
Day 12.

1. Purity

The language we’ve been studying so far is pure:

� Pure functions—result of the function determined solely by its input... e.g., sin, x 7→ x + 1
� Pure computations—results of the computation determined solely by the value of its free

variables... e.g., sin x , x + 1
� Pure language—only describes pure computations

Purity is useful in understanding and writing correct programs:

� Avoids interaction between different parts of programs
� Useful in concurrency and parallelism in particular
� Related to e.g. const-correctness in C++

Impurity isn’t necessary in languages:

� Haskell, Idris, Agda, etc.

but it is a feature of most programming languages. Regardless, we will need some way to model
side effects, so we can talk about (e.g.) I/O even in pure languages.

Goals for the next part of the semester:

1. Develop models of various side-effects in terms of our evaluation relation.
� Our language will grow impure terms—that is, terms whose behavior is determined by

more than the values of their free variables. However, evaluation itself will remain a
(pure) mathematical relation. That’s why I call this modeling side-effects.

2. Discover a common structure in all of these models of side-effects—the monad—allowing us
to generalize our implementations of side-effects

� This is how Haskell (and other such languages) account for side-effects in a pure language
� We’ll need to learn some details about how Haskell handles generalization—called para-

metric and qualified polymorphism—to realize this common structure in our implemen-
tations.

3. Design type and effect systems that capture side-effect behavior in types.
� We’ll use this as a vehicle to talk about subtyping ; the latter has wide-ranging importance

beyond effect systems.

Sorts of side-effects

� Reader—access to ambient data (i.e., operating system environment, hardware parameters)
� Writer—producing values in addition to results (i.e., logging)
� Exceptions—producing values instead of results (i.e., errors, failures)
� State—something like interacting reader and writer
� Non-determinism—producing multiple results. (In particular, probabilistic programming pro-

duces a distribution of results, and is one useful way to talk about a variety of machine learning

28

2. Reader

problems.)
� Concurrency—multiple communicating threads of computation. (Doesn’t imply parallelism.)
� Continuations—a “general-purpose” side effect capable of implementing most others. (No

good intuition)

Things we won’t consider side-effects (but some might):

� Non-termination
� Parallelism/computation time

2. Reader

� Idea: terms have access to some ambient, read-only state.
� Operations:

– Read the ambient state
– Run a computation with a different ambient state

Let’s extend our term language with these operations:

t ::= z | t � t | x | λx .t | t t | ask | local t t

We’ll assume that the ambient state is one of our values—usually an integer, for ease, but could be
anything. Values don’t include side-effecting terms:

v ::= z | λx .t

but note that values may delay side effects.

Evaluation relation needs to be extended with this ambient value r . We’ll write t | r ⇓ v to denote
that term t in ambient state r evaluates to v .

The rules for the new terms are “obvious”:

ask | r ⇓ r

t | r ′ ⇓ v

local r ′ t | r ⇓ v

but that’s not enough! We also have to account for the remaining constructs of our language in
this new evaluation rule. Let’s start with the call-by-value version:

z | r ⇓ z

t1 | r ⇓ z1 t2 | r ⇓ z2

t1 � t2 | r ⇓ z1 � z2 λx .t | r ⇓ λx .t

t1 | r ⇓ λx .t t2 | r ⇓ w t [w/x] | r ⇓ v

t1 t2 | r ⇓ v

where (“predictably”):

ask[v/x] = ask (local r t)[v/x] = local (r [v/x]) t [v/x]

Some patterns emerge:

� New terms interact with new portions of the evaluation relation
� Meaning of old terms stays “relatively” constant... they preserve the ambient state, but don’t

interact with it
� Using call-by-value function calls (more on this shortly)

29

12.

Some examples.

ask | 1 ⇓ 1 1 | 1 ⇓ 1

ask + 1 | 1 ⇓ 2

ask | 14 ⇓ 14 1 | 14 ⇓ 1

ask + 1 | 14 ⇓ 15

� Just knowing the term is no longer enough to determine the result
� But knowing the term and the ambient state is enough to determine the result; ⇓ : T ×V ⇀ V

Some more examples:

ask | 14 ⇓ 14

local 14 ask | 1 ⇓ 14 ask | 1 ⇓ 1

local 14 ask + ask | 1 ⇓ 15

λa.a + ask | 14 ⇓ λa.a + ask

local 14 (λa.a + ask) | 1 ⇓ λa.a + ask ask | 1 ⇓ 1

1 | 1 ⇓ 1 ask | 1 ⇓ 1

(a + ask)[1/a] | 1 ⇓ 2

(local 14 (λa.a + ask)) ask | 1 ⇓ 2

� Functions delay computation—the ask happens when the function body is evaluated, not the
λ-term.

λa.local 14 (a + ask) | 1 ⇓ λa.local 14 (a + ask) ask | 1 ⇓ 1

1 | 14 ⇓ 1 ask | 14 ⇓ 14

(1 + ask) | 14 ⇓ 15

(local 14 (a + ask))[1/a] | 1 ⇓ 15

(λa.local 14 (a + ask)) ask | 1 ⇓ 15

� Arguments are still evaluated at call sites.

But let’s talk about call-by-name.

λa.local 14 (a + ask) | 1 ⇓cbn λa.local 14 (a + ask)

14 | 1 ⇓cbn 14

ask | 14 ⇓cbn 14 ask | 14 ⇓cbn 14

ask + ask | 14 ⇓cbn 28

(local 14 (a + ask))[ask/a] | 1 ⇓cbn 28

(λa.local 14 (a + ask)) ask | 1 ⇓cbn 28

� In CBN, effects in arguments as well as functions may be delayed.

30

