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Introduction

In a language with a polymorphic type system, a term of type ∀t .f (t) can be treated (possibly
after suitable instantiation) as having any of the types in the set:

{ f (t) | t is a type }.

It is natural to consider a more restricted form of polymorphism in which the value taken by t
may be constrained to a particular subset of types. In this situation, we write ∀t .π(t) ⇒ f (t),
where π(t) is a predicate on types, for the type of an object that can be treated (after suitable
instantiation) as having any of the types in the set:

{ f (t) | t is a type such that π(t) holds }.

A term with a restricted polymorphic type of this kind is often said to be overloaded , having
different interpretations for different argument types.
This paper presents a general theory of overloading based on the use of qualified types, which
are types of the form π ⇒ σ denoting those instances of type σ that satisfy the predicate π. The
main benefits of using qualified types are:

• A general approach that includes a range of familiar type systems as special cases. Results
and tools developed for the general system are immediately applicable to each particular
application.

• A precise treatment of the relationship between implicit and explicit overloading. This is
particularly useful for describing the implementation of systems supporting qualified types.

• The ability to include local constraints as part of the type of an object. This enables the
definition and use of polymorphic overloaded values within a program.

∗An earlier version of this paper was presented at the European Symposium on Programming, Rennes, France,
February 1992 and appears in the conference proceedings published in Springer Verlag LNCS Volume 582.

†Address from September 1992: Yale University, Department of Computer Science, P.O. Box 2158 Yale Station,
New Haven, Connecticut 06520-2158, USA.

1



Outline of paper

Each of the type systems considered in this paper is parameterised by the choice of a system of
predicates on type expressions, whose basic properties are described in Section 1. A number of
examples are included to illustrate the use of this framework to describe a range of type systems
including Haskell type classes, extensible records and subtyping. Section 2 describes the use of
qualified types in the context of polymorphic λ-calculus with explicit typing. This is extended
in Section 3 using a general notion of evidence to explore the relationship between implicit and
explicit overloading. An alternative approach, suitable for use in an implicitly typed language,
is introduced in Section 4 using an extension of the ML type system [Mil78] to support qualified
types. Although substantially less powerful than polymorphic λ-calculus, we show that the
resulting system is suitable for use in a language based on type inference, that allows the type of
a term to be determined without explicit type annotations. The development of a suitable type
inference algorithm is described in Sections 5 and 6. Finally, Section 7 surveys some areas for
further work.
Detailed proofs for many of the results described in this paper may be found in [Jon91b, Jon92];
For reasons of space, they cannot be included here.

1 Predicates

Each of the type systems considered in this paper is parameterised by the choice of a language of
predicates π whose properties are described by an entailment relation `̀ between (finite) sets of
predicates. Individual predicates may be written using expressions of the form π = p τ1 . . . τn
where p is a predicate symbol corresponding to an n-place relation between types; the predicate
π represents the assertion that the types τ1, . . . , τn are in this relation. The definition of `̀
varies from one application to another. The only properties that we will assume are:

• monotonicity. P `̀ P ′ whenever P ⊇ P ′.

• transitivity. if P `̀ Q and Q `̀ R, then P `̀ R.

• closure property. if P `̀ Q , then SP `̀ SQ for any substitution S mapping type
variables (and hence type expressions) to type expressions.

If P is a set of predicates and π is a predicate, then we write P `̀ π and P , π as abbreviations
for P `̀ {π} and P ∪ {π} respectively.
The following subsections illustrate the languages of predicates used in three applications of
qualified types. Only the basic ideas are sketched here; further details are given in [Jon91a,
Jon92].

1.1 Example: type classes

Introduced in [WB89] and adopted as part of the standard for the programming language Haskell
[HPJW92], type classes are particularly useful for describing the implementation of standard
polymorphic operators such as computable equality. Much of the original motivation for qualified
types came from the study of type classes.
Broadly speaking, a type class is a family of types (the instances of the class) on which a number
of values (the member functions) are defined. Each predicate symbol corresponds to a user-
defined class and a predicate of the form C τ represents the assertion that τ is an instance of
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the class named C . The class Eq is a standard example whose instances are those types whose
elements can be tested for equality using the operator (==) :: ∀a.Eq a ⇒ a → a → Bool . As
a further example, one possible type for a function to test for membership of a value in a list is
∀a.Eq a ⇒ a → [a] → Bool where [a] denotes the type of lists of values of type a.
Differences in the basic approach to type classes are reflected in the properties of the `̀ relation.
In a standard Haskell system we have axioms such as ∅ `̀ Eq Int and Eq a `̀ Eq [a]. The
same framework can also be used to describe the use of Haskell superclasses, and to support the
extension to classes with multiple parameters.
Type classes are best suited to systems with a type inference algorithm such as that described
in Section 6 where the appropriate instances of each overloaded operator can be determined
automatically as part of the type inference process.

1.2 Example: extensible records

A record is a set of values labelled by the elements l of a specified set of labels. There has
been considerable interest in the use of record types to model inheritance in object oriented
programming languages and a number of different approaches have been considered. We can
construct a system of extensible records, strongly reminiscent of [HP90] using predicates of the
form:

r has l : t indicating that a record of type r has a field labelled l of type t .
r lacks l indicating that a record of type r does not have a field labelled l .

This also requires an extension of the language of type expressions to allow types of the form 〈〉
(the empty record, which lacks any fields), r \ l (the type of a record obtained by removing a
field labelled l from a record of type r) and 〈r | l : t〉 (the type of a record obtained by extending
a record of type r with a new field of type t labelled l). The definition of the entailment relation
includes axioms such as ∅ `̀ (〈〉 lacks l and r lacks l `̀ 〈r | l : t〉 has l : t .
The primitive operations of record restriction, extension and selection can then be represented
by families of functions (indexed by labels) of type:

( \ l) :: ∀r .∀t .(r has l : t) ⇒ r → r \ l
( | l = ) :: ∀r .∀t .(r lacks l) ⇒ r → t → 〈r | l : t〉
( . l) :: ∀r .∀t .(r has l : t) ⇒ r → t

Details of the relationship between this approach and those of [Rem89, CM90] are given in
[HP90].

