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Abstract

In the proof of Gödel’s first incompleteness theorem, given a formal system F ,
Gödel defined a set BF of natural numbers which are the Gödel numbers of formulas
that can be proved in F . We show that there exists a formal system F ′ such that the
characteristic function of BF ′ cannot be constructed in any consistent formal system.
We show further that an infinite set S of natural numbers is countable if and only if
S has a characteristic function. Excluding inconsistent formal systems, we conclude
that BF ′ is uncountable, because if BF ′ were countable, we would have obtained a
characteristic function of BF ′ . BF ′ serves as a counterexample to the claim that
“every set of natural numbers is countable,” which appears in many textbooks on set
theory, logic, or discrete mathematics.

1 Introduction

Gödel’s two incompleteness theorems, published by Kurt Gödel in 1931, have great influence
in logic and mathematics [4]. The first incompleteness theorem states that every consistent
formal system expressive enough to formalize ordinary mathematics is incomplete in the
sense that there exists a formula that neither be proved to be true nor disproved (its negation
is proved to be true) in the system [4, 8]. To prove this theorem, Gödel used an ingenious
encoding, called Gödel numbering, to represent any formula ϕ of the formal system by a
natural number, denoted by ⌜ϕ⌝, the Gödel number of ϕ. The set of all formals that can be
proved by the formal system can be represented by the set B of all Gödel numbers of these
formulas. Obviously, B ⊂ N is infinite, where N denotes the set of all natural numbers.

We say a total function f : N 7→ {0, 1} is the characteristic function of a set S ⊆ N if
for every n ∈ N , f(n) = 1 if and only if n ∈ S. Gödel’s first incompleteness theorem implies
that if B has any characteristic function, say fB, then fB cannot be constructed in the same
formal system, because we would have used fB to decide if any formula can be proved or
not (by checking whether its Gödel number is in B or not) in the same formal system, a
contradiction to the first incompleteness theorem. From this result, we show further that
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there exists a set G of natural numbers whose characteristic function cannot be constructed
in any consistent formal system.

By Cantor’s definition [1], a set S is countable if either S is finite or there exists a bijection
f : N 7→ S. In the infinite case, we say f is a counting bijection of S. S is countably infinite
if S has a counting bijection. We show that when S is infinite, a counting bijection of
S exists if and only if S has a characteristic function. Take G ⊂ N from the previous
paragraph, it implies that no counting bijection of G can be constructed in any consistent
formal system. We conclude that G is uncountable, unless we accept inconsistent formal
systems. This conclusion is contradictory to the claim that any set of natural numbers is
countable. In the following, we will present in detail how this conclusion is reached.

2 Does Every Subset of N have a Characteristic

Function?

To answer the question in the section title, we first present Gödel’s first incompleteness
theorem, which is one of the most important results in mathematical logic.

In Gödel’s milestone paper [4], Gödel presented a formal system P (stands for Principia
Mathematica), a higher-order logic system. If we ignore variables of higher orders, P can
be regarded as a small first-order language known today as Peano arithmetic [12].

The syntax of P uses the following symbols: ‘0’ (constant), ‘s’ (successor function sym-
bol), ‘+’ (addition function symbol), ‘=’ (equality predicate), ‘¬’ (negation), ‘∨’ (logical
disjunction), ‘∀’ (universal quantifier), ‘x’, ‘y’, ‘z’, ... (variables), ‘(’ and ‘)’ (grouping sym-
bols). Popular logical operators can be defined from ¬, ∨, and ∀. Well-formed terms and
formulas are created from these symbols as in any first-order language. Axioms are those
formulas that are assumed to be true (e.g., ∀x (x+ 0 = x) and ∀x∀y (x+ sy = s(x+ y))).
The rules of primitive recursive functions are included as axioms. Popular inference rules
are included and supported by the axioms. For a discussion on the minimal set of axioms
that P accepts, please see [11]. As in Peano arithmetic, the set of all natural numbers, N ,
is the default domain of all interpretations of the formulas in P . All primitive recursive
functions, including all popular arithmetic functions, can be constructed in P . Now, the
phrase “expressive enough to formalize ordinary mathematics” can be replaced by P or
Peano arithmetic for simplicity.

