Day 4

1. Evaluation May Be Partial

Let’s extend our language a little:
Tat::zz‘t1+t2‘t1><t2’t1—t2|t1+t2

and correspondingly, extend our evaluation relation:

iz bl hla bl

0
th—tlxn—2n tr—to b [M/ta] 270

Is our evaluation relation still total? Deterministic?

2. Characterizing Partiality

We could attempt to characterize when our evaluation relation does hold. We’ll begin by extending
the + semantics to incorporate the new cases. Again, we need some lookup tables.

- - 0 + Ll- 0 4+
- {=0+r {= {} - {+ 0 {-}
o {= {0} {+} 0| {0}y 0 {0}
+ ) {+ {043 +1{=} 0 {+}

Using them, we can define new inference rules for evaluation (or evaluation rules)

tid+ 51 2+t S e S1 2 s 5o
t— a4+ U{51;82 | s1 € 81,8 € SQ} =t |+ U{S]_%SQ ‘ s1 € 51,8 € SQ}

We already have some neat results. Consider:

04+ {0} 0yx {0}
60 {+} 0l {0} 60+ {+} 0+0{+ {0}
60+ 0 6=+ (04+0) U0

but unfortunately:

6+ {+} 64+ {+}
6t {+} 6-6+{—0,+}
6+ (6—-06) s {—+}




3. The Goal

Key idea: |1+ over-approzximates the behavior of ||. So while we have a guarantee one direction:
tz = tls SAsignum(z) e S
we do not have a guarantee the other direction:
tye SAseS =5 tl zAsignum(z) =s

given
— ifz2<0
signum(z) =<0 if z2=0

+ otherwise

So |l+ doesn’t fully characterize when terms evaluate, although it gets us much of the way there.
To get the rest of the way, I'll define a relation called “safety”:

t; safe ty safe t; safe {9 safe t; safe 1y safe ty safe fysafe L+ S 0¢85
n safe t1 + o safe t1 — 1y safe t1 X 1y safe 11 = 1y safe

Why not just ——— 7 Addition never “goes wrong”.
t, + ty safe

Is safety sufficient (sound)? Want: ¢ safe = 3Jz.t | z.
Is safety necessary (complete)? Want: 3z.t | z = t safe.

Summary: Just as ||+ over-approximates the behavior of |}, safety under-approximates the behavior

of .

3. The Goal

In general, can we have a sound and complete characterization of a property like safety?

No! Rice’s theorem says that any non-trivial property of the partial computable functions is itself
undecidable.

(Reduction to halting problem: given program p input z, is the function y — p(z); y the identity
function?)

But does this mean that we can’t prove anything about programs? No! We certainly can prove
that y — v is the identity function.

The goal: identify useful subsets of programs for which desirable properties are provable.



