Day 19.

1. Explicit Parametric Polymorphism

Our previous type system imposed restrictions on how polymorphism was introduced and used; in
particular, we didn’t allow functions to take polymorphic arguments, and so had to introduce the
let construct to manage polymorphism. In this section, we consider relaxing that restriction.

Why did have this restriction in the first place? Well, without it, it becomes difficult to figure out
the types of terms. Consider the following;:

M Az Ny (fz,fy)

If we just allow polymorphsim willy-nilly (i.e., we take the previous system but relax the restrictions
on the form of types), we can construct two different types for this term:

'Ff:a—p I'Fz:a THf:a—p Thy:«
'tfx:p 'tfy:p
TF(fa.fy):Bx8
{fra—=pz—altbXy(fz,fy):a—=Bxp
{fra—=ptEXz y(fz,fy):a—a—Fx0
DEMNAXz Xy (fz,fy):(a—=pB)2a—a—Bxf
DEMNAXe Xy (fz,fy):VB.(a—fB)wa—a—BXf
DEXN Az Xy (fz,fy):VaVB(a—p) mDa—a—BXp

where ' = {f — a — 8,2 — a,y — a}, or:

I'Ef:Vyy =~y I'Ef:Vyy =~
I'rf:a—wa I'kz:a T'Ff:B—=p T'ky:p
I'-fz:a I'Efy:p

U'E(fa.fy)iaxp
{feVyy=yvzealbdy(fa,fy):B—=axp
{f=Vyy =yt XXy (fz,fy):a=B—axf

DEXMAz Ay (fa,fy): (Vyy =) 2a—=F—=axf
DEXN Az y.(fa, fy):VB.(Vyy =) wa—=B—=axf
D= Xz y.(fx, fy) :VaVB.(Vyy =) a—=B—axf

where IV = {f = Vy.y = v,z —= o,y — B}

47

19.

To distinguish these cases, we’ll introduce more explicit treatment of parametric polymorphism.
Happily, this will return us to a syntax-directed system, albeit an unpleasantly verbose one.

A>a X>oz
Totu=Int|t—1t]|a|VYat
Edeun=z|leOe|z|An:te|ee|Aae]|et

We now have two new terms: Ac«.e introduces polymorphsm, and et eliminates it. These both
work exactly parallel to functions: Aa.e abstracts over the type «, just like Az.e abstracts over
the expression z; et provides ¢t as the argument to e, just as e; ex provides ez as the argument to
e1. We're also going to be more explicit about the type of function arguments, as required by the
example above.

Following that intuition, we can develop typing rules. Just as before we had an environment I" that
tracked the meaning of term variables, now we also have an environment A that tracks the meaning
of type variables. We only have one possible meaning of type variables at this point, though, so A
can just be a list of variables. We start out by describing when a type itself is well-formed, using
a relation — F — type C P(A) x T.

AF t; type ALl iy type A, a b ttype

—— (a e A)
A F atype A F Int type A F t; — to type A FVYa.t type
We can the define the typing relation for terms, —;—F —: = CP(A) x (X = T)xEXT
A;T'F e :Int A;TF ey: Int
A;TEz:T(x) A;THe ®e: Int A;TF z:Int
AFtitype AT z:thbe:t ATkFe it >t ATFe:ty
AT FE Azitye: bty — 1 AT Ferex:ty
AT et A;TFe:Vat! At ttype
AT F Aave : Vaut AT Eet:t't/a]

Let’s consider some example derivations. On the one hand, we can’t derive something like (); ()
Az:.z ;@ — « any more; in the empty context, « isn’t a type. But, we can derive the following;:

{a} Fatype {a};{z—a}ltz:a

{a};0F Az:oz s a0 —

0;0 F Aoz : Voo — o

and we can use it:

{a} Fatype {a};{z—a}lFz:a

{a};0F Az:az a0 — «
;0 F Ao z:a.r : Vo.a — « 0 - Int type
0;0 F (Aa.A\z:c.x) Int : Int — Int 0;0+4: Int
0;0 F (Aa.Az:a.z) Int 4 : Int

48

2. Explicit Polymorphism and Semantics

We can return to our initial examples and see how they play out differently. Here’s one:

ATV EfiVyy =y ATVEfiVyy =y
ATVFfa:a—wa ATVkFz:a AT'RfB:—8 ATERy:f
AT fa,z: ATV fBy: B
Ay ytype A,y F ytype A+ [type AT (faz, fBy) axp
A,y F vy — 7y type AFatype AN{f—=Vyy—ov,e—alb Ay (fax,fRy): B axp
A Vy.y — v type A A{f = Vyy =2y EAzady:B.(faz, fBy):a—= B —>axp

AN Nyy = v Aza y:B.(faz, fBy): (Vyy =) 2a—=B—>axp
{a};0 = ABA Vy.y = vy Az y:B.(faz, fBy) :VB.(Vyy —=9) 2 a—= = ax
0; A ABAf Ny y = v Az y:B.(faz, f By) FYaVE.(Vyy =) 2a—=8—axf:

where IV = {f = Vy.y = v,z = o,y — B} and A = {«, 5}

2. Explicit Polymorphism and Semantics

For most of the languages we’ve introduced, we’ve given syntax, semantics, and then typing. For
the language with implicit polymorphism, we left out the semantics step. But, the expressions
there were the same as the expressions in the A-calculi we studied earlier in the semester, so I
hoped that we could get away with not repeating their semantics. That is now no longer the case:
our expressions include type abstractions and type applications, unlike anything we saw before.

