v € U, if d(u,v) < A(u) in the
conquer step foil/, thenw and v are in the same outer
blossom.

Corollary A.2 Foranyu,v € U, A(u) < A(v) +d(u,v) in
the conquer step fdv.

Proof: FromEDGE-FEASIBILITY, we have
AMu) + A(v) < d(u,v) +2 Z weQ-

u,vEQ
Since all dual variables are non-negative,

Z wg < ZwQ < A(v).

u,VEQ vEQ

Combining the two inequalities, we get the statement of
the corollary. ]

We will now state a useful lemma about a single phase
in the conquer step fdv.

Lemma A.3 Letu andv be two vertices such thafu) =
b(v) at all times betweeri’” and¢’ in a phase. Then for any
t,t" <t <t

Aw)[t] = Aw)[t] = Aw)[t"] = Aw)["].
Proof: The lemma follows from the fact thatif andv are
vertices in the same blossom, the dual change step changes
A(u) andA(v) by the same amount. O

We are now ready for the proof of Lemma 3.8.

Proof of Lemma 3.8: There is a pai{A, B) in the RSSD
of the pointsl such that eithet € Aandv € Borv e A
andu € B. Assume, w.l.o.g., that € A andv € B. Let
p andr be the center and radius correspondind 49 B).
Let ¢ andb be the representatives dfand B, respectively.
Note thatA is contained in a disl§ (p, r) that is centered at
p and has radius. B is contained in a con& with apex
at p and whose angular openingfs the angular constant
of the RSSD. Note that = d(p,b) > sr, wheres is the
separation constant, addp, b’) > ¢ for anyd’ € B.

Sincer,, = d(u,v), andu andv lie in different maxi-
mal blossoms, it follows from Lemma 2.2 that

AWt + Aw)['] = d(u, v) 1)

To prove the lemma, we consider two cases: either
A(u)[t'] > 4r, or M(u)[t'] < 4r.

Case 1: A(u)[t'] > 4r. Sinced(u,a) < 2r, we can con-
clude from Corollary A.2 thah(a)[t'] > 2r. Lett” <’ be
the earliest time such thata) > 2r at all times between
t” andt’. (Possiblyt” = 0.) From Corollary A.1, we can
conclude that at any given time betweé&randt’, all points
in A belong to the same maximal blossom.

At time ¢”, our procedure for generating candidate
edges finds anv’ € A that minimizes wdc, v), over
all ¢ € A, and introduceqa’,v) as a candidate edge.
Thus, wda’,v)[t”"] < wd(u,v)[t”]. This implies, by
Lemma A.3, that wk/,v)[t'] < wd(u,v)[t']l. We
conclude thatd(a’,v) — warn[t'] < d(u,v) — muu[t'].
Sincemy, [t'] = d(u,v), EDGE-FEASIBILITY implies that
marw[t'] = d(a’,v). Hence the lemma holds with = o’
andy = v.



Case 2: A(u)[t'] < 4r. In this case, the lemma follows
from a series of claims, whose proofs we provide later.
From the triangle inequality,

d(u,v) + d(u,p) > d(p,v).
Using equation 1 and the fact thaie A,
Aw)['] + A)[t'] +r > d(p,v).
SinceA(u)[t'] < 4r, we obtain
AW)[t'] = d(p,v) —5r.

Let pr(v) denote the ‘projection’ ofv onto the disk
S(p,¢), that is, the point of intersection of the segmgnt
with the circle of radiug centered ap. We can write

d(p,v) = d(p, pr(v)) + d(pr(v), v) = £ + d(pr(v), v).

SinceB lies within the cong¥ with apex atp and angular
openingd, d(pr(v),b) < 6¢.

Claim A.4 Attimet’, (i) b andv are in the same blossom,
and (ii) A\(b) > 04 + 3r.

