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Abstract. We consider exchange economies where the traders’ prefer-
ences are expressed in terms of the extensively used constant elasticity of

substitution (CES) utility functions. We show that for any such economy
it is possible to say in polynomial time whether an equilibrium exists.
We then describe a convex formulation of the equilibrium conditions,
which leads to polynomial time algorithms for a wide range of the pa-
rameter defining the CES utility functions. This range includes instances
that do not satisfy weak gross substitutability. As a byproduct of our
work, we prove the uniqueness of equilibrium in an interesting setting
where such a result was not known.
The range for which we do not obtain polynomial-time algorithms coin-
cides with the range for which the economies admit multiple disconnected
equilibria.

1 Introduction

An exchange economy consists of a collection of goods, initially distributed
among a number of traders. The preferences of the traders for the bundles of
goods are expressed by a utility function. Each trader wants to maximize her
utility, subject to her budget constraint.

An equilibrium is a set of prices at which there are allocations of goods
to traders such that two conditions are simultaneously satisfied: each trader’s
allocation maximizes her utility subject to the budget constraint, and the market
clears.
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Existence. An early and fundamental triumph of Mathematical Economics
was the 1954 result by Arrow and Debreu [1] that, even in a more general sit-
uation which includes the production of goods, subject to mild sufficient con-
ditions, there is an equilibrium. However, given a set of traders, each endowed
with a concave utility function and a nonnegative vector of initial endowments,
an equilibrium does not need to exist.

Thus the problem arises of determining whether a given exchange economy
has an equilibrium. In this paper, we show that this problem can be solved in
polynomial time, whenever the utility functions are of the form u(x1, . . . , xn) =
(

∑n
j=1 cjx

ρ
j

)
1
ρ

, for −∞ < ρ < 1 and ρ 6= 0, i.e., for constant elasticity of

substitution (CES) utility functions [27].

This result generalizes methods of Gale [13], who analyzed the existence of
equilibria for linear utility functions, and Eaves [12], who analyzed the existence
of positive equilibrium prices for Cobb-Douglas utility functions. (See also Jain
[17], who employs a sufficient condition for the existence of positive price equi-
libria for linear utility functions.) Our result is in contrast with the NP-hardness
result of [7], which applies to Leontief utility functions. As described below,
linear, Cobb-Douglas, and Leontief utility functions are limiting cases of CES
utility functions.

Computation. The problem of computing equilibrium prices for exchange
economies has attracted a lot of attention since the 1960s. In recent years, theo-
retical computer scientists have become interested in the polynomial-time solv-
ability of the problem. Several results [25] seem to indicate that in order for
the problem to admit polynomial time algorithms, certain restrictions should be
satisfied by the market.

Two well studied restrictions are gross substitutability – GS (see [22], p. 611)
and the weak axiom of revealed preferences – WARP (see [22], Section 2.F). Al-
though restrictive, these conditions are useful and model some realistic scenarios.
A utility function satisfies GS (resp., weak GS – WGS) if increasing the prices
of some of the goods while keeping the other prices and the income fixed causes
the increase (resp., does not cause the decrease) in demand for the goods whose
price is fixed. Roughly speaking, WARP means that the aggregate behavior of
the market fulfills a fundamental property satisfied by the choices made by any
rational individual trader.

It is well known that GS implies that the equilibrium prices are unique up
to scaling ([28], p. 395), and that WGS and WARP both imply that the set of
equilibrium prices is convex ([22], p. 608). When the set of equilibria is convex, it
is enough to add a non-degeneracy assumption (which is almost always satisfied)
to get the uniqueness of the equilibrium up to scaling [9].

Most of the polynomial-time algorithms developed so far apply to exchange
economies where either WGS or WARP hold. In this paper we present a con-
vex characterization of the equilibrium conditions which applies to exchange
economies with CES functions such that −1 ≤ ρ < 0. Note that these economies
do not fall into either WGS or WARP. Also, the methods of [24, 17], which work



when each utility function u(x1, . . . , xn) has the property that log( u(x)
∂u(x)/∂xj

) is

a concave function for every j, do not apply here.
Multiplicity. Besides its algorithmic contribution, our work allows us to

conclude that, for CES functions with −1 ≤ ρ < 0, the equilibria are connected,
and are thus essentially unique. This was not known by economists. Indeed it
turns out that an exchange economy with traders endowed with CES utility
functions such that −1 ≤ ρ < 0 is not covered by any of the known conditions
that ensure that there are no multiple disconnected equilibria, such as the Super
Cobb-Douglas Property of Mas-Colell [21], and thus our result also provides an
original contribution to the theory of equilibrium. Combined with a result by
Gjerstad [16], who showed that multiple disconnected equilibria can arise in
economies where traders have CES functions with any ρ < −1, our work leads
to a characterization of the values of ρ for which the CES exchange economies
equilibrium sets must be connected.

