
Day 6

1. Eagerness

Let’s revisit our evaluation rule for let

t1 ⇓ v1 t2[v1/x ] ⇓ v2

let x = t1 in t2 ⇓ v2

� Do we have to evaluate t1 before substituting?
� What does this tell us about (apparently degenerate) terms like let x = 1÷ 0 in 5? What’s

our intuition for what this term should mean?
� What does this tell us about terms like let x = 5× 5 in x × 5? How much work should this

term do?

An alternate approach: evaluate after substituting:

t2[t1/x ] ⇓ v

let x = t1 in t2 ⇓ v

How does this effect our definition of substitution?

� We were already relying on the inclusion V ∈ T , so substitution non-value terms doesn’t
cause any problems.

� Our definition of substitution for let doesn’t have to change:

(t2[t1/y ])[t/x ] ≈ (t2[t/x ])[t1[t2/x ]/y ]

(modulo usual tedious side conditions on variables appearing in t1 and t2.

Nomenclature (derived from Algol 68). Note that these issues appear identically when we start
talking about functions, ergo “call-by-X ”.

� Evaluating before substituting is called call-by-value. Name here is relatively intuitive: by
value because the thing being substituted is a value. More predictable performance, but more
complex equations.

� Evaluating after substituting is called call-by-name. Name here is less intuitive, but think of
passing around names of terms rather than their values. This is not pass-by-reference... still
no mutation to hand. Simpler equational theory, but less predictable performance.

Each approach can leak into the other:

� Futures in modern programming languages give a flavor of call-by-name in a call-by-value
language—the future itself doesn’t contain the value, but rather a promise that the value will
someday be computed.

� Call-by-need in Haskell moderates the cost of call-by-name reduction, by only evaluating each
term once even if the term seems to have been copied.

11



6

2. Environments

We can attempt to follow our existing approach to approximate the behavior of let. However, a
problem emerges. Consider the ⇓± approximation we’ve built in the past. If we try to extend it to
let, we get something like:

t1 ⇓± s1 t2[??/x ] ⇓± s2

let x = t1 in t2 ⇓± s2

but what to put in for ??? We can’t substitute approximated values into terms—while we had
V ⊆ T , we certainly don’t have P(S) ⊆ T .

An aside. It might seem like the call-by-name let rule gives us hope: why can’t we have:

t2[t1/x ] ⇓± s

let x = t1 in t2 ⇓± s

There are two reasons. First, this isn’t very approximate—we’re approximating the value of t1 once
for each time x appears in t2. Second, and more important, this doesn’t work for recursion... which
we haven’t talked about yet, but we will.

12