1.3 Example: subtyping

Languages with subtyping can be described using predicates of the form σ ⊆ σ′, representing
the assertion that σ is a subtype of σ′. Many such systems, including those of [Mit84, FM89],
allow the use of implicit coercions from one type to another. The extensions required to support
this are discussed in Section 7.4.
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2 Polymorphic λ-calculus with qualified types

2.1 Basic definitions

In this section, we work with a variant of the polymorphic λ-calculus that includes qualified
types using type expressions of the form:

σ ::= t | σ → σ | ∀t .σ | π ⇒ σ

where t ranges over a given set of type variables. The → and ⇒ symbols are treated as right
associative infix binary operators with → binding more tightly than ⇒. Additional type con-
structors such as those for integers, lists and record types will be used as required. The set of
type variables appearing (free) in an expression X is denoted TV (X ).
To begin with we use an unmodified form of the (unchecked) terms of polymorphic λ-calculus,
given by expressions of the form:

M ::= x | MN | λx :σ.M | Mσ | λt .M

where x ranges over a given set of term variables. The set of free (term) variables appearing in
a term M will be denoted FV (M ). Note that we do not provide constructs for the introduction
of new overloadings such as inst and over in [WB89]. If none of the free variables for a given
term have qualified (i.e. overloaded) types, then no overloading will be used in the expression.

2.2 Typing rules

A type assignment is a (finite) set of typing statements of the form x :σ in which no term variable
x appears more than once. If A is a type assignment, then we write dom A = { x | (x :σ) ∈ A },
and if x is a term variable with x 6∈ dom A, then we write A, x :σ as an abbreviation for the type
assignment A∪{x :σ}. The type assignment obtained from A by removing any typing statement
for the variable x is denoted Ax . A type assignment A can be interpreted as a function mapping
each element of dom A to a type scheme. In particular, if (x :σ) ∈ A, then we write A(x ) = σ.
An expression of the form P | A ` M : σ represents the assertion that the term M has type σ
when the predicates in P are satisfied and the types of free variables in M are as specified in the
type assignment A. The typing rules for this system are given in Figure 1. Most of these are
similar to the rules for explicit typing of polymorphic λ-calculus and do not involve the predicate
set.
By an abuse of notation, we will also use P | A ` M : σ as a proposition asserting the existence
of a derivation of P | A ` M : σ.

3 Evidence

Although the system of qualified types described in the previous sections is suitable for reasoning
about the types of overloaded terms, it cannot be used to describe their evaluation. For example,
the knowledge that Int is an instance of the class Eq is not sufficient to determine the value of
the expression 2 == 3; we must also be provided with the value of the equality operator that
makes Int an instance of Eq . In general, we can only use a term of type π ⇒ σ if we are also
supplied with suitable evidence that the predicate π does indeed hold.
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Standard rules: (var)
(x :σ) ∈ A

P | A ` x : σ

(→E )
P | A ` M : σ′ → σ P | A ` N : σ′

P | A ` MN : σ

(→I )
P | A, x :σ′ ` M : σ

P | A ` λx :σ′.M : σ′ → σ

Qualified types: (⇒E )
P | A ` M : π ⇒ σ P `̀ π

P | A ` M : σ

(⇒I )
P , π | A ` M : σ

P | A ` M : π ⇒ σ

Polymorphism: (∀E )
P | A ` M : ∀t .σ

P | A ` M τ : [τ/t ]σ

(∀I )
P | A ` M : σ t 6∈ TV (A) ∪ TV (P)

P | A ` λt .M : ∀t .σ

Figure 1: Typing rules for polymorphic λ-calculus with qualified types

This leads us to consider an extension of the term language that makes the role of evidence
explicit, using:

• Evidence expressions: A language of evidence expressions e denoting evidence values,
including a set of evidence variables v .

• Evidence construction: A predicate assignment is a set of elements of the form (v : π)
in which no evidence variable appears more than once. The `̀ relation is extended to a
three place relation P `̀ e : π, indicating that it is possible to construct evidence e for
the predicate π in any environment binding the variables in the predicate assignment P to
appropriate evidence values. Thus predicates play a similar role for evidence expressions
as types for simple λ-calculus terms.

• Evidence abstraction: A term M of type π ⇒ ρ is implemented by a term of the form
λv :π.M ′ where v is an evidence variable and M ′ is a term of type ρ corresponding to M
using v in each place where evidence for π is needed.

• Evidence application: Each use of an overloaded expression N of type π ⇒ ρ is replaced
by a term of the form N ′e where N ′ is a term corresponding to N and e is an evidence
expression for π.

• Evidence reduction: The standard rules of computation are augmented by a variant of
β-reduction for evidence abstraction and application:

(λv .M )e >βe [e/v ]M .

Most of the typing rules given in Figure 1 can be used with the extended system without mod-
ification. The only exceptions are the rules for dealing with qualified types; suitably modified
versions of these are given in Figure 2.
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(⇒I )
P , v :π | A ` M : σ

P | A ` λv :π.M : π ⇒ σ

(⇒E )
P | A ` M : π ⇒ σ P `̀ e :π

P | A ` Me : σ

Figure 2: Modified rules for qualified types with evidence

Notice that extending the term language to make the use of evidence explicit gives unicity of
type; each well-typed term has a uniquely determined type. This approach is very similar to the
techniques used to make polymorphism explicit in the translation from implicit to explicit typed
λ-calculus using abstraction and application over types [Mit90]. As in that situation, there is a
simple correspondence between derivations in the two systems, described by means of a function
Erase mapping explicitly overloaded terms to their implicitly overloaded counterparts:

Erase(x ) = x
Erase(MN ) = (Erase(M ))(Erase(N ))

...
Erase(λv :π.M ) = Erase(M )
Erase(Me) = Erase(M )

The correspondence between the two systems can now be described by:

Theorem 1 P | A ` M : σ using the original typing rules if and only if P ′ | A ` M ′ : σ by a
derivation of the same structure in the extended system such that P = {π | (v : π) ∈ P ′ } and
Erase(M ′) = M.