Related Work. In a series of papers which started with linear utility func-
tions, polynomial time algorithms have been developed to compute equilibria
for more and more general settings [10, 11, 18, 14, 17, 29, 3, 15, 6, 4]. However, the
corresponding market satisfies one of the two conditions discussed above (WGS
or WARP) (see [5] for a review).

The technical tool used in some of these results is to reformulate the prob-
lem in terms of mathematical programming in a way that a polynomial time
algorithm (or approximation scheme – in general the equilibrium point is not a
vector of rationals) can be obtained by known optimization techniques. In par-
ticular, convex programming has been proven to be a particularly useful tool [24,
17, 29, 6, 4].

Organization. In Section 2, we formally describe the model of an exchange
economy, introduce CES functions, and hint at their economic relevance. Sec-
tion 3 is devoted to a detailed discussion of the demand function of traders with
CES utility functions. In Section 4, we characterize the problem of existence
of an equilibrium for CES exchange economies, in terms of a graph property
that can be verified in polynomial time. In Section 5 we show that equilibrium
prices and allocations for an exchange economy, where the traders are endowed
with CES functions with −1 ≤ ρ < 0, can be computed by solving a feasibility
problem, defined in terms of explicitly given convex constraints.

2 Background

We now describe the exchange market model. Let us consider m economic agents
who represent traders of n goods. Let Rn

+ (resp. Rn
++) denote the subset of Rn

where the coordinates are nonnegative (resp. strictly positive). The j-th coordi-
nate in Rn will stand for the good j. Each trader i has a concave utility function
ui : Rn

+ → R+, which represents her preferences for the different bundles of
goods, and an initial endowment of goods wi = (wi1, . . . , win) ∈ Rn

+. At given
prices π ∈ Rn

+, the i-th trader will sell her endowment, and get the bundle of
goods xi = (xi1, . . . , xin) ∈ Rn

+ which maximizes ui(x) subject to the budget



constraint4 π · x ≤ π · wi. The budget constraint restricts the choice to bundles
that cost no more than π ·wi, the income of trader i. If the utility maximization
is well-defined, such a bundle xi is called the demand of trader i at price π, and
is denoted by xi(π). If the utility has no maximum over the set of feasible bun-
dles, we say that the demand is not well-defined. (The feasible region is always
non-empty, since the origin is in it.)

An equilibrium is a nonnegative vector of prices π = (π1, . . . , πn) ∈ Rn
+ at

which there is a bundle x̄i = (xi1, . . . , xin) ∈ Rn
+ of goods for each trader i such

that the following two conditions hold:

1. For each trader i, the demand is well-defined at price π and x̄i is a demanded
bundle.

2. For each good j,
∑

i x̄ij ≤
∑

i wij .

Under the assumption that for each i and every bundle x ∈ Rn
+, there is a

bundle y ∈ Rn
+ such that ui(y) > ui(x), it can be shown that for any good with

positive price, equality must hold in (2). The already mentioned result of Arrow
and Debreu [1] implies that, under some mild assumptions, such an equilibrium
exists. The above described market model is usually called an exchange economy.

A special (and analytically more tractable) case of the exchange model,
known as Fisher’s model, arises when the economic agents are buyers, endowed
with fixed incomes, competing for goods, which are available in fixed quantities.
Note that Fisher’s model can be seen as a special case of an exchange econ-
omy, obtained by assuming that the initial endowments are proportional, i.e.,
wi = δiw, δi > 0, so that the relative incomes of the traders are independent of
the prices.

