Day 8.

1. Functions and Environments

To develop our approximation of local variables, we needed to move from a substution-based view
of evaluation to an environment-based view. We’ll have to do something similar for functions. So,
let’s get started!

Hbwy 1 $ Azt Hbgy o w Hz — w] ey ¢ v
Hl—cbvxlﬁH(fL’) Hl_cbv)\%.il}/\%.t Hl_cbv t tQU,U
e Omitted rules for numeric constants, because they don’t behave any different than they did

in the last version
e Again, reusing syntax for 2-place and 3-place evaluation relations

We should confirm that it works. Let’s try some simple reductions:

OF AaAb.b § Aaxb.b OF303 {ars 3}F Ab.b 1 Ab.b
O F (Aa.Ab.b)3 | Ab.b OF202 {b—2}Fbl2
0 Fepy (Aa-Xb.b)32 12

Looks good so far!

OF Xa.Xb.a § Aadb.a OF3U3 {a—3}F Ab.al \b.a
0F (AaAb.a)3 U Ab.a 0F202 {b2lFal3
0 Fepe (AaAD.0)32 | 3

What’s gone wrong?

e We're trying to use variable a when it’s not apparently in scope. Fair enough—this shouldn’t
be derivable.

e Variable a should have gotten its meaning in reducing the left-hand argument, but it didn’t.
This is the real problem.

e Missing one aspect of substitution—although evaluation doesn’t touch As, substitution does!

Solution: A terms need to carry their defining environments with them!

e Means we don’t have to reintroduce substitution
e Combination of a function and its environment called a closure.

2. Closures

Let’s recap our language:

20

3. Typing Functions

X>z

Vowvu=z| Azt

Edtu=z|thoth|z|.t|tt
e New value form: closures. Package environment with function

e Values no longer subset of terms... but can think of Axz.¢ as being syntax for (Az.t)[v;/yi]
where H = {y; — v; }.

Now we can adjust evaluation rules to construct and use closures.

HF 4 M2t HEplw Hz—wk-tlo
HE Azt § \Hz.t Hbwpy tite J v

Does this work?

B XaAb.b AaXb.b OF303 {ar~ 3} Ab.b | Ale=3hblh
0+ (Aaxb.b)3 | Ale=3tpp 0202 {a—3,b—2}Fbl2

0 Feoy (MaXb.b)32 |2

Looks promising.

O (Aarb.a) § Narb.a OF3U3 {a—3}F Abal Ale3tha
O (NaXb.a)3 | Ae=3tp.q D202 {a—3,b—2}Fal3
0 ey (Aa.Xb.a)32 3

Seems to work!

Call by name variation: just replace H € X — V with H € X — £ and:

Hbn Hz)bv Hbgnt by AWzt Hz = o] Fepn t I v
Hl_cbnxllv Hl_cbntltZUU

Historical note. Early implementations of LISP, including some still in use (ELISP), got closures
wrong. Some people like to present this as a design choice; they call it “dynamic scope” or similar
euphemisms. This is not a design choice, any more than 2 + 2 = 5 would be a design choice for
addition. It is a system that fails to match the semantics of the A-calculus.

3. Typing Functions

What can go wrong? 12, (Ac.c)+ 1.

We need to extend our grammar of types:
T> T:::Int| T, — To

e Why don’t closures need to be reflected in the types of functions?

21

As before, we define a variation of the evaluation relation that characterizes the types of values:
I't:T.

e Syntax: F denotes consequence—under the assumptions in I', the typing on the right holds.
: was originally €.

e [': X = 7 map from variables to their types.

e More about the typing relation... and the significance of our notational choices... to come.

Typing rules:

't :Int T'Fi: Int
I'2z:Int I'Ft + 1t Int

Pz Th|Ft: T 'ty : Ty — Ty T'kty: Ty
I'tz:T(x) I'EXxt: Ty — Ty I'Etity: Ty

e Common notation for I'[z + Ti] is I', z: Ty. May fall into this later, but not yet.
e Why don’t we have to represent the closure in the application rule?

Let’s look at some simple derivations:

{a— Int, b+ Int — Int} + a: Int

{a+ Int} F Ab.a: (Int — Int) — Int
0F (Aa.Ab.a) : Int — (Int — Int) > Int @+ 3:Int {c+> Int}h c:Int
0 (Aa.Ab.a)3: (Int — Int) — Int 0+ Xc.c: Int — Int
0 F (Aa.Ab.a)3(Ac.c) : Int

{a+ Int — Int}F a: Int — Int {b— Int}+ b:Int
0+ (Aa.a) : (Int — Int) — (Int — Int) OF (A\b.b): Int — Int
0+ (Aa.a) (Ab.D) : Int — Int

e Check typing of functions at construction, not at use. So: more structure under the typing
of a A\, but less at their uses.

e Same term may have more than one typing derivation: Aa.a (up to a-equivalence) given both
Int — Int and (Int — Int) — (Int — Int).

22