Given a term M in the original system, each corresponding term using explicit overloading is
called a translation of M and can be used to give a semantics for the term. We write P ′ | A `
M ; M ′ : σ to refer to the translation of a term in a specific context. Note that the translation
of a given term may not be uniquely defined (with distinct translations corresponding to distinct
derivations of P | A ` M : σ). This is discussed in more detail in Section 7.1.
The form of evidence required will vary from one application to another. Suitable choices for
each of the examples described in Section 1 are as follows:

• Type classes: The evidence for a type class predicate of the form C τ is a dictionary
containing the values of the members of C at the instance τ . For example, in the simplest
case, the evidence for a predicate Eq τ might be an equality test function for values of type
τ .

• Extensible records: The evidence for a predicate of the form (r lacks l) is the function:

( | l = ) :: ∀t . r → t → (r | l : t)
The evidence for a predicate of the form (r has l : t) is the pair of functions:

( \ l) :: r → r \ l
( . l) :: r → t

In practice, a concrete implementation of extensible records is likely to use offsets into a
table of values used to store a record as evidence, passing these values to generic functions
for updating or selecting from a record where necessary.
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• Subtypes: The evidence for a predicate σ ⊆ σ′ is a coercion function that maps values of
type σ to values of type σ′.

Further details of the use of evidence in these applications is included in [Jon92].

4 An extension of ML using qualified types

Polymorphic λ-calculus is not a suitable language to describe an implicitly typed language in
which the need for explicit type annotations is replaced by the existence of a type inference
algorithm. In practice, the benefits of type inference are often considered to outweigh the dis-
advantages of a less powerful type system. The ML type system [Mil78, DM82] is a well-known
example in which the price of type inference is the inability to define functions with polymorphic
arguments. Nevertheless, it has proved to be very useful in practice and has been adopted by a
number of later languages.

4.1 Basic definitions

Following the definition of types and type schemes in ML we consider a structured language of
types, with the principal restriction being the inability to support functions with either poly-
morphic or overloaded arguments:

τ ::= t | τ → τ types
ρ ::= P ⇒ τ qualified types
σ ::= ∀T .ρ type schemes

(P and T range over finite sets of predicates and finite sets of type variables respectively).
It is convenient to introduce some abbreviations for qualified type and type scheme expressions.
In particular, if ρ = (P ⇒ τ) and σ = ∀T .ρ, then we write:

Abbreviation Qualified type Abbreviation Type scheme
τ ∅ ⇒ τ ρ ∀ ∅.ρ

π ⇒ ρ P , π ⇒ τ ∀t .σ ∀(T ∪ {t}).ρ
P ′ ⇒ ρ P ∪ P ′ ⇒ τ ∀T ′.σ ∀(T ∪ T ′).ρ

In addition, if {αi} is an indexed set of variables, we write ∀αi .ρ as an abbreviation for ∀{αi}.ρ.
As usual, type schemes are regarded as equal if they are equivalent upto renaming of bound
variables.
Using this notation, any type scheme can be written in the form ∀αi .P ⇒ τ , representing the set
of qualified types { [τi/αi ]P ⇒ [τi/αi ]τ | τi ∈ Type } where [τi/αi ] is the substitution mapping
each of the variables αi to the corresponding type τi and Type is the set of all simple type
expressions (represented by τ in the grammar above).
As in [Mil78, DM82, CDK86], we use a term language based on simple untyped λ-calculus with
the addition of a let construct to enable the definition and use of polymorphic (and in this case,
overloaded) terms.

M ::= x | MN | λx .M | let x = M in N

A suitable set of typing rules for this system is given in Figure 3. Note the use of the symbols τ ,
ρ and σ to restrict the application of certain rules to specific sets of type expressions.
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Standard rules: (var)
(x :σ) ∈ A

P | A ` x : σ

(→E )
P | A ` M : τ ′ → τ P | A ` N : τ ′

P | A ` MN : τ

(→I )
P | Ax , x :τ ′ ` M : τ

P | A ` λx .M : τ ′ → τ

Qualified types: (⇒E )
P | A ` M : π ⇒ ρ P `̀ π

P | A ` M : ρ

(⇒I )
P , π | A ` M : ρ

P | A ` M : π ⇒ ρ

Polymorphism: (∀E )
P | A ` M : ∀t .σ

P | A ` M : [τ/t ]σ

(∀I )
P | A ` M : σ t 6∈ TV (A) ∪ TV (P)

P | A ` M : ∀t .σ

Local Definition: (let)
P | A ` M : σ Q | Ax , x :σ ` N : τ

P ∪Q | A ` (let x = M in N ) : τ

Figure 3: ML-like typing rules for qualified types

4.2 Constrained type schemes

A typing judgement P | A ` M : σ assigns a type scheme σ to a term M , but also constrains
uses of this typing to environments satisfying the predicates in P . This observation motivates
the use of constrained type schemes, written as pairs of the form (P | σ) where P is a set of
predicates and σ is a type scheme. Following the development of type inference in [DM82], we
will define an ordering that can be used to describe when one constrained type scheme is more
general than another. As a first step, we introduce the concept of generic instances:

Definition 1 A qualified type R ⇒ µ is said to be a generic instance of the constrained type
scheme (P | ∀αi .Q ⇒ τ) if there are types τi such that R `̀ P ∪ [τi/αi ]Q and µ = [τi/αi ]τ .

