
Day 17.

1. Parametric Polymorphism

Again, we’ll use abstraction to expose a weakness in the type systems we’ve been studying. Consider
the following term and derivation:

{a 7→ Int→ Int} ` a : Int→ Int

∅ ` λa.a : (Int→ Int)→ (Int→ Int)

{a 7→ Int} ` a : Int

∅ ` λa.a : Int→ Int

∅ ` (λa.a) (λa.a) : Int→ Int ∅ ` 1 : Int

∅ ` (λa.a) (λa.a) 1 : Int

Fine and good—we use λa.a at two different types, but that’s fine. But now suppose we want to
abstract over that function:

{a 7→ Int} ` a : Int

∅ ` λa.a : Int→ Int



Γ ` f : (Int→ Int)→ (Int→ Int) Γ ` f : Int→ Int

Γ ` f f : Int→ Int Γ ` 1 : Int

Γ ` f f 1 : Int

∅ ` let f = λa.a in f f 1 : Int

where Γ = {f 7→ Int→ Int}.
� The problem is that we now need to assign a single type to f ... but, as in the previous

derivation, we use f in two different ways
� If we’d initially given f the type (Int → Int) → (Int → Int), the same problem would

appear in the other hypotheses.

Our solution: rather than giving f a single type, capture the family of types that f can take on.

2. Types and Type Schemes

Syntax:

A 3 α
T 3 t ::= Int | t → t | α
S 3 s ::= t | ∀α.s

� Types now include type variables α, β, . . . . Type variables represent arbitrary types; for
example, we could drive

{a 7→ α} ` a : α

∅ ` λa.a : α→ α
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2. Types and Type Schemes

We cannot freely replace type variables with types—just like we can’t freely replace term
variables with terms. For example, we cannot conclude that {a 7→ α} ` a : Int.

� Type schemes quantify over type variables: α→ α denotes a function from an arbitrary type
to itself; ∀α.α→ α denotes a function from any type to itself.

� Type schemes and type are stratified : we can have ∀α.(α→ α)→ (α→ α) but not (∀α.α→
α)→ (∀α.α→ α).

How do we deal with schemes and type variables? Substitution u[t/α]!

Int[t/α] = Int (u1 → u2)[t/α] = u1[t/α]→ u2[t/α]

β[t/α] =

{
t if α = β

β otherwise
(∀β.s)[t/α] =

{
∀β.S if α = β

∀β.s[t/α] otherwise

� This should feel familiar
� Because types and schemes are stratified, we’re really defining two operations, −[−/−] : T →
T → A → Y and −[−/−] : S → T → A → S. But:

– These aren’t even mutually recursive: schemes never appear inside types
– We’ll never substitute schemes for variables, only types. (What would break if we could

substitute schemes for variables?)
– Why? Short answer: type inference. Longer answer: not really in a course here, but if

you’re interested talk to me.

We can continue the familiar development here. The free variables of a type are those type variables
not bound by an enclosing ∀:

fv(Int) = ∅ fv(t1 → t2) = fv(t1) ∪ fv(t2)

fv(α) = {α} fv(∀α.s) = fv(s) \ {α}

And we can define a notion of renaming-equivalence for types

t1 ≡α u1 t2 ≡α u2

t1 → t2 ≡α u1 → u2 Int ≡α Int α ≡α α

s1[γ/α] ≡α s2[γ/β]
(γ fresh for s1 and s2)∀α.s1 ≡α ∀β.s2

� Yup, two different meanings of α. Notation sucks.
� A variable is fresh for a type if it appears nowhere in the type. We can define this formally,

but it all becomes tedious.
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