CES utility functions. The most popular family of utility functions is
given by CES (constant elasticity of substitution) functions, which have been
introduced in [27]. We refer the reader to the book by Shoven and Whalley
[26] for a sense of their pervasiveness in applied general equilibrium models. A
CES function ranks the trader’s preferences over bundles of goods (x1, . . . , xn)

according to the value of u(x1, . . . , xn) =
(

∑n
j=1 cjx

ρ
j

)
1
ρ

. where −∞ < ρ < 1,

but ρ 6= 0.
The success of CES functions is due to the useful combination of their math-

ematical tractability with their expressive power, which allows for a realistic
modeling of a wide range of consumer preferences. Indeed, one can model mar-
kets with very different characteristics in terms of preference towards variety,
substitutability versus complementarity, and multiplicity of price equilibria, by
changing the values of ρ and of the utility parameters cj .

CES functions have been thoroughly analyzed in [2], where it has also been
shown how to derive, in the limit, their special cases, i.e., linear, Cobb-Douglas,
and Leontief functions (see [2], p. 231). Let σ = 1

1−ρ . The parameter σ is called

the elasticity of substitution. For σ → ∞ (ρ → 1), CES take the linear form, and
the goods are perfect substitutes, so that there is no preference for variety. For

4 Given two vectors x and y, we use the notation x · y to denote their inner product.



σ > 1 (ρ > 0) , the goods are partial substitutes, and different values of σ in
this range allow us to express different levels of preference for variety. For σ → 1
(ρ → 0), CES become Cobb-Douglas functions, and express a perfect balance
between substitution and complementarity effects. Indeed it is not difficult to
show that a trader with a Cobb-Douglas utility spends a fixed fraction of her
income on each good.

For σ < 1 (ρ < 0), CES functions model markets with significant com-
plementarity effects between goods. This feature reaches its extreme (perfect
complementarity) as σ → 0 (ρ → −∞), i.e., when CES takes the form of Leon-
tief functions. In the latter case, the shape of the optimal bundle demanded by
the consumer does not depend at all on the prices of the goods, but is fully
determined by the parameters defining the utility function.

Whenever the relative incomes of the traders are independent of the prices,
CES functions give rise to a market which satisfies WARP. This happens for
instance in the Fisher model, a very special case of the exchange model. On the
other hand, CES functions satisfy WGS if and only if ρ ≥ 0, whereas, if ρ < −1,
they allow for multiple disconnected equilibria.

3 Demand of CES Consumers

In this section, we characterize the demand function of traders with CES utility
functions. Consider a setting where trader i has an initial endowment wi =
(wi1, . . . , win) ∈ Rn

+ of goods, and the CES utility function ui(xi1, . . . , xin) =
(

∑n
j=1 αijx

ρi

ij

)
1

ρi , where αij ≥ 0, and −∞ < ρi < 1, but ρi 6= 0.

We assume throughout that each trader i owns some good j, that is, wij > 0
for some j. We also assume that each trader i wants some good j, that is, αij > 0
for some j. If trader i does not want good j, it is easy to see that the utility of a
bundle xi ∈ Rn

+ is independent of xij . We adopt the convention that αijx
ρi

ij = 0
when αij = 0 and xij = 0. If ρi < 0, we define ui(xi1, . . . , xin) = 0 if there is a
j such that i wants j and xij = 0. Note that this ensures that ui is continuous
over Rn

+.
Consider a case where ρi > 0. Evidently, if we start with any bundle xi ∈ Rn

+

and add to it an arbitrarily small amount of a good that i wants, we get a bundle
with more utility. From this, it follows that the demand of the trader is well-
defined at a given price if and only if each of the goods that the trader wants
has a strictly positive price.

Now consider the case where ρi < 0. A bundle xi ∈ Rn
+ has a strictly positive

utility if and only if it has a strictly positive amount of each of the goods that the
trader wants. Evidently, if we start with any bundle xi ∈ Rn

+ that has strictly
positive utility and add to it an arbitrarily small amount of a good that i wants,
we get a bundle with more utility. Let π be a price at which the income π ·wi is
positive. Since the trader can afford a bundle with positive utility, we conclude
that the demand is well-defined at π if and only if each of the goods that the
trader wants has a strictly positive price. Now let π be a price at which the



income π · wi is zero. We see that the demand is well-defined if and only if at
least one of the goods that the trader wants is positively priced.

Irrespective of whether ρi is positive or negative, traders with positive income
demand a positive amount of each good they want. Such positive income traders
are also non-satiable on all goods they want which means that demand is not
well-defined if any good they want is priced zero.