The principal motivation for the definition of the ordering (≤) between type schemes is that a
statement of the form σ′ ≤ σ should mean that it is possible to use an object of type σ wherever
an object of type σ′ is required.

Definition 2 The constrained type scheme (Q | η) is said to be more general than a constrained
type scheme (P | σ), written (P | σ) ≤ (Q | η), if every generic instance of (Q | η) is also a
generic instance of (P | σ).

It is straightforward to show that this defines a preorder on the set of constrained type schemes,
such that a qualified type ρ is a generic instance of the type scheme σ if and only if ρ ≤ σ. We
will write (P | σ) ' (Q | η) to indicate when two constrained type schemes are equivalent with
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respect to (≤), i.e. when each is more general than the other. The following properties are easily
established:

• σ ' (∅ | σ) for any type scheme σ.

• If ρ is a qualified type and P is a set of predicates, then (P | ρ) ' P ⇒ ρ.

• If σ is a type scheme and P is a set of predicates, then (P | σ) ≤ σ.

• If σ′ ≤ σ and P ′ `̀ P , then (P ′ | σ′) ≤ (P | σ).

• If none of the variables αi appear in P , then the constrained type scheme (P | ∀αi .ρ) is
equivalent to the type scheme ∀αi .P ⇒ ρ. Thus every constrained type scheme can be
represented by a simple type scheme using a renaming of bound variables.

The application of a substitution S to a constrained type scheme (P | σ) is defined by S (P | σ) =
(SP | Sσ). The next proposition describes an important property of the ordering on constrained
type schemes.

Proposition 1 For any substitution S and constrained type schemes (P | σ) and (Q | η):

(P | σ) ≤ (Q | η) ⇒ S (P | σ) ≤ S (Q | η).

4.3 Ordering of type assignments

The definition of constrained type schemes and the ordering (≤) extends naturally to an ordering
on (constrained) type assignments.

Definition 3 If A and A′ are type assignments and P, P ′ are sets of predicates, then we say
that (P | A) is more general than (P ′ | A′), written (P ′ | A′) ≤ (P | A), if dom A = dom A′ and
(P ′ | A′(x )) ≤ (P | A(x )) for each x ∈ dom A.

The results of the previous section can be used to prove that this ordering on type assignments
is reflexive, transitive and preserved by substitutions. In this paper, we will only use the special
case where P = ∅ in which case we write (P ′ | A′) ≤ A. This can be interpreted as indicating
that each of the types assigned to a variable in A is more general than the type assigned in A′

in any environment that satisfies the predicates in P ′.

4.4 Generalisation

Given a derivation P | A ` M : τ , it is useful to have a notation for the most general type scheme
that can be obtained for M from this derivation using the rules (⇒I ) and (∀I ) given in Figure 3.

Definition 4 The generalisation of a qualified type ρ with respect to a type assignment A is
written Gen(A, ρ) and defined by:

Gen(A, ρ) = ∀(TV (ρ) \ TV (A)).ρ.

In other words, if {αi} = TV (ρ) \ TV (A), then Gen(A, ρ) = ∀αi .ρ. The following propositions
describe the interaction of generalisation with predicate entailment and substitution.

Proposition 2 Suppose that A is a type assignment, P and P ′ are sets of predicates and τ is a
type. Then Gen(A,P ′ ⇒ τ) ≤ Gen(A,P ⇒ τ) whenever P ′ `̀ P.

9



Proposition 3 If A is a type assignment, ρ is a qualified type and S is a substitution, then:

Gen(SA,Sρ) ≤ S (Gen(A, ρ)).

Furthermore, there is a substitution R such that:

RA = SA and SGen(A, ρ) = Gen(RA,Rρ).

5 A syntax-directed approach

The typing rules in Figure 3 provide clear descriptions of the treatment of each of the syntactic
constructs of the term and type languages. Unfortunately, they are not suitable for use in a type
inference algorithm where it should be possible to determine an appropriate order in which to
apply the typing rules by a simple analysis of the syntactic structure of the term whose type is
required.
In this section, we introduce an alternative set of typing rules with a single rule for each syntactic
construct in the term language. We refer to this as the syntax-directed system because it has
the following important property: all typing derivations for a given term M (if there are any)
have the same structure, uniquely determined by the syntactic structure of M . We regard the
syntax-directed system as a tool for exploring the type system of Section 4 and we establish
a congruence between the two systems so that results about one can be translated into results
about the other. The advantages of working with the syntax-directed system are:

• The rules are better suited to use in a type inference algorithm; having found types for
each of the subterms of a given term M , there is at most one rule that can be used to
obtain a type for the term M itself.

• Only type expressions are involved in the matching process. Type schemes and qualified
types can only appear in type assignments.

• There are fewer rules and hence fewer cases to be considered in formal proofs.

A similar approach is described in [CDK86] which gives a deterministic set of typing rules for
ML and outlines their equivalence to the rules in [DM82].

5.1 Syntax-directed typing rules

The typing rules for the syntax-directed system are given in Figure 4. Typings in this system
are written in form P | A `s M : τ , where τ ranges over the set of type expressions rather than
the set of type schemes as in the typing judgements of Section 4. Other than this, the principal
differences between the two systems are in the rules (var)s and (let)s which use the operations
of instantiation and generalisation introduced in Sections 4.2 and 4.4.

5.2 Properties of the syntax-directed system

The following proposition illustrates the parametric polymorphism present in the syntax-directed
system; instantiating the free type variables in a derivable typing with arbitrary types produces
another derivable typing.

