
Day 4

1. Evaluation May Be Partial

Let’s extend our language a little:

T 3 t ::= z | t1 + t2 | t1 × t2 | t1 − t2 | t1 ÷ t2

and correspondingly, extend our evaluation relation:

· · · t1 ⇓ z1 t2 ⇓ z2

t1 − t2 ⇓ z1 − z2

t1 ⇓ z1 t2 ⇓ z2
(z2 6= 0)

t1 − t2 ⇓ bt1/t2c

Is our evaluation relation still total? Deterministic?

2. Characterizing Partiality

We could attempt to characterize when our evaluation relation does hold. We’ll begin by extending
the ± semantics to incorporate the new cases. Again, we need some lookup tables.

−̂ − 0 +

− {−, 0,+} {−} {−}
0 {−} {0} {+}
+ {+} {+} {−, 0,+}

÷̂ − 0 +

− {+} ∅ {−}
0 {0} ∅ {0}
+ {−} ∅ {+}

Using them, we can define new inference rules for evaluation (or evaluation rules)

· · ·
t1 ⇓± S1 t2 ⇓± S2

t1 − t2 ⇓±
⋃
{s1−̂s2 | s1 ∈ S1, s2 ∈ S2}

t1 ⇓± S1 t2 ⇓± S2

t1 ÷ t2 ⇓±
⋃
{s1÷̂s2 | s1 ∈ S1, s2 ∈ S2}

We already have some neat results. Consider:

6 ⇓± {+} 0 ⇓± {0}
6÷ 0 ⇓± ∅

6 ⇓± {+}
0 ⇓± {0} 0 ⇓± {0}

0 + 0 ⇓± {0}
6÷ (0 + 0) ⇓± ∅

but unfortunately:

6 ⇓± {+}
6 ⇓± {+} 6 ⇓± {+}

6− 6 ⇓± {−, 0,+}
6÷ (6− 6) ⇓± {−,+}

6

3. The Goal

Key idea: ⇓± over-approximates the behavior of ⇓. So while we have a guarantee one direction:

t ⇓ z =⇒ t ⇓± S ∧ signum(z) ∈ S

we do not have a guarantee the other direction:

t ⇓± S ∧ s ∈ S 6=⇒ t ⇓ z ∧ signum(z) = s

given

signum(z) =

− if z < 0

0 if z = 0

+ otherwise

So ⇓± doesn’t fully characterize when terms evaluate, although it gets us much of the way there.
To get the rest of the way, I’ll define a relation called “safety”:

n safe

t1 safe t2 safe

t1 + t2 safe

t1 safe t2 safe

t1 − t2 safe

t1 safe t2 safe

t1 × t2 safe

t1 safe t2 safe t2 ⇓± S 0 6∈ S

t1 ÷ t2 safe

Why not just
t1 + t2 safe

? Addition never “goes wrong”.

Is safety sufficient (sound)? Want: t safe =⇒ ∃z .t ⇓ z .

Is safety necessary (complete)? Want: ∃z .t ⇓ z =⇒ t safe.

Summary: Just as ⇓± over -approximates the behavior of ⇓, safety under -approximates the behavior
of ⇓.

3. The Goal

In general, can we have a sound and complete characterization of a property like safety?

No! Rice’s theorem says that any non-trivial property of the partial computable functions is itself
undecidable.

(Reduction to halting problem: given program p input x , is the function y 7→ p(x); y the identity
function?)

But does this mean that we can’t prove anything about programs? No! We certainly can prove
that y 7→ y is the identity function.

The goal: identify useful subsets of programs for which desirable properties are provable.

7

