
Day 14.

1. Non-determinism

The next effect we consider will be non-determinism. As before, we extend our language with
new term forms characterizing our effect. In this case, the term form we introduce will add a
non-deterministic choice between two possible outcomes.

t ::= z | t � t | x | λx .t | t t | t or t

Intuitively, the term 1 or 2 should be able to evaluate to either 1 or to 2. We can take advantage of
our relational characterization of evaluation to express this quite directly.

t1 ⇓ v

t1 or t2 ⇓ v

t2 ⇓ v

t1 or t2 ⇓ v

That is to say: we now have two different rules for evaluating the same term, each of which could
apply in a given derivation. For example, all of the following are valid derivations in this system:

1 ⇓ 1

1 or (2 or 3) ⇓ 1

2 ⇓ 2

2 or 3 ⇓ 2

1 or (2 or 3) ⇓ 2

3 ⇓ 3

2 or 3 ⇓ 2

1 or (2 or 3) ⇓ 3

� For the first time, we’re relying on an evaluation rule that is not functional: we have ⇓ ∈ T ×V
but not ⇓ ∈ T ⇀ V

� Our evaluation relation doesn’t specify any priorities, preferences, or probabilities. We could
imagine implementations of this evaluation relation that produced 1, 2, and 3 with equal
likelihood, produced 1 half the time, and 2 and 3 each a quarter of the time, or even always
produced 2. Each of these implementations would satisfy the evaluation relation, but would
have very different practical uses.

This construct might not seem like much, but is theoretically quite powerful. A couple of examples.

Of course, given binary non-determinism, we can extrapolate to n-ary non-determinism. Here’s a
general pattern:

below = fix (λbelow .λn.if n = 1 then 1 else n or below (n − 1))

E.g. below 1 ⇓ 1, below 2 ⇓ 2 and below 2 ⇓ 1. For which z can we derive below 0 ⇓ z?

Where might we see non-determinism in practice?

Examples: non-determinism and short-cut evaluation. Non-determinism and non-termination.

33

14.

2. Combining Effects

Suppose we wanted a system with both non-determinism and state?

t ::= z | t � t | x | λx .t | t t | t or t | get | put t

That’s the easy bit... what happens to the evaluation relation? We can try just combining the
evaluation relations:

get | s ⇓ s | s
t | s1 ⇓ v | s2

put t | s1 ⇓ v | v
t1 | s1 ⇓ v | s2

t1 or t2 | s1 ⇓ v | s2

t2 | s1 ⇓ v | s2
t1 or t2 | s1 ⇓ v | s2

What about combining them the “other way”:

t1 | s1 ⇓ v | s2 t2 | s2 ⇓ w | s3
t1 or t2 | s1 ⇓ v | s3

t1 | s1 ⇓ v | s2 t2 | s2 ⇓ w | s3
t1 or t2 | s1 ⇓ w | s2

34

