Day 4

1. Evaluation May Be Partial

Let’s extend our language a little:
Tat::zz‘t1+t2‘t1><t2’t1—t2|t1+t2

and correspondingly, extend our evaluation relation:
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Is our evaluation relation still total? Deterministic?

2. Characterizing Partiality

We could attempt to characterize when our evaluation relation does hold. We’ll begin by extending
the + semantics to incorporate the new cases. Again, we need some lookup tables.
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Using them, we can define new inference rules for evaluation (or evaluation rules)
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We already have some neat results. Consider:
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but unfortunately:
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3. The Goal

Key idea: |1+ over-approzximates the behavior of ||. So while we have a guarantee one direction:
tz = tls SAsignum(z) e S
we do not have a guarantee the other direction:
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So |l+ doesn’t fully characterize when terms evaluate, although it gets us much of the way there.
To get the rest of the way, I'll define a relation called “safety”:
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Why not just ——— 7 Addition never “goes wrong”.
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Is safety sufficient (sound)? Want: ¢ safe = 3Jz.t | z.
Is safety necessary (complete)? Want: 3z.t | z = t safe.

Summary: Just as ||+ over-approximates the behavior of |}, safety under-approximates the behavior

of .

3. The Goal

In general, can we have a sound and complete characterization of a property like safety?

No! Rice’s theorem says that any non-trivial property of the partial computable functions is itself
undecidable.

(Reduction to halting problem: given program p input z, is the function y — p(z); y the identity
function?)

But does this mean that we can’t prove anything about programs? No! We certainly can prove
that y — v is the identity function.

The goal: identify useful subsets of programs for which desirable properties are provable.