Also irrespective of whether ρi is positive or negative, the demand is well-
defined at any strictly positive price vector π ∈ Rn

++. It is in fact unique and is
given by the expression

xij(π) =
α

1/1−ρi

ij

π
1/1−ρi

j

×

∑

k πkwik
∑

k α
1/1−ρi

k π
−ρi/1−ρi

k

. (1)

The formula above is folklore and is derived using the Kuhn-Tucker condi-
tions.

4 Existence of an Equilibrium

The celebrated paper of Arrow and Debreu [1] had a much weaker set of assump-
tions sufficient for the existence of equilibrium than earlier work. However, the
assumptions were still somewhat restrictive. Indeed, Arrow and Debreu them-
selves called the assumptions for their first existence theorem “clearly unreal-
istic” and immediately proceeded to weaken the sufficent conditions for their
second theorem. See the introduction to Maxfield [23] for a discussion of the
work on showing existence of equilibrium under progressively weaker assump-
tions. In general, it is NP-hard to determine whether a market possesses an
equilibrium or not [7].

Gale [13] provided a very simple two trader example of a market that does
not possess an equilibrium. Gale’s example was for the linear exchange model,
but it also serves as an example for the CES case with ρ > 0. Suppose trader
one possesses both apples and oranges, but only wants apples. Trader two wants
both apples and oranges, but owns only oranges. This simple market has no
equilibrium. If oranges are priced at zero, then the demand of trader two is not
well-defined. If oranges have a positive price, then trader one will want to sell all
of her oranges to buy more apples even though she already owns all the apples
present in the market. Gale’s example will not work for the CES with ρ < 0 case
though because that actually has an equilibrium with a positive price for apples
and zero price for oranges.

In this section, we characterize the existence of equilibrium for an exchange
economy where the traders have CES utility functions. The characterization
immediately implies a polynomial time algorithm to decide whether the economy
has an equilibrium. As before, we assume that each trader wants at least one
good and owns at least one good. We also assume that each good is owned by
some trader.



We assume in the remainder of this section that each trader has a posi-
tive amount of precisely one good. This assumption is without loss of general-
ity: we may replace a trader with positive amounts of k different goods with k
traders, each with the same utility function and a positive amount of one good.
A straightforward argument that employs the homogeneity of the CES utility
functions shows that this transformation preserves the equilibria.

It is easy to see, but nonetheless worth noting, that the traders with positive
income will be precisely those traders whose single good is positively priced.

Definition 1. There is a vertex vi for each consumer i. We have an arc from vi

to vk when trader i possesses a good which trader k wants. The resulting directed
graph is called an economy graph.

The following existence theorem is the main result we use from Maxfield [23].

Theorem 1. If the economy graph is strongly connected, an equilibrium exists.
Moreover, all goods are positively priced at any equilibrium.

Proof. This follows from Theorem 2 of Maxfield [23] who obtains this result using
strong connectivity and general results on the existence of a quasi-equilibrium
([22], Chapter 17). ut

Definition 2. We say that a strongly connected component is on (at a given
price) if every trader within it has a positive income. If no trader in a strongly
connected component has a positive income, then we say that that component is
off.

Lemma 1. At equilibrium, every strongly connected component in an economy
graph is either on or off.

Proof. Suppose not. Suppose that at equilibrium price π, there is a component
that is neither on or off. In that case, there must be a trader with positive income
that desires a good from a trader with no income. That means the zero income
trader’s good must have a price of zero. Since the trader with positive income is
non-satiable on the zero priced good, demand is not well-defined for that good
and therefore, π is not an equilibrium. This provides a contradiction. ut

Consider a strongly connected component C of the economy graph that has
no incoming arcs from traders outside C. We claim that a good held by any
trader i in C is also desired by some trader i′ in C. If C consists simply of the
node vi, then since there are no incoming arcs from outside, it must be that i
desires his own good. If C consists of more than one node, the claim follows from
strong connectivity.

Furthermore, it now follows that a good held by a trader in C is not held by
any trader outside C. Otherwise, C would have an incoming arc.

Lemma 2. At equilibrium, a strongly connected component of an economy graph
is on if and only if it has no incoming arcs.



