
Day 19.

1. Types and Type Schemes

Intuitively, we want to think about type schemes as denoting families of (or sets of) types. The type
scheme ∀α.α → α denotes the set {Int → Int, Bool → Bool, (Int → Int) → (Int → Int), . . . },
whereas the scheme ∀alpha.α denotes the set of all types. We can make this idea formal, as follows.
We call the set of types denoted by a scheme S the instances of S , bSc, defined as follows:

bTc = {T} b∀α.Sc =
⋃
T∈Y
bS [T/α]c

So, for example:

b∀α.αc = Y
bαc = α

b∀α.∀β.α→ βc = {t1 → t2 | t1 ∈ Y, t2 ∈ Y}

This idea of instances aligns perfectly with our idea of renaming-equivalence:

Theorem 19.1. S1 ≡α S2 iff bS1c = bS2c.

We can also use instances to order type schemes: we say a type scheme S1 is more general than S2,
S1 ≥ S2, iff bS1c ⊇ bS2c. For example,

∀α.α ≥ ∀α.α→ α ≥ ∀α.∀β.(α, β)→ (α, β) ≥
∀α.(α, Bool)→ (α, Bool) ≥ (Int, Bool)→ (Int, Bool).

We can relate generality to substitution, although with a bit of hair.

Theorem 19.2. ∀α.T1 ≥ ∀β.T2 iff there are types U1 . . .Un such that T1[T/α] = T2.

2. Polymorphism in Terms

Let’s start with our standard functional term language, and add polymorphism.

T 3 t ::= z | t � t | x | λx .t | t t

� We don’t get any new term forms for polymorphism—the idea is that λa.a should implicitly
be polymorphic.

� This is following the Curry-style presentation that we’ve used almost all of the semester. Of
course, there are also presentations of polymorphism, which makes polymorphism explicit ;
the most common of these is the Girard-Reynolds calculus, also called System F.

44

2. Polymorphism in Terms

We have all the typing rules we’re familiar with, and two new ones to introduce and eliminate
polymorphism.

Γ ` z : Int

Γ ` t1 : Int Γ ` t2 : Int

Γ ` t1 � t2

Γ ` x : Γ(x)

Γ[x 7→ T1] ` t : T2

Γ ` λx .t : T1 → T2

Γ ` t1 : T1 → T2 Γ ` t2 : T1

Γ ` t1 t2 : T2

Γ ` t : ∀α.S
Γ ` t : S [T/α]

Γ ` t : S

Γ ` t : ∀α.S

� Intuition: type variables stand in for arbitrary types, so if something produces a result of
arbitrary type, it can produce a result of any type we like.

� Quantifiers here are making that assumption explicit in types, even though it remains implicit
in terms.

� Functions restricted to work on types, not type schemes, to preserve the stratification of types
and schemes.

Does this work as we want? We can derive a polymorphic type for the identity function, as we’d
expect.

{a 7→ α} ` a : α

∅ ` λa.a : α→ α

∅ ` λa.a : ∀α.α→ α

But we can also derive some types that we might not want! For example:

{a 7→ α} ` a : α
(∗)
{a 7→ α} ` a : ∀α.α
{a 7→ α} ` a : β

∅ ` λa.a : α→ β

∅ ` λa.a : ∀β.α→ β

∅ ` λa.a : ∀α.∀β.α→ β

What’s gone wrong? Our intuition about type variables wasn’t quite correct.

� Variables in the type of a term may capture dependence of the term on its environment
� Variables only truly represent arbitrary types if they don’t appear in the environment. (Called

the eigenvariable condition.)

We can update our quantification rules to capture the eigenvariable condition:

Γ ` t : ∀α.S
Γ ` t : S [T/α]

Γ ` t : S
(α 6∈ fv(Γ))

Γ ` t : ∀α.S

where fv(Γ) is defined in terms of fv on schemes in an entirely boring fashion. Now the bogus
generalization step (marked with an ∗) in the derivation above isn’t valid—because α is in fv({a 7→
α}).

45

19.

We have one additional problem: because we’ve restricted functions we don’t have any way to bind
polymorphic values. We’ll add a new language feature to introduce polymorphism... or actually,
reuse an existing language feature.

T 3 t ::= z | t � t | x | λx .t | t t | let x = t in t

with the typing rule

Γ ` t1 : S Γ[x 7→ S] ` t2 : T

Γ ` let x = t1 in t2 : T

This is not the way we’ve been using let so far! We can’t interpret let x = t1 in t2 as (λx .t2) t1. In
the latter, x would have to have a monomorphic type, where our goal here is to make it polymorphic.
Now, we can return to our starting example:

{a 7→ α} ` a : α

∅ ` λa.a : α→ α

∅ ` λa.a : ∀α.α→ α

Γ ` f : ∀α.α→ α

Γ ` f : (Int→ Int)→ (Int→ Int)

Γ ` f : ∀α.α→ α

Γ ` f : Int→ Int

Γ ` f f : Int→ Int Γ ` 1 : Int

Γ ` f f 1 : Int

∅ ` let f = λa.a in f f 1 : Int

where Γ = {f 7→ ∀α.α→ α}.

3. Principal Types and Type Inference

We’ll finish with a brief discussion of why Hindley-Milner polymorphism is restricted the way it is.
One of the key properties of the Hindley-Milner system is that it has principal types.

Theorem 19.3. If Γ ` t : S1 and Γ ` t : S2, then there is some S such that S ≥ S1, S ≥ S2 and
Γ ` t : S.

Intuitively, this means that every typeable term has a most general type, and that if we can figure
out that most general type it encompasses all the other types at which that term could be used.
The practical consequence is that type inference can be useful. So long as the compiler has some
way of computing a term’s most general type, then there’s no danger that the type the compiler
computes isn’t as good as the one you might intend.

I’m not going to prove principality for H-M, although I’m happy to talk about how you might
outside of class.

Now suppose we relax the Hindley-Milner constraints just a little—we’ll allow quantifiers to be
nested in types. This gives a much simpler system—no more stratification of types and schemes,
and no more special treatment of let. And, it’s more expressive. But we can show that this system
can’t have principal types either. Consider these two typings:

∅ ` λf .λa.λb.(f a, f b) : ∀α.∀β.(α→ β)→ α→ α→ (β, β)

∅ ` λf .λa.λb.(f a, f b) : ∀α.∀β.(∀γ.γ → γ)→ α→ β → (α, β)

These types are fundamentally incomparable: the top one lets you pick a function and arguments
that match, while the bottom one lets you pick different types for a and b. There’s no more-general
type that encompasses both of these (take my word for it). So, such a system, as expressive as it
might be, can’t have a well-defined type inference algorithm that never makes the wrong guess.

46

