
Day 15.

1. Effect Types and Function Types

Now we can do the “obvious” thing for functions.

Γ ` x : Γ(x) & ∅
Γ[x 7→ t1] ` e : t2 & F

Γ ` λx .e : t1 → t2 & ∅
Γ ` e1 : t1 → t2 & F1 Γ ` e2 : t1 & F2

Γ ` e1 e2 : t2 & F1 ∪ F2

� No effects in defining a function—recall the local example.
� Application combines left and right effects—(λa.λb.a + b)(put 1)get has both get (rhs) and

put (lhs) effects.

Let’s see it work:

{a 7→ Int} ` a : Int & ∅ {a 7→ Int} ` 1 : Int & ∅
{a 7→ Int} ` a + 1 : Int & ∅

{a 7→ Int} ` put (a + 1) : Int & {put}
∅ ` λa.put (a + 1) : Int→ Int & ∅ ∅ ` 1 : Int & ∅

∅ ` (λa.put (a + 1)) 1 : Int & ∅

Something seems to have gone wrong: intuitively, we should expect that evaluating this term will
have a put effect. But that’s vanished from its type.

Key idea: we’ve lost track of the effects that happen when executing the body of the function—the
e above the line in the λ typing rule appears nowhere below the line. That effect shouldn’t happen
when we define the function, but we need to keep track of it for each use of the function.

T 3 t ::= Int | t F−→ t (F ⊆ F)

Now we can restate the typing rules for functions:

Γ[x 7→ t1] ` e : t2 & F

Γ ` λx .e : t1
F−→ e2 & ∅

Γ ` e1 : t1
F3−→ t2 & F1 Γ ` e2 : t1 & F2

Γ ` e1 e2 : t2 & F1 ∪ F2 ∪ F3

And our example should work:

{a 7→ Int} ` a : Int & ∅ {a 7→ Int} ` 1 : Int & ∅
{a 7→ Int} ` a + 1 : Int & ∅

{a 7→ Int} ` put (a + 1) : Int & {put}

∅ ` λa.put (a + 1) : Int
{put}−−−→ Int & ∅ ∅ ` 1 : Int & ∅

∅ ` (λa.put (a + 1)) 1 : Int & {put}

37

15.

2. Putting It All Together

Let’s continue our adventures with functions and effects. We’ll round out our language:

E 3 e ::= · · · | ifz e then e else e | fix e

The type-and-effect rule for ifz is going to be the “obvious” extension of its pure typing rule

Γ ` e1 : Int & F1 Γ ` e2 : T & F2 Γ ` e3 : T & F3

Γ ` ifz e1 then e2 else e3 : t & F1 ∪ F2 ∪ F3

Because we don’t know which branch of the ifz we’re going to follow, we include both in the effect
signature. Of course, we can also have fixed points with side-effects.

Γ ` e : t → t & F

Γ ` fix e : t & F

Finally, I’m going to introduce some syntactic sugar:

e1 ; e2 , let z = e1 in e2

The typing rule follows from the typing rule for its expansion:

Γ ` e1 : t1 & F1 Γ ` e2 : t2 & F2

Γ ` e1 ; e2 : t2 & F1 ∪ F2

Now we can put it all together:

Γ ` n : Int & ∅ Γ ` get : Int & {get}

Γ ` get : Int & {get} Γ ` n : Int & ∅
Γ ` put (get× n) : Int & {get, put} ∆

Γ ` put (get× n) ; f (n − 1) : Int & {get, put}
Γ ` ifz n then get else put (get× n) ; f (n − 1) : Int & {get, put}

{f 7→ Int
{get,put}−−−−−→ Int} ` λn.ifz n then get else put (get× n) ; f (n − 1) : Int

{get,put}−−−−−→ Int & ∅

∅ ` λf .λn.ifz n then get else put (get× n) ; f (n − 1) : (Int
{get,put}−−−−−→ Int)→ (Int

{get,put}−−−−−→ Int) & ∅

∅ ` fix (λf .λn.ifz n then get else put (get× n) ; f (n − 1)) : Int
{get,put}−−−−−→ Int & ∅

where ∆ is

Γ ` f : Int
{get,put}−−−−−→ Int & ∅

Γ ` n : Int & ∅ Γ ` 1 : Int & ∅
Γ ` n − 1 : Int & ∅

Γ ` f (n − 1) : Int & {get, put}

and Γ = {f 7→ Int
{get,put}−−−−−→ Int,n 7→ Int}.

