
Day 8.

1. Functions and Environments

To develop our approximation of local variables, we needed to move from a substution-based view
of evaluation to an environment-based view. We’ll have to do something similar for functions. So,
let’s get started!

H `cbv x ⇓ H(x) H `cbv λx .t ⇓ λx .t

H `cbv t1 ⇓ λx .t H `cbv t2 ⇓ w H[x 7→ w] `cbv t ⇓ v

H `cbv t1 t2 ⇓ v

� Omitted rules for numeric constants, because they don’t behave any different than they did
in the last version

� Again, reusing syntax for 2-place and 3-place evaluation relations

We should confirm that it works. Let’s try some simple reductions:

∅ ` λa.λb.b ⇓ λa.λb.b ∅ ` 3 ⇓ 3 {a 7→ 3} ` λb.b ⇓ λb.b

∅ ` (λa.λb.b)3 ⇓ λb.b ∅ ` 2 ⇓ 2 {b 7→ 2} ` b ⇓ 2

∅ `cbv (λa.λb.b) 3 2 ⇓ 2

Looks good so far!

∅ ` λa.λb.a ⇓ λa.λb.a ∅ ` 3 ⇓ 3 {a 7→ 3} ` λb.a ⇓ λb.a

∅ ` (λa.λb.a) 3 ⇓ λb.a ∅ ` 2 ⇓ 2

{b 7→ 2} ` a ⇓ 3

∅ `cbv (λa.λb.a) 3 2 ⇓ 3

What’s gone wrong?

� We’re trying to use variable a when it’s not apparently in scope. Fair enough—this shouldn’t
be derivable.

� Variable a should have gotten its meaning in reducing the left-hand argument, but it didn’t.
This is the real problem.

� Missing one aspect of substitution—although evaluation doesn’t touch λs, substitution does!

Solution: λ terms need to carry their defining environments with them!

� Means we don’t have to reintroduce substitution
� Combination of a function and its environment called a closure.

2. Closures

Let’s recap our language:

20

3. Typing Functions

X 3 x

V 3 v ::= z | λHx .t

E 3 t ::= z | t1 � t2 | x | λx .t | t1 t2

� New value form: closures. Package environment with function
� Values no longer subset of terms... but can think of λHx .t as being syntax for (λx .t)[vi/yi]

where H = {yi 7→ vi}.
Now we can adjust evaluation rules to construct and use closures.

H ` λx .t ⇓ λHx .t

H ` t1 ⇓ λH
′
x .t H ` t2 ⇓ w H′[x 7→ w] ` t ⇓ v

H `cbv t1 t2 ⇓ v

Does this work?

∅ ` λa.λb.b ⇓ λa.λb.b ∅ ` 3 ⇓ 3 {a 7→ 3} ` λb.b ⇓ λ{a 7→3}b.b

∅ ` (λa.λb.b) 3 ⇓ λ{a 7→3}b.b ∅ ` 2 ⇓ 2 {a 7→ 3, b 7→ 2} ` b ⇓ 2

∅ `cbv (λa.λb.b) 3 2 ⇓ 2

Looks promising.

∅ ` (λa.λb.a) ⇓ λ∅a.λb.a ∅ ` 3 ⇓ 3 {a 7→ 3} ` λb.a ⇓ λ{a 7→3}b.a

∅ ` (λa.λb.a) 3 ⇓ λ{a 7→3}b.a ∅ ` 2 ⇓ 2 {a 7→ 3, b 7→ 2} ` a ⇓ 3

∅ `cbv (λa.λb.a) 3 2 ⇓ 3

Seems to work!

Call by name variation: just replace H ∈ X ⇀ V with H ∈ X ⇀ E and:

H `cbn H(x) ⇓ v

H `cbn x ⇓ v

H `cbn t ⇓1 λH
′
x .t H′[x 7→ t2] `cbn t ⇓ v

H `cbn t1 t2 ⇓ v

Historical note. Early implementations of LISP, including some still in use (ELISP), got closures
wrong. Some people like to present this as a design choice; they call it “dynamic scope” or similar
euphemisms. This is not a design choice, any more than 2 + 2 = 5 would be a design choice for
addition. It is a system that fails to match the semantics of the λ-calculus.

3. Typing Functions

What can go wrong? 1 2, (λc.c) + 1.

We need to extend our grammar of types:

T 3 T ::= Int | T1 → T2

� Why don’t closures need to be reflected in the types of functions?

21

8.

As before, we define a variation of the evaluation relation that characterizes the types of values:
Γ ` t : T .

� Syntax: ` denotes consequence—under the assumptions in Γ, the typing on the right holds.
: was originally ∈.

� Γ : X ⇀ T map from variables to their types.
� More about the typing relation... and the significance of our notational choices... to come.

Typing rules:

Γ ` z : Int

Γ ` t1 : Int Γ ` t2 : Int

Γ ` t1 + t2 : Int
· · ·

Γ ` x : Γ(x)

Γ[x 7→ T1] ` t : T2

Γ ` λx .t : T1 → T2

Γ ` t1 : T1 → T2 Γ ` t2 : T1

Γ ` t1 t2 : T2

� Common notation for Γ[x 7→ T1] is Γ, x :T1. May fall into this later, but not yet.
� Why don’t we have to represent the closure in the application rule?

Let’s look at some simple derivations:

{a 7→ Int, b 7→ Int→ Int} ` a : Int

{a 7→ Int} ` λb.a : (Int→ Int)→ Int

∅ ` (λa.λb.a) : Int→ (Int→ Int)→ Int ∅ ` 3 : Int

∅ ` (λa.λb.a) 3 : (Int→ Int)→ Int

{c 7→ Int} ` c : Int

∅ ` λc.c : Int→ Int

∅ ` (λa.λb.a) 3 (λc.c) : Int

{a 7→ Int→ Int} ` a : Int→ Int

∅ ` (λa.a) : (Int→ Int)→ (Int→ Int)

{b 7→ Int} ` b : Int

∅ ` (λb.b) : Int→ Int

∅ ` (λa.a) (λb.b) : Int→ Int

� Check typing of functions at construction, not at use. So: more structure under the typing
of a λ, but less at their uses.

� Same term may have more than one typing derivation: λa.a (up to α-equivalence) given both
Int→ Int and (Int→ Int)→ (Int→ Int).

22