Proposition 4 If P | A `s M : τ and S is a substitution, then SP | SA `s M : Sτ .
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(var)s
(x :σ) ∈ A

P | A `s x : τ
(P ⇒ τ) ≤ σ

(→E )s
P | A `s M : τ ′ → τ P | A `s N : τ ′

P | A `s MN : τ

(→I )s
P | Ax , x :τ ′ `s M : τ

P | A `s λx .M : τ ′ → τ

(let)s
P | A `s M : τ P ′ | Ax , x :σ `s N : τ ′

P ′ | A `s (let x = M in N ) : τ ′
σ = Gen(A,P ⇒ τ)

Figure 4: Syntax-directed inference system

A similar result is established in [Dam85] where it is shown that for any derivation A ` M : τ
in the usual (non-deterministic) ML type system and any substitution S , there is a derivation
SA ` M : Sτ which can be chosen in such a way that the height of the latter is bounded by
the height of the former. This additional condition is needed to ensure the validity of proofs
by induction on the size of a derivation. This complication is avoided by the syntax-directed
system; the derivations in proposition 4 are guaranteed to have the same structure because the
term M is common to both.
There is also a form of polymorphism over the sets of environments in which a particular typing
can be used, as described by the following proposition:

Proposition 5 If P | A `s M : τ and Q `̀ P, then Q | A `s M : τ .

Recall that an ordering σ′ ≤ σ is intended to mean that, at least for the purposes of type
inference, it is possible to use an object of type σ whenever with an object of type σ′ is required.
In much the same way, given two type assignments such that A′ ≤ A (so that the type assigned to
each variable in A is more general than the corresponding type in A′), then we would expect that
any typing that can be derived using A′ could also be derived from A. The following proposition
establishes a slightly more general form of this result:

Proposition 6 If P | A′ `s M : τ and (P | A′) ≤ A, then P | A `s M : τ .

The hypothesis (P | A′) ≤ A means that the types assigned to variables in A are more general
than those given by A′ in any environment that satisfies the predicates in P . For example:

(Eq Int | {(==):Int → Int → Bool}) ≤ {(==):∀a.Eq a ⇒ a → a → Bool}

and hence, by the proposition above, it is possible to replace an integer equality function with
a generic equality function of type ∀a.Eq a ⇒ a → a → Bool in any environment that satisfies
Eq Int .

5.3 Relationship with original type system

In order to use the syntax-directed system as a tool for reasoning about the type system described
in Section 4, we need to investigate the way in which the existence of a derivation in one system
determines the existence of derivations in the other.
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Our first result establishes the soundness of the syntax-directed system with respect to the
original typing rules, showing that any derivable typing in the former system is also derivable in
the latter.

Theorem 2 If P | A `s M : τ , then P | A ` M : τ .

The translation of derivations in the original type system to those of the syntax-directed system
is less obvious. For example, if P | A ` M : σ, then it will not in general be possible to derive
the same typing in the syntax-directed system because σ is a type scheme, not a simple type.
However, for any derivation P ′ | A `s M : τ , theorem 2 guarantees the existence of a derivation
P ′ | A ` M : τ and hence ∅ | A ` M : Gen(A,P ′ ⇒ τ ′) by definition 4. The following theorem
shows that it is always possible to find a derivation in this way such that the inferred type scheme
Gen(A,P ′ ⇒ τ ′) is more general than the constrained type scheme (P | σ) determined by the
original derivation.

Theorem 3 If P | A ` M : σ, then P ′ | A `s M : τ for some set of predicates P ′ and type τ
such that (P | σ) ≤ Gen(A,P ′ ⇒ τ).

6 Type inference

In this section, we give an algorithm for calculating a typing for a given term, using an extension
of Milner’s algorithm W [Mil78] to support qualified types. We show that the typings produced
by this algorithm are derivable in the syntax-directed system and that they are, in a certain
sense, the most general typings possible. Combining this with the results of the previous section,
the algorithm can be used to reason about the type system in Section 4.

6.1 Unification

This section describes the unification algorithm which is a central component of the type inference
algorithm. A substitution S is called a unifier for the type expressions τ and τ ′ if Sτ = Sτ ′.
The following theorem is due to Robinson [Rob65].

Theorem 4 (Unification algorithm) There is an algorithm whose input is a pair of type
expressions τ and τ ′ such that either:

the algorithm succeeds with a substitution U as its result and the unifiers of τ and τ ′ are
precisely those substitutions of the form RU for any substitution R. The substitution U is
called a most general unifier for τ and τ ′, and is denoted mgu(τ, τ ′).

or the algorithm fails and there are no unifiers for τ and τ ′.

In the following, we write τ
U∼ τ ′ for the assertion that the unification algorithm succeeds by

finding a most general unifier U for τ and τ ′.

6.2 A type inference algorithm

Following the presentation of [Rem89], we describe the type inference algorithm using the in-
ference rules in Figure 5. These rules use typings of the form P | TA `W M : τ where P is a
set of predicates, T is a substitution, A is a type assignment, M is a term and τ is a simple
type expression. The typing rules can be interpreted as an attribute grammar in which A are M
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(var)W
(x :∀αi .P ⇒ τ) ∈ A

[βi/αi ]P | A `W x : [βi/αi ]τ
βi new

(→E )W
P | TA `W M : τ Q | T ′TA `W N : τ ′ T ′τ U∼ τ ′ → α

U (T ′P ∪Q) | UT ′TA `W MN : Uα
α new

(→I )W
P | T (Ax , x :α) `W M : τ

P | TA `W λx .M : Tα → τ
α new

(let)W
P | TA `W M : τ P ′ | T ′(TAx , x :σ) `W N : τ ′

P ′ | T ′TA `W (let x = M in N ) : τ ′
σ = Gen(TA,P ⇒ τ)

Figure 5: Type inference algorithm W

inherited attributes, while P , T and τ are synthesised. One of the advantages of this choice of
notation is that it highlights the relationship between W and the syntax-directed system. This
point is illustrated by the following theorem.

Theorem 5 If P | TA `W M : τ , then P | TA `s M : τ .

