
Day 3.

1. Evaluation May Be Partial

Let’s extend our language a little:

z ∈ Z b ∈ B v ∈ Z ∪ B
E 3 e ::= z | e1 + e2 | e1 × e2 | b | if e1 then e2 else e3

and correspondingly, extend our evaluation relation:

. . .
b ⇓ b

e1 ⇓ T e2 ⇓ v

if e1 then e2 else e3 ⇓ v

e1 ⇓ F e3 ⇓ v

if e1 then e2 else e3 ⇓ v

Note that we use meta-variables to stand in for side-conditions: addition is only defined for ex-
pression that return integers, while conditionals are only defined when the condition expression is
Boolean.

Is our evaluation relation still total? Deterministic?

2. Characterizing Partiality

We could attempt to characterize when our evaluation relation does hold. We’ll introduce an
approximation of evaluation, called typing, which distinguishes been Boolean-producing expressions
and integer-producing expressions. We begin by introducing a grammar for our approximations.

T 3 t ::= Int | Bool

We can then describe our approximation, building from our evaluation rules.

z : Int

e1 : Int e2 : Int

e1 + e2 : Int

e1 : Int e2 : Int

e1 × e2 : Int

b : Bool

e1 : Bool e2 : t e3 : t

if e1 then e2 else e3 : t

� The : symbol was originally ∈, motivated by the idea that types described sets of expressions
� Our rule for if has collapsed two rules in the evaluation relation, because we cannot tell from

the approximation of a Boolean value whether it is true or false. What are the consequences
of this approximation?

How can we relate the type system (our approximation) to the original system? We identify two
properties.

Definition 3.1. Our type system is sound if its claims are all borne out by evalution. In particular:

7

3.

� If e : Int, then there is some z ∈ Z such that e ⇓ z ; and,
� If e : Bool, then there is some b ∈ B such that e ⇓ b.

Definition 3.2. Our type system is complete if everything observable with evaluation is claimed
by the type system. In particular:

� If there is some z ∈ Z such that e ⇓ z , then e : Int; and,
� If there is some b ∈ B such that e ⇓ b, then e : Bool

Our type system is sound, roughly by construction. To show this formally, we would do a proof by
structural induction on typing derivations.

Our type system is not complete, however. For example:

T ⇓ T 1 ⇓ 1

if T then 1 else F ⇓ 1

but there is no corresponding typing derivation:

T : Bool 1 : Int

F : Int

if T then 1 else F : Int

3. The Goal

In general, can we have a sound and complete characterization of a property like safety?

No! Rice’s theorem says that any non-trivial property of the partial computable functions is itself
undecidable.

(Reduction to halting problem: given program p input x , is the function y 7→ p(x); y the identity
function?)

But does this mean that we can’t prove anything about programs? No! We certainly can prove
that y 7→ y is the identity function.

The goal: identify useful subsets of programs for which desirable properties are provable.

8