Proof. Suppose the economy has an equilibrium price π. Suppose a strongly
connected component C1 is on. We will show that C1 can have no incoming arcs.
If C1 has an incoming arc, that means some trader t in C1, wants some good g
held by a trader in another component C2. If C2 is off, then g has price zero. But t
has positive income since C1 is on. Since t wants g, t’s demand is undefined, thus
contradicting the assumption of equilibrium. Thus, at equlibrium C2 must be on.
If C2 has any incoming arcs, then we can make an identical argument to show
that the components providing the incoming arcs must also be on. Following this
chain, we arrive at two components C ′

1 and C ′

2 that are on, C ′

1 has an incoming
arc from a trader in C ′

2, and C ′

2 has no incoming arcs. So a trader t in C ′

1, who
has positive income, will demand a positive amount of a good g that is held by
some trader in C ′

2. Since C ′

2 has no incoming arcs, g is owned only by traders in
C ′

2, as we have already established. Since C ′

2 has no incoming arcs, the traders in
C ′

2 form a subeconomy for which π is seen to be an equilibrium. Since the price
of all goods held by traders in C ′

2 is positive (C ′

2 is on), it holds that for all such
goods, including g, the demand within C ′

2 equals the supply within C ′

2. But this
means that the demand for g in the bigger economy exceeds the supply: t, who
is outside C ′

2, demands a positive amount of it, but only traders in C ′

2 own it.
Thus, π is not an equilibrium which is a contradiction.

Suppose the economy has an equilibrium price π. Suppose further that a
component, C, has no incoming arcs. We show that C must be on. Suppose C
is off. Consider any trader in C. He wants some goods; all of these are owned
only by traders in C, since C has no incoming arc. All goods in C are free (C
is off), so the trader’s demand is undefined. Therefore, π is not an equilibrium.
We have a contradiction and the lemma is proven. ut

There is an important distinction, which bears repeating, between CES utility
functions with ρ > 0 and those with ρ < 0. Traders with ρ > 0 will have positive
utility as long as they have a positive amount of some good that they desire.
Traders with ρ < 0 will only have positive utility if they have a positive amount
of all goods they desire. Moreover, traders with ρ > 0 with zero income have
undefined demands if any of their desired goods are priced at zero. Zero income
traders with ρ < 0 only have undefined demand if all of their desired goods are
free.

The following theorem is the main result of this section.

Theorem 2. An equilibrium exists if and only if for every vertex v in a strongly
connected component with incoming arcs, either (a) v has a CES utility function
with ρ > 0 and all its incoming arcs are from vertices in strongly connected
components without incoming arcs, or (b) v has a CES utility function with
ρ < 0 and has at least one incoming arc from a strongly connected component
without incoming arcs.

Proof. Suppose an equilibrium price π exists. Then by Lemma 2, the strongly
connected components that are on are precisely those that have no incoming arcs.
And it is precisely the goods that are held by traders in such components that
have positive price. Let C1 be a strongly connected component with incoming



arcs (if none exist, then this direction of the theorem is trivially true). Suppose
there is a vertex i with a CES utility function with ρ > 0, and it has an incoming
arc from a vertex that is in a strongly connected component with incoming
arcs. Then i wants a good with price zero and so her demand is not defined,
contradicting the assumption that π is an equilibrium price. Now suppose that
there is a vertex i with a CES utility function with ρ < 0, and none of its
incoming arcs are from a vertex in a strongly connected component with no
incoming arcs. This means that trader i desires only zero priced goods and thus
has undefined demand contradicting the assumption that π is an equilibrium
price.

We now establish the other direction of the theorem. Each strongly connected
component with no incoming arcs can be considered as an economy unto itself,
and has an equilibrium with positive prices by Maxfield’s theorem. For each
good in a component with no incoming arcs we assign a price identical to its
equilibrium price in the subeconomy. As no good in one of these strongly con-
nected components is owned outside the component, this assignment of prices is
well-defined.

For each good held by a trader in a component with incoming arcs, we assign
a price of zero. By the argument above, we know that none of these goods are
the same as those that were priced positively so this assignment is well defined.
We claim that this price π is an equilibrium price.

For a trader in a component without incoming arcs, we assign the bundle
that is the same as the one she gets in the equilibrium for the corresponding
subeconomy. Clearly, this is a valid demand.

Consider a trader in a component with incoming arcs. Her income is 0. We
claim that her demand is well-defined and that the zero bundle is a valid demand
vector. This is because she is either a CES trader with ρ > 0 and all the goods
that she wants are in components with no incoming arcs and hence positively
priced, or she is a CES trader with ρ < 0 and at least one of the goods that she
wants is positively priced, and thus the best utility she can afford is 0.

