
Day 6.

1. Environments

Approximating the semantics of let has proved tricky:

� We can approximate the cbn reduction relation, but only at the cost of performing much of
the substitution that we might hope to avoid

� We have even less success with the cbv reduction, as we can’t substitute approximations into
terms

Our approach to this is to reconsider the role that substitutions play in evaluation. Rather than
applying substitutions immediately to terms, we’ll preserve substitutions as environments in the
reduction relation.

2. CBV with Environments

We define environments to be mappings from terms to values: H ∈ X ⇀ V.

(Aside: H is supposed to be a Greek capital eta, not a Latin H. What difference does it make?
None.)

Now we can define a 3-place evaluation relation ⇓ ∈ (X ⇀ V)× E ×V

H ` t1 ⇓ v1 H ` t2 ⇓ v2

H ` t1 + t2 ⇓ v1 + v2

H ` t1 ⇓ v1 H ` t2 ⇓ v2
(v2 6= 0)

H ` t1 ÷ t2 ⇓ bt1/t2c

H `cbv x ⇓ H(x )

H `cbv t1 ⇓ v1 H[x 7→ v1] `cbv t2 ⇓ v2

H `cbv let x = t1 in t2 ⇓ v2

� We could introduce a new evaluation symbol (or new subscript) for the three-place version of
the evaluation relation... but the context will always make it clear which version we mean.

� The constant rules behave the same in call-by-name and call-by-value
� We write H(x ) to denote the value that x is mapped to in H, and H[x 7→ v ] to denote

extending a partial function... formally:

H[x 7→ v ](y) =

{
v if x = y

H (y) otherwise

We have some simple derivations:

∅ `cbv 4 ⇓ 4

{x 7→ 4} `cbv x ⇓ 4 {x 7→ 4} `cbv x ⇓ 4

{x 7→ 4} `cbv x ÷ x ⇓ 1

∅ `cbv let x = 4 in x ÷ x ⇓ 1

14



3. CBN with Environments

∅ `cbv 4 ⇓ 4 ∅ `cbv 4 ⇓ 4

∅ `cbv 4÷ 4 ⇓ 1

{x 7→ 1} `cbv x ⇓ 1 {x 7→ 1} `cbv x ⇓ 1

{x 7→ 1} `cbv x + x ⇓ 2

∅ `cbv let x = 4÷ 4 in x + x ⇓ 2

� Starting with the empty environment (∅), and ∅[x 7→ 1] = {x 7→ 1}.
� Results of evaluation equivalent to substitution version: same final value, same number of

operations. However, we replace substitution with variable lookup. Complexity implications?

3. CBN with Environments

Intuitively:

� CBV evaluates before substituting
� CBN evaluates after substituting

To map this intuition to environments, we have:

� CBV environments store values
� CBN envirnoments store terms

So for CBN, we define H ∈ X ⇀ E , and have evaluation rules

H `cbn H(x ) ⇓ v

H `cbn x ⇓ v

H[x 7→ t1] `cbn t2 ⇓ v

H `cbn let x = t1 in t2 ⇓ v

Again, we can consider some simple derivations:

{x 7→ 4÷ 4} `cbn 4 ⇓ 4 {x 7→ 4÷ 4} `cbn 4 ⇓ 4

{x 7→ 4÷ 4} `cbn 4÷ 4 ⇓ 1

{x 7→ 4÷ 4} `cbn x ⇓ 1

{x 7→ 4÷ 4} `cbn 4 ⇓ 4 {x 7→ 4÷ 4} `cbn 4 ⇓ 4

{x 7→ 4÷ 4} `cbn 4÷ 4 ⇓ 1

{x 7→ 4÷ 4} `cbn x ⇓ 1

{x 7→ 4÷ 4} `cbn x + x ⇓ 2

∅ `cbn let x = 4÷ 4 in x + x ⇓ 2

and:

{x 7→ 4÷ 0} `cbn 3 ⇓ 3

∅ `cbn let x = 4÷ 0 in ⇓ 3

� Same properties of evaluation: evaluation repeated for each use of a variable, but unused
variables don’t stop evalution.

4. Approximating Evaluation

We build a type system from evaluation with environments following the same approach we’ve used
for earlier evaluation relations.

Let environments Γ ∈ X ⇀ T map variables to approximations of values.

15



6.

Now, we define approximation by:

Γ ` z : Int Γ ` b : Bool

Γ ` e1 : Int Γ ` e2 : Int
(� ∈ {+,×})

Γ ` e1 � e2 : Int

Γ ` e1 : Bool Γ ` e2 : t Γ ` e3 : t

Γ ` if e1 then e2 else e3 : t

Γ ` x : H(x )

Γ ` t1 : S1 Γ[x 7→ S1] ` t2 : S2

Γ ` let x = t1 in t2 : S2

As we would hope, the approximation relation now exactly follows the pattern of the evaluation
relation!

This is still a conservative approximation of the meanings of terms:



Γ ` 1 : Bool Γ ` 2 : Int Γ ` 3 : Int

Γ ` if 1 then 2 else 3 : Int Γ ` 10 : Int

Γ ` let x = if 1 then 2 else 3 in 10 : Int

But this is no different than our previous approximations, so we should not be surprised.

16