� We use the effects we assumed for f in the derivation. Could we have concluded that f :

Int
{get}−−−→ Int? What about f : Int

{get,put,throw}−−−−−−−−−→ Int?

38

3. Subsumption

3. Subsumption

Something’s gone a bit funny while we weren’t paying attention. On the one hand:

Γ ` x : Int & ∅ Γ ` get : Int & {get}
Γ ` y : Int & ∅

Γ ` put y : Int & {put}
Γ ` ifz x then get else put y : Int & {get, put}

where Γ = {x 7→ Int, y 7→ Int}. But now suppose we try to push abstraction over y down into the
branches:

Γ′ ` x : Int & ∅

Γ ` get : Int & {get}

Γ′ ` λy .get : Int
{get}−−−→ Int & ∅

Γ ` y : Int & ∅
Γ ` put y : Int & {put}

Γ′ ` λy .put y : Int
{put}−−−→ Int & ∅

Γ′ ` ifz x then λy .get else λy .put y : & ∅

where Γ′ = {x 7→ Int}. What’s gone wrong? The two branches of the ifz have different types—
because they have different effects—and so we can’t come up with a uniform result type.

The first thing we can do is to introduce a typing rule called subsumption. Subsumption basically
captures that effects in type-and-effect systems are optional: they may happen, but the type system
doesn’t guarantee that they do. As a result, we can also claim that more effects happen than we
have actually found in the term.

Γ ` e : t & F
(F ⊆ F ′)

Γ ` e : t & F ′

� Subsumption is the first rule we’ve seen that isn’t syntax directed. That is, all our other rules
only apply to particular terms—even if multiple rules might apply to that term. Subsumption
always applies, and it’s up to us to figure out when it’s necessary.

� We now have a different way to conclude multiple types for the same term. For any given

type T , the term λa.a has types E ∅−→ T , T
{get}−−−→ T , T

{put,throw}−−−−−−−→ T , and so forth. We
might prefer the type that claims the fewest effects—i.e., the type that fits the term most
precisely, or that can be used in as many typings as possible. This idea of a most general
type is quite important in the development of functional programming, but we’re not going
to go any further into it for now.

With subsumption in hand, we can now make our problematic derivation go through:

Γ′ ` x : Int & ∅

Γ ` get : Int & {get}
Γ ` get : Int & {get, put}

Γ′ ` λy .get : Int
{get,put}−−−−−→ Int & ∅

Γ ` y : Int & ∅
Γ ` put y : Int & {put}

Γ ` put y : Int & {get, put}

Γ′ ` λy .put y : Int
{get,put}−−−−−→ Int & ∅

Γ′ ` ifz x then λy .get else λy .put y : Int
{get,put}−−−−−→ Int & ∅

with Γ and Γ′ as above. But you ought to find this derivation a little unsatisfying. The crux of
the problem is that subsumption seems to break modularity. We need subsumption to make the
branches of the ifz have the same type, but subsumption actually needs to be applied some distance

39

15.

up the typing derivation to make this happen. Problems with modularity are usually brought into
sharper contrast when we introduce variables. Here’s a somewhat contrived example:

let f = λa.a in (ifz x then f else λy .get, ifz x then f else λy .put y)

What type should we give f ? The first component requires that its type includes the get effect,
while the second component requires the put effect. To satisfy both, we have to give f the type

Int
{get,put}−−−−−→ Int, and so the pair has type (Int

{get,put}−−−−−→ Int, Int
{get,put}−−−−−→ Int). But, if we inline

f :
(ifz x then λy .y else λy .get, ifz x then λy .y else λy .put y)

the resulting term can be given the type (Int
{get}−−−→ Int, Int

{put}−−−→ Int). So how can we get
this term for the original type? We need to generalize subsumption to a relation on terms called
subtyping.

40

