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In this note, we briefly outline a different view of the algorithm described in the paper “A

Constant-Factor Approximation for Multi-Covering with Disks”. This view generalizes and eluci-

dates what that algorithm is actually doing, and in the process also resolves the first open problem

posed in the paper, which is to obtain an O(1) approximation for the problem when the objective

function is the sum of the radii of the disks. An exposition that elaborates on this note is under

preparation.

1 Computing a Covering for the Non-Uniform MCMC Problem

We solve the variant of the non-uniform MCMC problem where we have l∞ disks rather than l2
disks. Our input is two point sets Y and X in R

2 and a coverage function κ : X → N∪{0}. (It will

be useful to allow κ(x) to be 0 for some x ∈ X .) We also assume that κ(x) ≤ |Y | for each x ∈ X ,

for otherwise there is no feasible solution.

We describe an algorithm for assigning a radius ry ≥ 0 for each y ∈ Y , with the guarantee that

for each x ∈ X , there are at least κ(x) points y ∈ Y such that the l∞ disk of radius ry centered at

y contains x. In other words the guarantee is that for each x ∈ X ,

|{y ∈ Y | ||x− y||∞ ≤ ry}| ≥ κ(x)

Our objective is to minimize the sum of the α-th powers of the radii of the disks, that is,
∑

y∈Y rαy . Here we allow any α ≥ 1, whereas in the paper, we had α = 2. (Our result can be

stated in terms of a somewhat more general objective function, as a careful reader may observe.)

For this optimization problem, we will show that our algorithm outputs an O(1) approxima-

tion. Clearly, this also gives an O(1) approximation for the original problem, where distances are

measured in the l2 norm. We will follow the terminology as introduced in the paper.

1.1 Outer Cover

Given X ′ ⊆ X , Y , and κ, we need an auxiliary procedure OuterCover(X ′, Y, κ) that returns an

assignment ρ : Y → R
+ of radii to the servers. The output returned must satisfy the condition that

for each client x ∈ X ′, there is a server y ∈ Y such that (a) the disk δ(y, ρy) contains x, and (b) the
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radius ρy ≥ ||x − yκ(x)||. The procedure will compute an O(1) approximation to the assignment

that satisfies these conditions and minimizes
∑

y ρ
α
y .

(For the sake of the reader’s intuition, we note that when α = 2, such an assignment can be

obtained by taking the primary disks computed by the algorithm in the paper and expanding their

radius by a factor of 3. In the present context, the output produced by OuterCover(X ′, Y, κ) will

play the role that the primary disks did in the paper.)

The procedure OuterCover(X ′, Y, κ) can be implemented for any α ≥ 1 via a modification of

the algorithm of Charikar and Panigrahy [7]. Note that their algorithm can be viewed as solving the

case where κ(x) = 1 for each x ∈ X ′. We can establish the O(1) approximation guarantee for the

procedure OuterCover(X ′, Y, κ) as well.

1.2 The Algorithm

With the procedure OuterCover(X ′, Y, κ) in place, we can now state our algorithm.

Algorithm 1 Cover(X,Y, κ)

1: if ∀x ∈ X,κ(x) = 0 then

2: Assign ry ← 0 for each y ∈ Y , and return.

3: Define κ′(x) as follows:

∀x ∈ X,κ′(x) =

{

0, if κ(x) = 0

κ(x)− 1, if κ(x) > 0

4: Recursively call Cover(X,Y, κ′).
5: Let X ′ = {x ∈ X | x is not κ(x)-covered }
6: Call the procedure OuterCover(X ′, Y, κ) to obtain an assignment ρ : Y → R

+.

7: Let Y ′ ← Y .

8: while X ′ 6= ∅ do

9: Choose y ∈ Y ′.

10: Let XCy ← ∅, YCy ← ∅.
11: for all x′ ∈ X ′ do

12: if x′ ∈ δ(y, ρy) and ρy ≥ ||x
′ − yκ(x′)|| then

13: XCy ← XCy ∪ {x
′}.

14: YCy ← YCy ∪ {y
1(x′), y2(x′), . . . , yκ(x′)}.

15: Let YC′

y ⊆ YCy be a set of at most four points such that

⋂

y∈YC′

y

δ(y, ry) =
⋂

y∈YCy

δ(y, ry).