Lett” be the earliest time such thatb) > 6¢ + 3r at all
times between” andt’. (Possiblyt” = 0.) Attimet”, our
procedure for generating candidate edges findsaB that
minimizes wdc, u) over allc € B, and introducesgu, b')
as a candidate edge.

Claim A.5 The pointd’ andv belong to the same blossom
at all times betweer’ andt’.

We have wdt', u)[t"] < wd(v,u)[t”]. By Lemma A.3,
this implies that wdb',u)[t'] < wd(v'u)[t']. We
conclude thatd(d',u) — mpq[t'] < d(v,u) — muu[t'].
Sincer,,[t'] = d(v,u), EDGE-FEASIBILITY implies that
my[t'] = d(V', ). Hence the lemma holds with= « and
y=1". O

Proof of Claim A.4. We have

A(v) —d(v,b)

> (d(p, ) — 57) — (d(v, Pr(v)) + d(pr(v), b))
> (¢4 d(v, pr(v)) — 57) — (d(v, pr(v)) + 60)
= {(1-6)—>5r

> 00+ 3r,

sinced = 1/18 and¢ > 9r. Sincedl + 3r > 0, part
(i) of the claim follows from Corollary A.1. Part (ii) of the
claim follows from Corollary A.2. |

Proof of Claim A.5. We prove the claim in two parts: (1)
At any time between” andt’, the points) andv belong to
the same blossom, and (2) at any time betwg&eandt’,
the pointd’ andb belong to the same blossom. Clearly, the
claim is proved if we prove (1) and (2).
We first argue that

wd(v, pr(v))['] — wd(b, pr(v))[f] < 2. (2)
Assume the contrary, that isi(pr(v),v) — A(v)[t'] >
d(pr(v),b)[t'] — A(b) + 2r. Then

wd(v, u)[t']

= d(u,v) — Mv)[t']

> d(p,v) —d(p,u) = A(v)[t']

= d(p,pr(v)) +d(pr(v),v) — d(p,u) — A(v)[t']

= d(p,pr(v)) — d(p,u) + d(pr(v),v) — A(v)[t']

> d(p, pr(v)) — d(p,u) + d(pr(v), b) — A(b)[t'] + 2r
> d(p,pr(v)) — d(p,u) + d(pr(v), b) — A(b)[t]

d(p,pr(v)) + d(p,
d(u,b) — A(D)[t']
wd(b, u)[t].

1V 1l

This is a contradiction, since the setting of the lemma and
the fact thab andv belong to the same blossomza{ part
(i) of Claim A.4) imply that wdv, u)[t'] < wd(b, u)[t'].

We are now ready to prove part (1) of the claim. Assume
that part (1) of the claim is false, that is, there is a time
t, wheret” < t < t/, so thath andv belong to different
blossoms at time¢. Also suppose thatis the largest such
time. This means that at any time afteand uptot’, b and
v belong to the same blossom. From the inequality 2 and
Lemma A.3, we conclude that

wd(v, pr(v))[t] — wd(b, pr(v))[t] < 2r. 3)
Now, sinced(pr(v),b) < 6¢, andA(b)[t] > 6¢ + 3r at all
times, wdb, pr(v))[t] < —3r. Using inequality 3, we con-
clude that wdv, pr(v))[t] < —r.

Since both wdv, pr(v))[t] and wdb, pr(v))[t] are neg-
ative, we havel(pr(v),v) < A(v)[t], andd(pr(v),b) <
A(b)[t]. By Lemma 2.2y andb belong to the same blos-
som at timet. This contradicts the assumption thaand
v were in different blossoms at time This completes the
proof of part (1).

To prove part (2), we first argue that ('), b')[t"] —
wd(pr(b'),b)[t"] < 2r. Assuming the contrary, we get
wd(b", w)[t"”] > wd(b, u)[t"] as above. This contradicts the
fact that(b’, u) was chosen as the candidate edge at time
t”. To complete the proof of part (2), we proceed exactly as
in the proof of part (1). Only, we proceed in the ‘opposite’
direction, fromt” to ¢'. O



