
Day 3

1. Evaluation: Relations on Terms

The eval function represents our first attempt to formally give meaning to terms of our language.
Let’s try to pluck it out of the context of a Haskell program.

z ⇓ z

t1 ⇓ z1 t2 ⇓ z2

t1 + t2 ⇓ z1 + z2

t1 ⇓ z1 t2 ⇓ z2

t1 × t2 ⇓ z1 × z2

Evaluation (⇓) is a relation between terms and integers... mathematically ⇓ ⊆ T × Z. The rules
give a schematic view of that relation. We can look at the expected contents of the relation:

(2, 2) ∈ ⇓ ((2 + 2)× 3, 12) ∈ ⇓
(2, 3) 6∈ ⇓ ((2 + 2)× 3, 8) 6∈ ⇓

How would we go about demonstrating some of these? Recall inference trees:

2 ⇓ 2 2 ⇓ 2

2 + 2 ⇓ 4 3 ⇓ 3

(2 + 2)× 3 ⇓ 12

It’s more interesting to wonder how we would demonstrate that things aren’t in ⇓.

We can also talk about properties of ⇓. (Recall notions of “well-defined” from first day’s discussion.)

� Evaluation is total : for every t ∈ T , there is some z ∈ Z s.t. t ⇓ z .
� Evaluation is deterministic: if t ⇓ z1 and t ⇓ z2, then z1 = z2. (I.e., evaluation is a function.)

How do we prove these things? By induction on the assumptions. Key idea: structure of proof
parallels structure of data.

Q: Why bother doing proofs about programming languages? They are almost always
boring if the definitions are right.
A: The definitions are almost always wrong.

We could also talk about the relationship of our pen-and-paper notion of evaluation to our Haskell
model. Is it the case that if t ⇓ z , then in Haskell eval t will reduce to z?

How do these properties relate to properties of “real” languages? Would we expect the evaluation
relation for C or Haskell (assuming we know what such a thing would look like) to be total or
deterministic? Why or why not?

4



2. Multiple Notions of Evaluation

2. Multiple Notions of Evaluation

The evaluation relation in the previous section seems to capture our intuitive understanding of
arithmetic expressions. What other interpretations are possible?

One possibility—arithmetic modulo b (where b is probably something like 232 or 264). So ⇓b ⊂
T × Zb (or, if you prefer number theory notation, ⇓b ⊂ T × (Z/bZ)).

(n = z mod b)
n ⇓b z

t1 ⇓b z1 t2 ⇓b z2
(z1 + z2 = z3 mod b)

t1 + t2 ⇓b z3

t1 ⇓b z1 t2 ⇓b z2
(z1 × z2 = z3 mod b)

t1 × t2 ⇓b z3

Does this evaluation relation have the same properties as “normal” evaluation?

Let’s define one more notion of evaluation. Suppose we’re only concerned about whether the result
of evaluating something is positive, zero, or negative. (Why might we be concerned about such
things?) We could define something like the following. Let S = {−, 0,+}, and let S range over
subsets of {−, 0,+} (i.e., S ∈ P(S). First, let’s have a few lookup tables:

+̂ − 0 +

− {−} {−} {−, 0,+}
0 {−} {0} {+}
+ {−, 0,+} {+} {+}

×̂ − 0 +

− {+} {0} {−}
0 {0} {0} {0}
+ {−} {0} {+}

So we have that +̂, ×̂ ∈ S × S → P(S). Now we can define a new evaluation relation (⇓± ⊆
T × P(S)):

(n < 0)
n ⇓± {−} 0 ⇓± {0}

(n > 0)
n ⇓± {+}

t1 ⇓± S1 t2 ⇓± S2

t1 + t2 ⇓± {s3 | s1 ∈ S1, s2 ∈ S3, s3 ∈ s1+̂s2}

t1 ⇓± S1 t2 ⇓± S2

t1 × t2 ⇓± {s3 | s1 ∈ S1, s2 ∈ S3, s3 ∈ s1×̂s2}

Alternative presentation of latter two rules:

t1 ⇓± S1 t2 ⇓± S2

t1 + t2 ⇓±
⋃
{s1+̂s2 | s1 ∈ S1, s2 ∈ S2}

t1 ⇓± S1 t2 ⇓± S2

t1 × t2 ⇓±
⋃
{s1×̂s2 | s1 ∈ S1, s2 ∈ S2}

5


