Day 12.

1. Purity

The language we’ve been studying so far is pure:

e Pure functions—result of the function determined solely by its input... e.g., sin, x — z + 1

e Pure computations—results of the computation determined solely by the value of its free
variables... e.g., sinx, v + 1

e Pure language—only describes pure computations

Purity is useful in understanding and writing correct programs:

e Avoids interaction between different parts of programs
e Useful in concurrency and parallelism in particular
e Related to e.g. const-correctness in C++

Impurity isn’t necessary in languages:
e Haskell, Idris, Agda, etc.

but it is a feature of most programming languages. Regardless, we will need some way to model
side effects, so we can talk about (e.g.) I/O even in pure languages.

Goals for the next part of the semester:

1. Develop models of various side-effects in terms of our evaluation relation.
e Our language will grow impure terms—that is, terms whose behavior is determined by
more than the values of their free variables. However, evaluation itself will remain a
(pure) mathematical relation. That’s why I call this modeling side-effects.
2. Discover a common structure in all of these models of side-effects—the monad—allowing us
to generalize our implementations of side-effects
e This is how Haskell (and other such languages) account for side-effects in a pure language
o We'll need to learn some details about how Haskell handles generalization—called para-
metric and qualified polymorphism—to realize this common structure in our implemen-
tations.
3. Design type and effect systems that capture side-effect behavior in types.
e We'll use this as a vehicle to talk about subtyping; the latter has wide-ranging importance
beyond effect systems.

Sorts of side-effects

e Reader—access to ambient data (i.e., operating system environment, hardware parameters)
Writer—producing values in addition to results (i.e., logging)

Exceptions—producing values instead of results (i.e., errors, failures)

State—something like interacting reader and writer

Non-determinism—producing multiple results. (In particular, probabilistic programming pro-
duces a distribution of results, and is one useful way to talk about a variety of machine learning

28

2. Reader

problems.)
e Concurrency—multiple communicating threads of computation. (Doesn’t imply parallelism.)
e Continuations—a “general-purpose” side effect capable of implementing most others. (No
good intuition)

Things we won’t consider side-effects (but some might):

e Non-termination
e Parallelism/computation time

2. Reader

e Idea: terms have access to some ambient, read-only state.
e Operations:

— Read the ambient state

— Run a computation with a different ambient state

Let’s extend our term language with these operations:
tuo=z|tOt|xz | z.t|tt]ask|localtt

We’ll assume that the ambient state is one of our values—usually an integer, for ease, but could be
anything. Values don’t include side-effecting terms:

vi=z| Azt

but note that values may delay side effects.

Evaluation relation needs to be extended with this ambient value r. We’ll write ¢ | r | v to denote
that term ¢ in ambient state r evaluates to v.

The rules for the new terms are “obvious”:

tlr v

ask |y r localr’t|rlv

but that’s not enough! We also have to account for the remaining constructs of our language in
this new evaluation rule. Let’s start with the call-by-value version:

tlrdz t|rl= ti|lrd et t|riw tw/z]|riov
zlrdz tHot|rlaozn At|riict Lty rdo

where (“predictably”):
ask[v/z] = ask (local r t)[v/z] = local (r[v/z]) t[v/z]

Some patterns emerge:

e New terms interact with new portions of the evaluation relation

e Meaning of old terms stays “relatively” constant... they preserve the ambient state, but don’t
interact with it

e Using call-by-value function calls (more on this shortly)

29

12.

Some examples.

ask [1y1 1|1y1 ask|14y14 1|14]1
ask+1[1{2 ask+1]14 15

e Just knowing the term is no longer enough to determine the result
e But knowing the term and the ambient state is enough to determine the result; |} : 7xV —V

Some more examples:

ask | 14 |} 14
local14ask | 1 14 ask |11
local 14 ask +ask | 1 { 15

Aa.a + ask | 14 || Aa.a + ask 11141 ask|1{1
local 14 (Aa.a +ask) | 1 |} Aa.a +ask ask|1{ 1 (a+ask)[l/a]|12
(local 14 (Aa.a + ask)) ask | 1 | 2

e Functions delay computation—the ask happens when the function body is evaluated, not the
A-term.

11401 ask|14{ 14
(1+ask) |14 15
Aa.local 14 (a 4 ask) | 1 | Aa.local14 (a +ask) ask |1 1 (locall4(a+ask))[1/a]|1{ 15
(Aa.local 14 (a + ask))ask | 1 | 15

e Arguments are still evaluated at call sites.

But let’s talk about call-by-name.

ask | 14 {cpn 14 ask | 14 {epn 14
141 Jepn 14 ask + ask | 14 Jcpn 28
Aa.local 14 (a + ask) | 1 Ycpn Aa.local 14 (a + ask) (local 14 (a + ask))[ask/a] | 1 Jcbn 28
(MAa.local 14 (a + ask)) ask | 1 {cpn 28

e In CBN, effects in arguments as well as functions may be delayed.

30