Combining this with the result of theorem 2 gives the following important corollary.

Corollary 1 (Soundness of W) If P | TA `W M : τ , then P | TA ` M : τ .

With the exception of (let)W, each of the rules in Figure 5 introduces ‘new’ variables; i.e. variables
that do not appear in the hypotheses of the rule nor in any other distinct branches of the complete
derivation. Note that it is always possible to choose type variables in this way because the set
of type variables is assumed to be countably infinite. In the presence of new variables, it is
convenient to work with a weaker form of equality on substitutions, writing S ≈ R to indicate
that St = Rt for all but a finite number of new variables t . In most cases, we can treat S ≈ R as
S = R, since the only differences between the substitutions occur at variables that are not used
elsewhere in the algorithm.
This notation enables us to give an accurate statement of the following result which shows that
the typings obtained by W are, in a precise sense, the most general derivable typings for a given
term.

Theorem 6 Suppose that P | SA `s M : τ . Then Q | TA `W M : ν and there is a substitution R
such that S ≈ RT, τ = Rν and P `̀ RQ.

Combining the result of theorem 6 with that of theorem 3 we obtain a similar completeness result
for W with respect to the type system of Section 4.

Corollary 2 (Completeness of W) Suppose that P | SA ` M : σ. Then Q | TA `W M : ν
and there is a substitution R such that S ≈ RT and (P | σ) ≤ RGen(TA,Q ⇒ ν).

6.3 Principal type schemes

A term M is well-typed under a type assignment A if P | A ` M : σ for some P and σ. It
is natural to try to characterise the set of constrained type schemes (P | σ) for which such a
derivation can be found. This can be described using the concept of a principal type scheme:

13



Definition 5 A principal type scheme for a term M under a type assignment A is a constrained
type scheme (P | σ) such that P | A ` M : σ, and (P ′ | σ′) ≤ (P | σ) whenever P ′ | A ` M : σ′.

The following result gives a sufficient condition for the existence of principal type schemes, by
showing how they can be constructed from typings produced by W.

Corollary 3 Suppose that M is a term, A is a type assignment and Q | TA `W M : ν for some
Q, T and ν. Then Gen(TA,Q ⇒ ν) is a principal type scheme for M under TA.

Combining this with corollary 2 gives a necessary condition for the existence of principal type
schemes: a term is well-typed if and only if it has a principal type scheme. Furthermore, if it
exists, a suitable principal type can be calculated using the type inference algorithm W.

Corollary 4 (Principal type theorem) Let M be a term and A an arbitrary type assignment.
The following conditions are equivalent:

• M is well-typed under A.

• Q | TA `W M : ν for some Q and ν and there is a substitution R such that RTA = A.

• M has a principal typing under A.

7 Extensions and topics for further work

7.1 The coherence problem

It is important to point out that the type systems described by the rules in the previous sections
are not coherent (in the sense of [BCGS89]). In other words, it is possible to construct translations
P | A ` M ; M ′

1 : σ and P | A ` M ; M ′
2 : σ in which the terms M ′

1 and M ′
2 are not equivalent,

and hence the semantics of M are not well-defined.
For an example in which the coherence problem arises, consider the term out (in x ) under the
predicate assignment P = {u : C Int , v : C Bool} and the type assignment:

A = {x : Int , in : ∀a.C a ⇒ Int → a, out : ∀a.C a ⇒ a → Int}
for some unary predicate symbol C . Instantiating the quantified type variable in the type
of in (and hence also in that of out) with the types Int and Bool leads to distinct derivations
P | A ` out (in x ) : Int in which the corresponding translations, out u (in u x ) and out v (in v x )
are clearly not equal.
Note that the principal type scheme of out (in x ) in this example is ∀a.C a ⇒ Int and that the
type variable a (the source of the lack of coherence in the derivations above) appears only in
the predicate qualifying the type of the term, not in the type itself. Motivated by the functional
programming language Haskell [HPJW92], we say that a type of the form ∀αi .P ⇒ τ is unam-
biguous if {αi} ∩ TV (P) ⊆ TV (τ). Extending the results of this paper to describe the use of
translations in the syntax-directed system and the type inference algorithm, we have established
the following coherence result:

Theorem 7 If P | A ` M ; M ′
1 : σ and P | A ` M ; M ′

2 : σ and the principal type scheme of
M in A is unambiguous, then the translations M ′

1 and M ′
2 are equivalent.

This generalises an earlier result by Blott [Blo90] for the special case of [WB89]. Full details are
included in [Jon92] and we expect to describe this work more fully in a forthcoming paper.
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7.2 Eliminating evidence parameters

Using translations as described in Section 3, a term M of type ∀αi .P ⇒ τ will be implemented
by a term of the form λv1. . . . λvn .M ′, where P = {π1, . . . , πn} and each vi is an evidence variable
for the corresponding predicate πi . The following subsections outline a number of situations in
which it is useful to reduce or even eliminate the use of evidence parameters, either to obtain a
more efficient implementation or to avoid unnecessary repeated calculations.

7.2.1 Simplification

The translation of a term whose type is qualified by a set of predicates P requires one evidence
abstraction for each element of P . Thus the number of evidence parameters that are required can
be reduced by finding a smaller set of predicates Q , equivalent to P in the sense that P `̀ Q and
Q `̀ P (and hence the type of the new term is equivalent to that of the original term). In this
situation, we have a compromise between reducing the number of evidence parameters required
and the cost of constructing evidence for P from evidence for Q . The process of simplification
can be formalised by allowing the rule:

P | A `W M : ν P `̀ Q Q `̀ P

Q | A `W M : ν

to be used at any stage during type inference to simplify the inferred predicate set. It is relatively
straightforward to show that this rule is sound and that the extended algorithm still calculates
principal (but potentially simplified) type schemes.
In general, the task of finding an optimal set of predicates with which to replace P is likely to
be intractable. One potentially useful approach would be to determine a minimal subset Q ⊆ P
such that Q `̀ P . To see that this is likely to be a good choice, note that:

• P `̀ Q , by monotonicity of `̀ and hence Q is equivalent to P as required.

