
Day 12.

1. State

Next, we’ll consider a simple kind of state—a single accumulator value. As before, we extend our
language with new terms to retrieve and update the value of the accumulator:

e ::= z | e � e | x | λx .e | e e | get | put e

We need to extend our evaluation relation to incorporate the accumulator. As with a reader, terms
will need access to the initial value of the accumulator; unlike the reader, they’ll also need to
produce a new value of the accumulator at the end of the computation. We’ll represent this with
the judgment t | s0 ⇓ v | s1, indicating that term t in state s0 evaluates to value v with final state
s1. (Of course, this is just notation; the crux is that ⇓ ∈ E × V ⇀ V ×V .)

We start with the evaluation rules for the state operations:

get | s ⇓ s | s
e | s0 ⇓ v | s1

put e | s0 ⇓ 0 | v

The rule for get says that it returns the current state, without changing it. The rule for put t replaces
the state (after computing t) with a new state; the return value is here essentially arbitrary. Of
course, just because put discards the initial state doesn’t mean that it can’t be used in computing
the new state. The evaluation rules for values can be extended to incorporate state in the “obvious”
fashion:

z | s ⇓ z | s λx .e | s ⇓ λx .e | s
However, when we come to the other operations things become a little more interesting.

2. Order of Evaluation

Consider the rule for binary operators t1 � t2. The evaluation of each of t1 and t2 will itself have
an initial state and a final state, and so we have two ways that we can thread the state through
the operations:

e1 | s1 ⇓ltr z1 | s2 e2 | s2 ⇓ltr z2 | s3
e1 � e2 | s1 ⇓ltr z1 � z2 | s3

e1 | s2 ⇓rtl z1 | s3 e2 | s1 ⇓rtl z2 | s2
e1 � e2 | s1 ⇓rtl z1 � z2 | s3

With left-to-right evaluation (on the left), the initial state is used in evaluating the left-hand
argument, with the resulting state used in evaluating the right-hand argument. With right-to-
left evaluation, the state is threaded the opposite way. Note that otherwise the operations are the

31

12.

same—in each case, we combine the values of t1 and t2. We can observe the difference if we consider
a simple term combining get and put:

2 | 0 ⇓ltr 2 | 0
put 2 | 0 ⇓ltr 0 | 2 get | 2 ⇓ltr 2 | 2

put 2 + get | 0 ⇓ltr 2 | 2

2 | 0 ⇓rtl 2 | 0
put 2 | 0 ⇓rtl 0 | 2 get | 0 ⇓rtl 0 | 0

put 2 + get | 0 ⇓rtl 0 | 2

With left-to-right evaluation, the effect of put 2 is observed by get, while with right-to-left evaluation
it is not.

A similar possibility occurs in function evaluation:

e1 | s1 ⇓ltr λx .e | s2 e2 | s2 ⇓ltr w | s3 e[w/x] | s3 ⇓ltr v | s4
e1 e2 | s1 ⇓ltr v | s4

e1 | s2 ⇓rtl λx .e | s3 e2 | s1 ⇓rtl w | s2 e[w/x] | s3 ⇓rtl v | s4
e1 e2 | s1 ⇓rtl v | s4

We can reuse the previous example to see the difference here:

∆

(λa.λb.a + b) get | 0 ⇓ltr λb.0 + b | 0
3 | 0 ⇓ltr 3 | 0

put 3 | 0 ⇓ltr 0 | 3
0 | 3 ⇓ltr 0 | 3 0 | 3 ⇓ltr 0 | 3

(0 + b)[0/b] | 3 ⇓ltr 0 | 3
(λa.λb.a + b) get (put 3) | 0 ⇓ltr 0 | 3

where ∆ =
λa.λb.a + b | 0 ⇓ltr λa.λb.a + b | 0 get | 0 ⇓ltr 0 | 0 (λb.a + b)[0/a] | 0 ⇓ltr λb.0 + b | 0

(λa.λb.a + b) get | 0 ⇓ltr λb.0 + b | 0

vs

∆

(λa.λb.a + b) get | 3 ⇓ltr λb.3 + b | 3
3 | 0 ⇓ltr 3 | 0

put 3 | 0 ⇓ltr 0 | 3
3 | 3 ⇓ltr 3 | 3 0 | 3 ⇓ltr 0 | 3

(3 + b)[0/b] | 3 ⇓ltr 3 | 3
(λa.λb.a + b) get (put 3) | 0 ⇓ltr 3 | 3

where ∆ =
λa.λb.a + b | 3 ⇓ltr λa.λb.a + b | 3 get | 3 ⇓ltr 3 | 3 (λb.a + b)[0/a] | 3 ⇓ltr λb.0 + b | 3

(λa.λb.a + b) get | 3 ⇓ltr λb.3 + b | 3

32

