Day 17.

1. Parametric Polymorphism

Again, we’ll use abstraction to expose a weakness in the type systems we’ve been studying. Consider
the following term and derivation:

{a— Int — Int} F a: Int — Int {a— Int}F a:Int
0+ Xa.a: (Int — Int) — (Int — Int) OF Aa.a:Int — Int
0+ (Aa.a) (Aa.a) : Int — Int 0F1:1Int
0+ (Xa.a) (Aa.a)1: Int

Fine and good—we use Aa.a at two different types, but that’s fine. But now suppose we want to
abstract over that function:

I'-f:(Int - Int) —» (Int - Int) I'Ff:Int— Int
{a+— Int}F a:Int 'k ff:Int — Int '+1:Int
0 F Xa.a : Int — Int 'ff1:1Int

fFlet f=Xa.ainff1:Int

where I' = {f — Int — Int}.

e The problem is that we now need to assign a single type to f... but, as in the previous
derivation, we use f in two different ways

e If we'd initially given f the type (Int — Int) — (Int — Int), the same problem would
appear in the other hypotheses.

Our solution: rather than giving f a single type, capture the family of types that f can take on.

2. Types and Type Schemes

Syntax:
A>a
Totu=Int|t—t|a
S3su=t|Va.s
e Types now include type variables «,(,.... Type variables represent arbitrary types; for

example, we could drive

{a—=altFa:a
D Xa.a:a—

42

2. Types and Type Schemes

We cannot freely replace type variables with types—just like we can’t freely replace term
variables with terms. For example, we cannot conclude that {a — a} - a : Int.

e Type schemes quantify over type variables: @ — « denotes a function from an arbitrary type
to itself; Va.ace — o denotes a function from any type to itself.

e Type schemes and type are stratified: we can have Vo.(a — a) = (o = «) but not (Vo.ao —
a) = Va.a — «).

How do we deal with schemes and type variables? Substitution u[t/«a]!
Int[t/a) = Int (up — w)[t/a) = wi[t/a] — ug[t/q]

_Jt ifa=p _JvB.s if a =g
Blt/a] = {5 otherwise (v5.5)[t/a] = {Vﬁ,s[t/a] otherwise

e This should feel familiar
e Because types and schemes are stratified, we're really defining two operations, —[—/—] : T —
T—-A—Yand —[-/-]: ST > A—S. But:
— These aren’t even mutually recursive: schemes never appear inside types
— We'll never substitute schemes for variables, only types. (What would break if we could
substitute schemes for variables?)
— Why? Short answer: type inference. Longer answer: not really in a course here, but if
you're interested talk to me.

We can continue the familiar development here. The free variables of a type are those type variables
not bound by an enclosing V:

fo(Int) =0 folth =) = fo(t) U fo(ts)
fo(a) ={a} fo(Vas) = fo(s) \ {a}

And we can define a notion of renaming-equivalence for types

h=awm t=qu

t1 > lg=q up = u2 Int=,Int a=,«

sily/al =a s2[v/p]
Va.s1 =4 V559

(v fresh for s; and s9)

e Yup, two different meanings of o. Notation sucks.
e A variable is fresh for a type if it appears nowhere in the type. We can define this formally,
but it all becomes tedious.

43