• Since Q ⊆ P , the number of evidence abstractions required using Q is less than or equal
to the number required when using P .

• The construction of evidence for a predicate in P using evidence for Q is trivial for each
predicate that is already in Q .

7.2.2 Evidence parameters considered harmful

The principal motivation for including the let construct in the term language was to enable the
definition and use of polymorphic and overloaded values. In practice, the same construct is also
used for a number of other purposes:

• To avoid repeated evaluation of a value that is used at a number of points in an expression.

• To create cyclic data structures using recursive bindings [BW89].

• To enable the use of identifiers as abbreviations for the subexpressions of a large expression.

Note however that the addition of evidence parameters to the value defined in a let expression
may mean that the evaluation of an overloaded term will not behave as intended. For example,
if f : ∀a.C a ⇒ Int → a, then we have a translation:

let x = f 0 in (x , x ) ; λv . let x = (λv .f v 0) in (x v , x v)
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and the evaluation of x v in the translation is no longer shared. There are a number of potential
solutions to this problem. In the example above, one method would be to rewrite the translation
as:

λv . let x = (f v 0) in (x , x ).

This is the kind of translation which will be obtained using a monomorphism restriction such
as that proposed for Haskell [HPJW92] which restricts the amount of overloading that can be
used in particular syntactic forms of binding. Note that this approach is only suitable when the
variable defined in the let expression is not required to have a polymorphic type in the scope of
that definition.

7.2.3 Constant and locally-constant overloading

Consider the typing of local definitions in the type system of Section 4 using the rule:

P | A ` M : σ Q | Ax , x :σ ` N : τ

P ∪Q | A ` (let x = M in N ) : τ

Notice that this allows some of the predicates constraining the typing of M (i.e. those in P) to
be retained as a constraint on the environment in the conclusion of the rule rather than being
included in the type scheme σ. However, in the corresponding rule (let)s for the syntax-directed
system, all of the predicates constraining the typing of M are included in the inferred type scheme
Gen(A,P ⇒ τ):

P | A `s M : τ P ′ | Ax , x :Gen(A,P ⇒ τ) `s N : τ ′

P ′ | A `s (let x = M in N ) : τ ′

As a consequence, evidence parameters are needed for all of the predicates in P , even if some
of the corresponding evidence values are the same for each occurrence of x in N . In particular,
this includes constant evidence (for predicates with no free type variables) and locally-constant
evidence (for predicates, each of whose free variables also appears free in A).
From the relationship between the type inference algorithm W and the syntax-directed system,
it follows that W has the same behaviour; indeed, this is essential to ensure that W calculates
principal types: if x 6∈ FV (N ), then none of the environment constraints described by P need
be reflected by the constraints on the complete expression in P ′.
However, if x ∈ FV (N ), it is possible to find a set F ⊆ P such that P ′ `̀ F and hence the type
scheme assigned to x can be replaced by Gen(A, (P \F ) ⇒ τ), potentially decreasing the number
of evidence parameters required by x . To see this, suppose that Gen(A,P ⇒ τ) = (∀αi .P ⇒ τ).
A straightforward induction, based on the hypothesis that x ∈ FV (N ), shows that P ′ `̀ [τi/αi ]P
for some types τi . If we now define:

FP(A,P) = { (v : π) ∈ P | TV (π) ⊆ TV (A) },
then F = FP(A,P) is the largest subset of P that is guaranteed to be unchanged by the
substitution [τi/αi ]. These observations suggest that (let)s could be replaced by the two rules:

• In the case where x 6∈ FV (N ):

P | A `s M : τ P ′ | A `s N : τ ′
(let)f s

P ′ | A `s (let x = M in N ) : τ ′

The typing judgement involving M serves only to preserve to property that all subterms
of a well-typed term are also well-typed.

16



• In the case where x ∈ FV (N ):

P | A `s M : τ P ′ | Ax , x :Gen(A,P \ F ⇒ τ) `s N : τ ′ P ′ `̀ F
(let)bs

P ′ | A `s (let x = M in N ) : τ ′

where F = FP(A,P).

While these rules retain the syntax-directed character necessary for use in a type inference
algorithm, they are not suitable for typing top-level definitions (such as those in Haskell or
ML) which are treated as let expressions in which the scope of the defined variable is not fully
determined at compile-time.
A more realistic approach would be to use just (let)bs in place of (let)s , with the understanding
that type schemes inferred by W are only guaranteed to be principal in the case where x ∈ FV (N )
for all subterms of the form let x = M in N in the term whose type is being inferred. Justification
for this approach is as follows:

• For a top-level declaration of the identifier x , we can take the scope of the declaration to be
the set of all terms that might reasonably be evaluated in the scope of such a declaration,
which of course includes the term x .

• For let expressions in which the scope of the defined variable is known, the local definition in
an expression of the form let x = M in N is redundant, and the expression is semantically
equivalent to N . However, expressions of this form are sometimes used in implicitly typed
languages to force a less general type than might otherwise be obtained by the type inference
mechanism. For example, if (==) is an integer equality function and 0 is an integer
constant, then λx .let y = (x == 0) in x has principal type scheme Int → Int , whereas
the principal type scheme for λx .x is ∀a.a → a. Such ad-hoc ‘coding-tricks’ become
unnecessary if the term language is extended to allow explicit type declarations.

In a practical implementation, it would be useful to arrange for suitable diagnostic messages to be
generated whenever an expression of the form let x = M in N with x 6∈ FV (N ) is encountered;
this would serve as a warning to the programmer that the principal type property may be lost
(in addition to catching other potential program errors).