We now verify that condition (2) in the definition of an equilibrium holds,
that is, the demand is at most the supply. For a good held by a trader in a com-
ponent with no incoming arc, this follows from the equilibrium conditions of the
corresponding subeconomy, and the fact that any trader outside the subeconomy
demands 0 units of the good. For a good held by a trader in a component with
incoming arcs, the net demand is 0, so condition (2) trivially holds. ut

We conclude by noting that besides yielding a polynomial time algorithm
for checking the existence of equilibrium, the above characterization provides a
polynomial-time reduction of the computation of an equilibrium for the original
economy to the computation of positive price equilibria for sub-economies.

5 Efficient Computation by Convex Programming

In this section, we consider an economy in which each trader i has a CES util-
ity function with −1 ≤ ρi < 0. We show that the positive price equilibria of



such an economy can be characterized as the solutions of a convex feasibility
problem. The results of the previous section show that the computation of an
equilibrium for an economy can be reduced to the computation of a positive
price equilibrium for a sub-economy. This reduction, together with the fact that
the convex feasibility problem can be solved (approximately) in polynomial time
lead to a polynomial time algorithm for computing an approximate equilibrium.
The notion of approximate equilibrium that we use corresponds to the strong
approximate equilibrium defined by Codenotti et al.[6]; here, the condition (2)
in the definition of an equilibrium is relaxed so that it holds approximately. Our
algorithm will be polynomial not only in the input parameters but also in the
number of bits used in the standard encoding of the rational number represent-
ing the approximation parameter. (We postpone a detailed discussion of this to
a fuller version.) Whenever the solution can be irrational, such an algorithm is
considered equivalent to an exact algorithm.

Since the demand of every trader is well-defined and unique at any positive
price, we may write the positive price equilibria as the set π ∈ R++ such that
for each good j, we have

∑

i xij(π) ≤
∑

i wij . Let ρ = −1, and note that ρ ≤ ρi,

for each i. Let fij(π) = π
1/(1−ρ)
j xij(π). Let σj = π

1/(1−ρ)
j . In terms of the σj ’s,

we obtain the set of σ = (σ1, . . . , σn) ∈ R++ such that for each good j,
∑

i

fij(σ) ≤ σj(
∑

i

wij).

We argue that this is a convex feasibility program. Since the right hand side
of each inequality is a linear function, it suffices to argue that the left hand side
is a convex function. The latter is established via the following proposition.

Proposition 1. The function fij(σ) is a convex function over R++.

Proof. If αij = 0, fij is zero over the domain and the proposition follows. Oth-
erwise, fij is positive at each point of the domian. It therefore suffices to show
that the constraint fij ≤ t defines a convex set for positive t. Using the formula
(1) for the demand, this constraint is

α
1

1−ρi

ij

σ
ρi−ρ

1−ρi

j

×

∑

k σ1−ρ
k wik

∑

k α
1

1−ρi

ik σ
−ρi(1−ρ)

1−ρi

k

≤ t.

Rewriting, and raising both sides to the power 1/(1− ρ), we obtain

α
1

(1−ρ)(1−ρi)

ij × (
∑

k

σ1−ρ
k wik)

1
1−ρ ≤ t

1
1−ρ σ

ρi−ρ

(1−ρi)(1−ρ)

j v
−ρi
1−ρi

i , (2)

where

vi =

(

∑

k

α
1

1−ρi

ik σ
−ρi(1−ρ)

1−ρi

k

)

1−ρi
−ρi(1−ρ)

. (3)



The left hand side of inequality 2 is a convex function, and the right hand side
is a concave function that is non-decreasing in each argument when viewed as a
function of t, σj , and vi, since the exponents are non-negative and add up to one.

Since 0 < −ρi(1−ρ)
1−ρi

≤ 1, the right hand side of equality 3 is a concave function,
in fact a CES function. It follows that the right hand side of inequality 2 remains
a concave function when vi is replaced by the right hand side of equality 3. This
completes the proof.

The convex feasibility formulation derived in this section highlights an inde-
pendently useful property of the demand, encapsulated by Proposition 1. As we
will show in a fuller version of this paper, a similar approach works for CES func-
tions with ρ > 0, as well as for some other utility functions. The tools developed
here for exchange economies also find some use in an extension to production
[19].
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