
Day 10.

1. Typing Functions

What can go wrong? 1 2, (λc.c) + 1.

We need to extend our grammar of types:

Y 3 T ::= Int | T1 → T2

� Why don’t closures need to be reflected in the types of functions?

As before, we define a variation of the evaluation relation that characterizes the types of values:
Γ ` t : T .

� Syntax: ` denotes consequence—under the assumptions in Γ, the typing on the right holds.
: was originally ∈.

� Γ : X ⇀ Y map from variables to their types.
� More about the typing relation... and the significance of our notational choices... to come.

Typing rules:

Γ ` z : Int

Γ ` t1 : Int Γ ` t2 : Int

Γ ` t1 + t2 : Int
· · ·

Γ ` x : Γ(x )

Γ[x 7→ T1] ` t : T2

Γ ` λx .t : T1 → T2

Γ ` t1 : T1 → T2 Γ ` t2 : T1

Γ ` t1 t2 : T2

� Common notation for Γ[x 7→ T1] is Γ, x :T1. May fall into this later, but not yet.
� Why don’t we have to represent the closure in the application rule?

Let’s look at some simple derivations:

{a 7→ Int, b 7→ Int→ Int} ` a : Int

{a 7→ Int} ` λb.a : (Int→ Int)→ Int

∅ ` (λa.λb.a) : Int→ (Int→ Int)→ Int ∅ ` 3 : Int

∅ ` (λa.λb.a) 3 : (Int→ Int)→ Int

{c 7→ Int} ` c : Int

∅ ` λc.c : Int→ Int

∅ ` (λa.λb.a) 3 (λc.c) : Int

{a 7→ Int→ Int} ` a : Int→ Int

∅ ` (λa.a) : (Int→ Int)→ (Int→ Int)

{b 7→ Int} ` b : Int

∅ ` (λb.b) : Int→ Int

∅ ` (λa.a) (λb.b) : Int→ Int

� Check typing of functions at construction, not at use. So: more structure under the typing
of a λ, but less at their uses.

22



2. Basic Proof Theory

� Same term may have more than one typing derivation: λa.a (up to α-equivalence) given both
Int→ Int and (Int→ Int)→ (Int→ Int).

2. Basic Proof Theory

Historical notes:

� Hilbert’s axiomatic proof theory : 1. Choose axioms and basic objects 2. Prove consistency
3. Explore independence and completeness 4. Decision procedure

� Aims: geometry, arithmetic, analysis
� Gentzen’s development of formal proof theory.

– Based on work by Frege
– Starting the above program with logic

Gentzen’s observation: rather than starting from axioms, most proofs start from a set of assump-
tions. There are then two categories of operations:

� Assumptions are analyzed into parts—eliminating them
� Conclusions are analyzed into parts—introducing them
� Ideally, you meet in the middle

This means that, to formalize proofs, we want to provide each logical connective with a set of
introduction rules and a set of elimination rules.

Conjunction:

A B
(∧ I)

A ∧ B

A ∧ B
(∧E1)

A

A ∧ B
(∧E2)

B

Disjunction:

A
(∨ I1)

A ∨ B

B
(∨ I2)

A ∨ B

A ∨ B

[A]
...

C

[B ]
...

C
(∨E)

C

� Bracketed propositions may be used in the derivation, as often as needed, but are not required
to be.

Implication:

[A]
...

B
(⇒ I)

A⇒ B

A⇒ B A
(⇒E)

B

23



10.

Now, we can put together some simple derivations:

[A ∧ (B ∨ C )]p
(∧E2)

B ∨ C

[A ∧ (B ∨ C )]p
(∧E1)

A [B ]q
(∧ I)

A ∧ B
(∨ I1)

(A ∧ B) ∨ (A ∧ C )

[A ∧ (B ∨ C )]p
(∧E1)

A [C ]r
(∧ I)

A ∧ C
(∨ I2)

(A ∧ B) ∨ (A ∧ C )
(∨E)q,r

(A ∧ B) ∨ (A ∧ C )
(⇒ I)p

A ∧ (B ∨ C )⇒ (A ∧ B) ∨ (A ∧ C )

� We label rules that introduce assumptions and the corresponding uses of those assumptions...
for example, the hypothesis introduced at the base of the derivation is used at the points
labeled p.

We can extend this approach to the logical constants as well:

(> I)
>

(No elimination rule for truth) ⊥
(⊥E)

A
(No introduction rule for falsity)

� We define negation in terms of implication and falsity: ¬A = A ⇒ ⊥. This gives, as we
expect, A ∧ ¬A =⇒ ⊥.

� Don’t actually need (⊥E) (also called ECQ). Result is called minimal logic.

Key idea: normalization

� Eliminate detours (i.e. lemmas) in proofs
� Consistency as a consequence (i.e., because there are no proofs of ⊥, and normalized proof

can only prove ⊥ if it’s assumed it.

Conjunction:

...
A

...
B

(∧ I)
A ∧ B

(∧E1)
A

 
...
A

...
A

...
B

(∧ I)
A ∧ B

(∧E2)
B

 
...

B

Disjunction:

...
A

(∨ I1)
A ∨ B

[A]
...

C

[B ]
...

C
(∨E)

C
 

...
A
...

C

...
B

(∨ I2)
A ∨ B

[A]
...

C

[B ]
...

C
(∨E)

C
 

...
B
...

C

Implication:

[A]
...

B
(⇒ I)

A⇒ B

...
A

(⇒E)
B

 

...
A
...

B

Key observation: these transformations correspond to evaluation rules for functional languages!

24