7.3 Satisfiability

One of the most important features of the systems of qualified types described in this thesis is
the ability to move ‘global’ constraints on a typing derivation into the type of an object using
(⇒I ):

P , π | A ` M : ρ

P | A ` M : π ⇒ ρ

This is essential in many situations where overloading is combined with polymorphism: without
the ability to move predicates from the first component of a typing P | A ` M : ρ into the type
of an object we would not be able to apply (∀I ) for any type variables appearing in TV (P),
severely limiting the use of polymorphism.
On the other hand, with the formulation of the typing rules used in the previous sections there
is no attempt to guarantee that the predicates introduced into the type of an object using (⇒I )
are satisfiable. As we have already mentioned, an object of type π ⇒ ρ can only be used if we
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can provide evidence for the predicate π. If no such evidence can be obtained, then any object
with this type is useless.
This problem was noted by Volpano and Smith [VS91] for the special case of the system of type
classes described in [WB89]. With this in mind, they gave a stronger definition of well-typing
that includes testing for satisfiability of an inferred type scheme and showed that this makes
the process of determining whether a particular term is well-typed undecidable in an restricted
version of the Wadler-Blott system. The framework used in this thesis allows us to separate
typability from predicate entailment and to identify the problem as undecidability of the latter.
Nevertheless, the difficulty remains.
On the one hand we could simply ignore the problem since it will never be possible to resolve
the overloading for an object with an unsatisfiable type scheme and hence any attempt to use
it will fail. On the other hand, it would certainly be useful if the type system could be used to
identify such objects at the point where they are defined and produce suitable error diagnostics
to assist the programmer. One possibility would be to modify the rule for typing let expressions
with:

P | A ` M : σ Q | Ax , x :σ ` N : τ P0 sat σ

P ,Q | A ` (let x = M in N ) : τ

to ensure satisfiability with respect to a fixed set of predicates P0, where:

P0 sat (∀αi .P ⇒ τ) ⇔ ∃νi .P0 `̀ [νi/αi ]P .

The following properties of this relationship between predicate sets and type schemes are easily
established and show that this notion of satisfiability is well-behaved with respect to our use of
polymorphism, entailment and ordering:

• If P sat σ, then SP sat Sσ for any substitution S .

• If P sat σ and Q `̀ P , then Q sat σ.

• If P sat σ′ and (P | σ′) ≤ σ, then P sat σ.

We conjecture that, if we restrict our attention to derivations P | A ` M : σ for which P0 `̀ P ,
then the development of a principal type algorithm and coherence conditions described in the
previous sections will extend naturally to deal with this extension. Note however that we will
require decidability of P0 sat σ for arbitrary P0 and σ to ensure decidability of type checking.
Another, more positive, application of satisfiability that does not appear to have been considered
elsewhere is to allow the use of more accurate types for particular objects. As an example,
consider the function λr .(r .l , r .l) using the record selection operator described in Section 1.2
which has principal type scheme:

∀r .∀a.∀b.(r has l :a, r has l :b) ⇒ r → (a, b).

On the other hand, for any given record type r , the types assigned to the variables a and b must
be identical since they both correspond to the same field in r . It would therefore seem quite
reasonable to treat f as having a principal satisfiable type scheme:

∀r .∀a.(r has l :a) ⇒ r → (a, a).

To see how this might be dealt with more formally, recall the treatment of the ordering between
type schemes in Section 4.2. Writing the set of generic instances of a type scheme as:

[[∀αi .P ⇒ τ ]] = {Q ⇒ [νi/αi ]τ | νi ∈ Type, Q `̀ [νi/αi ]P },
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the ordering on type schemes is described by:

σ ≤ σ′ ⇔ [[σ]] ⊆ [[σ′]]

In a similar way can define the generic satisfiable instances of a type scheme with respect to a
predicate set P0 as:

[[∀αi .P ⇒ τ ]]satP0
= { [νi/αi ]τ | νi ∈ Type, P0 `̀ [νi/αi ]P }

and define a satisfiability ordering, again with respect to P0, by:

σ ≤sat
P0

σ′ ⇔ [[σ]]satP0
⊆ [[σ′]]satP0

We can formalise the notion of principal satisfiable type in the same way as in Section 6.3 using
the (≤sat

P0
) ordering in place of (≤). For the example above, both of the type schemes given are

principal satisfiable type schemes for the term λr .(r .l , r .l). The first of these is the type scheme
that would be obtained using our type inference algorithm, but it would clearly be preferable if
the algorithm could be modified to give the second alternative. Further investigation is needed
to discover effective procedures or heuristics for calculating more informative types that can be
used to support this extension.

7.4 The use of subsumption

The typing rules in Figure 1 are only suitable for reasoning about systems with explicit coercions.
For example, if Int ⊆ Real , then we can use an addition function:

add :: ∀a.a ⊆ Real ⇒ a → a → Real

to add two integers together, obtaining a real number as the result. More sophisticated systems,
such as those in [Mit84, FM89], cannot be described without adding a form of the rule of
subsumption:

P | A ` M : τ ′ P `̀ τ ′ ⊆ τ

P | A ` M : τ

Each use of this rule corresponds to an implicit coercion; the addition of two integers to obtain
a real result can be described without explicit overloading using a function:

add :: Real → Real → Real

with two implicit coercions from Int to Real . As a further example, in the framework of Section 2,
the polymorphic identity function λt .λx : t .x can be treated as having type ∀a.∀b.a ⊆ b ⇒ a → b
and hence acts as a generic coercion function.
No attempt has been made to deal with systems including the rule of subsumption in the devel-
opment of the type inference algorithm in Section 6, which is therefore only suitable for languages
using explicit coercions. The results of [FM89] and [Smi91] are likely to be particularly useful in
extending the present system to support the use of implicit coercions.
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