For our first attempt to give a semantics, we can just follow the intuition that type abstractions
Aa.e and type applications et are “just like” value abstraction and application. We have to
define substitution of types into expressions —[—/—] € € x T x A — &£, but that is a completely
unsurprising definition:

z[t/a] =z z[t/a] = 2
(e10 e)[t/a] = er[t/a] © eaft/al (e1 e2)[t/a] = ert/a] est/]
(Az:t'.e)[t/a] = Az:t'[t/a).e[t/a] (et[t/a] = e[t/a] t'[t/a]

AB.elt/a] ifa#p
AB.e otherwise

(AB.e)[t/a] = {
We have to extend our idea of values to incorporate type abstraction as well as value abstraction
Voovu=z|Ant.e| Aa.e
Finally, we can adapt the evaluation relation | C & x V:

erdz eeln ealdte elw ew/zllv el Aae €t/a]lv
vi{wv e1@e 2102 eres v et v

and we can derive the kinds of results we expect:

Aadz:a.z || AaAz:a.x Az:Int.z || Ax:Int.z
(A Az:c.z) Int || Az:Int.x 44 z[4/z] |4
(Aadz:a.z)Int4 |} 4

49

19.

However, you might not find this account totally satisfactory. In particular, while substituting val-
ues does something—eventually they get added, or multiplied, or applied, or returned—substituting
types doesn’t seem to do anything. In fact, we can capture this idea formally, using an idea called
erasure. The idea is to define a function from the language with explicit polymorphism to the
untyped A-calculus. We then show that the evaluation relation for the explicitly polymorphic lan-
guage is consistent with erasure—i.e., that the erased parts of the terms aren’t actually effecting
their outcomes.

Here’s our erasure function:

er(z) ==z er(z) =z
er(ep ® ex) = er(e;) ® er(ez) er(e; ea) = er(ep) er(ez)
er(Az:t.e) = Az.er(e) er(Aa.e) = er(e) er(et) = er(e)

Then we can tie evaluation and erasure together. Unfortunately, we can’t tie them together as
closely as you might expect: because our erasure function erases type abstractions, it may turn a
value into a non-value. However, we could show the following:

Theorem 19.1. If e | v and er(e) | w then er(v) = w.

3. Relating Implicit and Explicit Polymorphism

We now have two different accounts of polymorphism: the implicit one, which supports principal
types and type inference, and the explicit one, which types more programs but lacks principality or
inference. You might wonder how these two systems are related: we know that there are explicitly-
polymorphic expressions that have no implicit equivalent, but are there implicitly-polymorphic
expressions that have no explicit equivalent? In fact, we can show that there aren’t.

The idea is that we’ll construct a relation between implicitly typed and explicitly typed expressions.
We'll show that each implicitly-polymorphic expression (IPE) is related to at least one explicitly-
polymorphic expressions. This function is going to be defined by induction on typing derivations of
IPEs. In fact, we’ll define it by augmenting the implicitly polymorphic type system with explicitly
polymorphic terms. That is to say, we’re going to describe a new judgment — F — ~ — : — C
(X = 8)x & x & xS as follows:

'Fe~el:Int T'F ey~ el:Int

'tz~z:T(z) Thz~2z:Int ke ®e~ el ®eb:Int
Dzt Fe~ e ity F'be~el:th =t The~e)ity
THFXz.e~ Azitiel ity — o IF'Feea~eleh:ty

. .
ervel.s (o & fo(T)) FFe'\»/e.Va.s
I'kFe~ Aa.e’ :Va.s ke~ et:sft/al

F'ke~ef:s The~ey:t

'k let z =e; in eg ~ (Az:s.eh)ef i t

Theorem 19.2.

50

3. Relating Implicit and Explicit Polymorphism

e [fT-e~ce€ :s,thenl'ke:s
o IfTFe~se s, then fu(l,s);TF e :s.

What is certainly not the case, however, is that for a given term e we have a single ¢’ such that
'+ e~ € : 5. For a simple example, consider the expression Az.\y.z; we have the following
derivations

{z—a,y— Pz~

{z—=alFAyxz~Ayfa:f—a

O Xz \y.z ~ Az y:B.r:a— 8 — «
0 Az y.x ~ A z:a \y:B.x : VB.aa — B — «
0+ Az y.z ~ Aa.AB A z:a y:B.2 : VaVB.a — = «

and

{z—a,y—ptrrz~z:a

{z—alFAyz~Ayfo:f—a

O Xz Ay~ Az:a y:Br:a— B — «

0 F Az y.z ~ Ao z:a y:B.2 : Va.a — 8 — «
0 Az y.z ~ AB.Aaz:a\y:B.2 : VBVa.a — 8 — «
While we started with the same term, we’ve ended up with two different EPEs.

Theorem 19.3. Suppose that ' - e ~ e : sy and I' = e ~ ey : so. Then there is some term f
such that:

o {fu(l,s)};THf:is1— s
e er(f) =o Az

o1

