Day 4.

1. Introducing Names

Let’s talk about names.

X>ozx 7> z B>b ZUB> v

Edeun=z|ler+e|e Xe
|b | if e1 then ey else e3
|z | let £ = e; in ey

As before, we want:

e An evaluation relation
e An approximation of the evaluation relation that guarantees safety.

What are the problems?

[
z |77

thlun tlw
letz =t inth | v

... but where did v; go?

2. Substitution

First approach: substitute values into terms.

We define the substitution of a expression e for a variable z in a term e’ (notation e’[e/xz]) as
follows:

y[e/x]—{e L

y otherwise
zle/z] = z
(e1 ® e2)[e/x] = e1]e/x] @ exle/x] © € {+, x}
(if €1 then ez else e3)[e/x] = if e1[e/z] then ex[e/z] else e3[e/x]
let y = e1[e/x] in by ife=y

(let y = e; in eg)[e/z] = {

let y = e1[e/x] in egev/z] otherwise

Relevant points:

e Shadowing of variables in let. (Intuition: bound names don’t matter. Will pay off momen-
tarily.)

Now, we are equipped to give our first meaning of variables and let:

er I v 62[7)1/33] I v

letz=e in e | 1o

e Substitution is a meta-theoretic notion: we don’t have separate evaluation rules for z[4/z]
and 4, we treat those as the same term.

e Relying on the inclusion of values in terms V C £. Could introduce explicit notation for this,
but not even I am that pedantic.

No rule for variables:
444 444
404 4=401
letz=4inz+z {1

So variables are always stuck terms: no derivation for let z =5 in y |} z for any z:

3. a-Equivalence

Intuition: changing the names of local variables doesn’t matter. Now, we’re in a position to capture
this idea formally.

We define a-equivalence—i.e., equivalence up to renaming of variables—by:

— / — !/
€1 =a € €2 =q €

I © €1+, X
T =q T 2 =4 2 61®625ae{®e§({ H

e1 =q €] e2z/z] =4 €)[2/Yy]

let 7 = e; in ey =, let y = €] in €}

(2 & v(er) Uv(ez))

where the variables of an expression v(e) are those variables used in a term:
v(z) = {z} vt ©) =v(t)Uo(t), ©€{+ x}
v(z) =10 v(let z = e in ez) = v(e1) U {z} Uv(e2)

v(if e1 then ez else e3) = v(e1) U v(ez) U v(es)

Why do we need a new (also called “fresh”) variable in the let case? Mostly to avoid the possibility
that z is already used in €.

Now we can make formal our intuition about a-equivalence:
Theorem. Ift =, t' and t || v then t' | v.
Proof. By structural induction on the derivation of t =, t':

e Case : the second hypothesis (z || v) is impossible.
T =q T

10

3. a-Equivalence

Case : by definition of |}.
2 =q 2

— !/ — !/
€1 =a € €2 =q €

Case ; ~: If e | v, then we have that e; | v1, e2 | v, and (abusing notation
e1 0 e =q 20 e

slightly) v = v; ® v2. Now, by the induction hypothesis, €] || v1, €} || v, and finally by the
definition of |} we have ¢’ || v.
The case for conditionals follows the same reasoning.

— / — /
€1 =a €] |2/x]ea =4 [2/y]e)) _)
Case o [2/7] o 2/]/ 2 -+ By the induction hypothesis applied to the first
letz=e¢ ine =, let y = ¢; in ey

subderivation we have e; | v1, €] |} v;. Similarly, by the IH applied to the second subderiva-
tion, we have ey[z/z|[v1/z] | v2 and e5[z/y][v1/z] | vo. But the latter two expressions are
equivalent (because z is fresh) to es[v1/z] and ej[v1/y], so we have that the original terms
evaluate to vy as well. O

11

