
Day 5

1. Introducing Names

Let’s talk about names.

X 3 x

V ∈ v ::= z

T 3 t ::= z | t1 + t2 | t1 × t2 | t1 ÷ t2 | x | let x = t1 in t2

As before, we want:

� An evaluation relation
� An approximation of the evaluation relation that guarantees safety.

What are the problems?

�

x ⇓ ??

�

t1 ⇓ v1 t2 ⇓ v2

let x = t1 in t2 ⇓ v2
... but where did v1 go?

2. Substitution

First approach: substitute values into terms.

We define the substitution of a value v for a variable x in a term t (notation t [v/x]) as follows:

y [v/x] =

{
v if x = y

y otherwise

(t1 � t2)[v/x] = t1[v/x]� t2[v/x] � ∈ {+,×,÷}

(let y = t1 in t2)[v/x] =

{
let y = t1[v/x] in t2 if x = y

let y = t1[v/x] in [v/x]t2 otherwise

Relevant points:

� Relying on the inclusion of values in terms V ⊆ T . Could introduce explicit notation for this,
but not even I am that pedantic.

� Shadowing of variables in let. (Intuition: bound names don’t matter. Will pay off momen-
tarily.)

8

3. α-Equivalence

Now, we are equipped to give our first meaning of variables and let:

t1 ⇓ v1 t2[v1/x] ⇓ v2

let x = t1 in t2 ⇓ v2

� Substitution is a meta-theoretic notion: we don’t have separate evaluation rules for x [4/x]
and 4, we treat those as the same term.

No rule for variables:

4 ⇓ 4

4 ⇓ 4 4 ⇓ 4

4÷ 4 ⇓ 1

let x = 4 in x ÷ x ⇓ 1

So variables are always stuck terms: no derivation for let x = 5 in y ⇓ z for any z .

3. α-Equivalence

Intuition: changing the names of local variables doesn’t matter. Now, we’re in a position to capture
this idea formally.

We define α-equivalence—i.e., equivalence up to renaming of variables—by:

x ≡α x z ≡α z

t1 ≡α t ′1 t2 ≡α t ′2
(� ∈ {+,×,÷})

t1 � t2 ≡α t ′1 � t ′2

t1 ≡α t ′1 t2[z/x] ≡α t ′2[z/y]
(z 6∈ fv(t1) ∪ fv(t2))

let x = t1 in t2 ≡α let y = t ′1 in t ′2

where the free variables of a term are intuitively those variables in the term not defined by an
enclosing let statement:

fv(x) = {x} fv(t1 � t2) = fv(t1) ∪ fv(t2), � ∈ {+,×,÷}
fv(z) = ∅ fv(let x = t1 in t2) = fv(t1) ∪ (fv(t2) \ {x})

Why do we need a new (also called “fresh”) variable in the let case? Mostly to avoid the possibility
that x is already used in t2′.

Now we can make formal our intuition about α-equivalence:

Theorem. If t ≡α t ′ and t ⇓ v then t ′ ⇓ v.

Proof. By structural induction on the derivation of t ≡α t ′:

� Case
x ≡α x

: the second hypothesis (x ⇓ v) is impossible.

� Case
z ≡α z

: by definition of ⇓.

� Case
t1 ≡α t ′1 t2 ≡α t ′2

t1 � t ′1 ≡α t2 � t ′2
: If t ⇓ v , then we have that t1 ⇓ v1, t2 ⇓ v2, and (abusing notation

slightly) v = v1 � v2. Now, by the induction hypothesis, t ′1 ⇓ v1, t ′2 ⇓ v2, and finally by the
definition of ⇓ we have t ′ ⇓ v .

9

5

� Case
t1 ≡α t ′1 [z/x]t2 ≡α [z/y]t ′2

let x = t1 in t2 ≡α let y = t ′1 in t ′2
: By the induction hypothesis applied to the first

subderivation we have t1 ⇓ v1, t ′1 ⇓ v1. Similarly, by the IH applied to the second subderiva-
tion, we have t2[z/x][v1/z] ⇓ v2 and t ′2[z/y][v1/z] ⇓ v2. But the latter two expressions are
equivalent (by tedious lemma) to t2[v1/x] and t ′2[v1/y], so we have that the original terms
evaluate to v2 as well.

10