16: For each y ∈ YC′

x, increase ry by the smallest amount that ensures XCy ⊆ δ(y, ry).
17: Remove y from Y and remove from X ′ any points x that are κ(x)-covered.
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The algorithm computes an assignment of radius ry to each server y ∈ Y such that each client

x ∈ X is κ(x)-covered. This follows via arguments similar to those in the paper.

1.3 Approximation Ratio

To establish the approximation ratio, we need the following observation, which is the equivalent of

Lemma 1 of the paper.

Lemma 1. The increase in the objective function
∑

y∈Y rαy from the time Cover(X,Y, κ′) completes

to the time Cover(X,Y, κ) completes is O(
∑

y∈Y ραy ).

We can then bound the approximation ratio of the algorithm.

Theorem 1. Let r′ : Y → R
+ be any assignment of radii to the points in Y under which each point

x ∈ X is κ(x)-covered. Then the cost of the output of Cover(X,Y, κ) is at most c ∗
∑

y∈Y r′y
α

,

where c > 0 is an absolute constant.

Proof. Our proof is by induction on maxx∈X κ(x). For the base case, where κ(x) = 0 for each

x ∈ X , the claim in the theorem clearly holds for any c > 0.

Let D = {δ(y, r′y) | y ∈ Y } be the set of disks corresponding to the assignment r′. Our proof

strategy is to show that there is a subset Dκ ⊆ D such that

1. The cost increase incurred by Cover(X,Y, κ) in going from the κ′-cover to the κ-cover is at

most c times the sum of the α-th powers of the radii of the disks in Dk.

2. The set of disks D \Dκ κ′(x)-covers any point x ∈ X .

By the induction hypothesis, the cost of the κ′-cover computed by Cover(X,Y, κ′) is at most c

times the sum of the areas of the disks in D\Dκ. As the increase in cost incurred by Cover(X,Y, κ)
in turning the κ′-cover to a κ-cover is at most c times the sum of the areas of ths disks in Dκ, the

theorem follows.

We now describe how Dk is computed, and then establish that it has the above two properties.

For each x′ ∈ X ′, let largest(x′) be the largest disk from D that contains x′. Since x′ is κ(x′)-
covered by D, we note that the radius of largest(x′) is at least ||x′ − yκ(x′)||. Let

D′

κ = {largest(x′) | x′ ∈ X ′}.

Sort the disks in D′

κ by decreasing (non-increasing) radii. Let B ← ∅ initially. For each disk

d ∈ D′

κ in the sorted order, performing the following operation: add d to B if d does not intersect

any disk already in B.

Let Dκ be the set B at the end of this computation. Since no two disks in Dκ intersect, and D

κ-covers any point in X , it follows that D \Dκ κ′-covers any point in X . This establishes Property

2 of Dκ.

To show that the cost increase incurred by Cover(X,Y, κ) in going from the κ′-cover to the

κ-cover is at most c times the sum of the α-th powers of the radii of the disks in Dκ (Property 1),
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it suffices, by Lemma 1, to show that
∑

y ρ
α
y is at most c′ times the sum of the α-th powers of the

radii of the disks in Dκ. Here, c′ > 0 is an absolute constant.

For this, consider Lκ, the set of disks obtained by increasing the radius of each disk in Dκ

by a factor of 3. By construction of Dκ, it can be seen that for any x′ ∈ X ′ there is a disk in

Lκ with radius at least ||x′ − yκ(x′)|| containing x′. In other words, Lκ is a feasible solution to

the optimization problem that the procedure OuterCover(X ′, Y, κ) solves. Since the procedure

OuterCover(X ′, Y, κ) returns an O(1) approximation to the optimal solution, we conclude that
∑

y ρ
α
y is within a multiplicative constant of the sum of the α-th powers of the radii of the disks

in Lκ, and hence Dκ.

This establishes Property 1, and completes the proof of the theorem.

We conclude with a statement of the main result of this note. Recall that the the cost of a cover

here refers to the sum of the α-th power of the radii, for any constant α ≥ 1.

Theorem 2. Given point sets X and Y in the plane and κ : X → {0, 1, 2, . . . , |Y |}, the algorithm

Cover(X,Y, κ) runs in polynomial time and computes a κ-cover of X with cost at most O(1) times

that of the optimal κ-cover.
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