
Day 2

1. Defining a Language

We have: a programming language is a

• well-defined
• representation of (originally: abstraction for)
• computation (originally: instructions to a thing that computes)

So, let’s build one!

Two aspects of language definition:

• Syntax
– from the Greek “suntaxis” coordination
– most technical questions about syntax—parsing and printing—well-studied
– see compilers for mechanisms, theory of computation for theoretical aspects
– not particularly the focus of this course: parsers and printers will generally be provided

• Semantics
– from the Greek “sēmantikos” significant
– many open questions—much of PL theory revolves around questions of defining and

approximating program semantics
– variety of techniques—from the very mathematical (interpreting programs as mathe-

matical functions) to the very empirical (programs mean what the compiler/hardware
do)

– this class—theory of language semantics; compilers—practice of language semantics
– can we ever really get away from translation?

• Most semantic concerns independent of syntactic concerns in programming languages

2. Arithmetic Expressions (Part 1)

Model of computation: grade school arithmetic.

Have to define syntax, even if it’s not the point of the course. Levels of syntax:

• input stream/characters ( 1 8 + 5 ) × 2

• lexemes/words ( 18 + 5 ) × 2

• terms/sentences ( 18 + 5 ) × 2

Underlining convention: language being defined is underlined, meta-notation written normally.
(Broken regularly from now on.)

Our approach: define the terms of a language; leave remaining syntactic concerns implicit.

Terms, intuitively: sums, products, constants. How to make formal?
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2. Arithmetic Expressions (Part 1)

• Mathematical description: Let the set T be the smallest set such that
1. For all integers z ∈ Z, z ∈ T ;
2. If t1, t2 ∈ T , then t1 + t2 ∈ T ; and,
3. If t1, t2 ∈ T , then t1 × t2 ∈ T

• System of inference rules:

(z ∈ Z)
z ∈ T

t1 ∈ T t2 ∈ T
t1 + t2 ∈ T

t1 ∈ T t2 ∈ T
t1 × t2 ∈ T

• BNF (Backus-Naur form) rules:

T 3 t ::= z | t1 + t2 | t1 × t2

Key ideas:

• Each defines the same notion
• Each is compositional : bigger terms are built out of smaller terms

– Operations on terms will be defined the same way: recursive functions are the natural
consequence of compositional definition

• Still have to disambiguate our representation of terms, but parentheses &c. are in our meta-
notation, not in terms themselves

Happy surprise: (almost) direct correspondence between mathematical formalism and executable
Haskell

data Term = Const Int | Plus Term Term | Times Term Term

Some functions:

eval :: Term → Int

eval (Const z) = z

eval (Plus t1 t2) = eval t1 + eval t2

eval (Times t1 t2) = eval t1 ? eval t2

pp :: Term → String

pp (Const z) = show z

pp (Plus t1 t2) = "(" ++ pp t1 ++ ") + (" ++ pp t2 ++ ")"

pp (Times t1 t2) = "(" ++ pp t1 ++ ") ? (" ++ pp t2 ++ ")"

Key ideas:

• Pattern matching: always your friend
• Recursion: always your other friend
• Summary: structure of computation parallels structure of data
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