Day 5

1. Introducing Names

Let’s talk about names.

X>z
Vevu=z
T9t22:Z|t1+t2|t1><t2|t1+t2|$‘let:13:tlint2

As before, we want:

e An evaluation relation
e An approximation of the evaluation relation that guarantees safety.

What are the problems?

[]
z |77

v tlw
letz =t int | v

... but where did v; go?

2. Substitution

First approach: substitute values into terms.

We define the substitution of a value v for a variable z in a term ¢ (notation t[v/z]) as follows:

Jlvfs) = { Y

y otherwise
(t1 @ t)[v/z] = ti[v/x] © tofv/z] ® € {+, x,+}
let y = t1[v/z] in &y ifr=y

(let y = t; in to)[v/z] = {

let y = t1[v/x] in [v/z]tz otherwise

Relevant points:

e Relying on the inclusion of values in terms V C T. Could introduce explicit notation for this,
but not even I am that pedantic.

e Shadowing of variables in let. (Intuition: bound names don’t matter. Will pay off momen-
tarily.)

3. a-Equivalence

Now, we are equipped to give our first meaning of variables and let:

td v tlu/z] v
letx =t intr | vy

e Substitution is a meta-theoretic notion: we don’t have separate evaluation rules for z[4/z]
and 4, we treat those as the same term.

No rule for variables:
444 444
44 4+4]1
letz=4inz+z 1

So variables are always stuck terms: no derivation for let £ =5 in y |} z for any z.

3. a-Equivalence

Intuition: changing the names of local variables doesn’t matter. Now, we’re in a position to capture
this idea formally.

We define a-equivalence—i.e., equivalence up to renaming of variables—by:

h=at] ta=ath

(@ e{+ x,+})

T =q T 2 =g 2 h Oty =4t Ot

h=atl tls/e] =a 4l/4]
let z =1t in fp =, let y = ¢ in &

(z & fu(tr) U fo(t2))

where the free variables of a term are intuitively those variables in the term not defined by an
enclosing let statement:

fo(z) = {=z} fo(h © &) = fo(t) U fo(), ©€{+, x,+}
fo(z) =10 fo(let z =t in to) = fo(t1) U (fo(te) \ {z})

Why do we need a new (also called “fresh”) variable in the let case? Mostly to avoid the possibility
that z is already used in t2’.

Now we can make formal our intuition about a-equivalence:

Theorem. Ift =, t' and t || v then t' | v.

Proof. By structural induction on the derivation of t =, t':

e Case : the second hypothesis (z || v) is impossible.
r =4

e Case “ by definition of .

2 =q 2

tl =a t{ tQ =a té . .

; - If t | v, then we have that #; | v, &2 | v, and (abusing notation
hOt =at®l

slightly) v = v1 ® va. Now, by the induction hypothesis, ¢] | v, #, |} v2, and finally by the

definition of || we have t’ |} v.

e Case

10

— / — !/
e Case h=ati [2/c)te =a l2/ylt : By the induction hypothesis applied to the first
letz =1t intp =, let y =] in t}
subderivation we have t; |} v, ¢; |} v1. Similarly, by the IH applied to the second subderiva-
tion, we have tyz/z|[v1/z] | v2 and t5[z/y][vi/z] | v2. But the latter two expressions are
equivalent (by tedious lemma) to &[vi/z] and t)[vi/y], so we have that the original terms

evaluate to vy as well. O