A formal system F is an extension of P if F is obtained by adding axioms to P and
there exists an algorithm that tells whether any formula is an axiom or not. As a formal
system, F inherits P ’s inference rules, which are used to prove theorems from axioms. A
proof of formula ϕn in F is a list of formulas (ϕ1, ϕ2, ..., ϕn) such that for 1 ≤ i ≤ n, ϕi is
either an instance of an axiom of F or the result of an inference rule of F using ϕj, j < i,
as the premises needed by the inference rule. In this case, we say ϕn is a theorem of F or ϕn

is proved (to be true) in F , and write ⊢F ϕn. F is inconsistent if ⊢F ϕ and ⊢F ¬ϕ for some
formula ϕ; F is consistent if F is not inconsistent. F is complete if for any formula ϕ, either
⊢F ϕ or ⊢F ¬ϕ; F is incomplete if F is not complete. Now, Gödel’s first incompleteness
theorem can be stated as follows:
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Theorem 2.1 (Gödel’s First Incompleteness Theorem) Let F be an extension of P .
If F is consistent, then F is incomplete.

This theorem applies to P , as P is a trivial extension of P . The theorem states that if
F is a consistent extension of P , then there exists a formula ϕ such that neither ⊢F ϕ nor
⊢F ¬ϕ. This ϕ is often referred to as a “Gödel sentence” of F .

An essential step of Gödel’s proof is to establish a one-to-one correspondence between
the formulas of F and a set of natural numbers through Gödel numbering, which assigns a
distinct natural number to each symbol and then constructs a unique natural number to
each term, each formula, each list of formulas, etc. [8]. By convention, for any syntactic
entity t of F , be it terms, formulas, or lists of formulas, we will use ⌜t⌝ ∈ N to denote the
Gödel number of t [8].

Using Gödel numbers, Gödel developed several dozens of primitive recursive relations
and functions over N as arithmetic interpretation of predicates and functions in F . One
notable primitive recursive relation in Gödel’s proof is pr ⊂ N 2: For a, b ∈ N , pr(a, b) is
true (i.e., ⟨a, b⟩ ∈ pr) if and only if a = ⌜ϕ1, ϕ2, ..., ϕk⌝, b = ⌜ϕk⌝, and the list (ϕ1, ϕ2, ..., ϕk)
is a proof of ϕk in F . Hence, for any formula ϕ, ⊢F ϕ if and only if ∃x pr(x, ⌜ϕ⌝) is true [8].

Lemma 2.2 Let F be a consistent extension of P and

BF = {⌜ϕ⌝ | ⊢F ϕ}.

If BF has a characteristic function g, then (a) g cannot be constructed in F ; (b) g must be
constructed in a formal system that is equivalent to an extension of F .

Proof. (a) Let us assume that g : N 7→ {0, 1} is a characteristic function of BF such that
g(n) = 1 if and only if n ∈ BF . Let ϕ be any Gödel sentence of F . If g can be constructed
in F , using g, we can decide in F if ⊢F ϕ or ⊢F ¬ϕ:

• If g(⌜ϕ⌝) = 1, then ⌜ϕ⌝ ∈ BF and ⊢F ϕ.

• If g(⌜ϕ⌝) = 0, then g(⌜¬ϕ⌝) = 1 because g is total and F is consistent. Hence
⌜¬ϕ⌝ ∈ BF and ⊢F ¬ϕ.

In either case, we have a contradiction to Gödel’s first incompleteness theorem.
(b) If g can be constructed by another formal system, say F ′, then F ′ must be equivalent

to a nontrivial extension of F , because (i) for any formula ϕ, g(⌜ϕ⌝) = 1 if and only if ⊢F ϕ,
that is, F ′ can decide every theorem of F through g; (ii) g can only be constructed in F ′,
not in F , thus F ′ must be more powerful than F . □

It is known that a Gödel sentence can become proved or disproved in an extension F ′ of
F by adding axioms in F ′. However, Gödel’s first incompleteness theorem also applies to
F ′ if F ′ is consistent. That is, F ′ has its own Gödel sentences. Let BF ′ = {⌜ϕ⌝ | ⊢F ′ ϕ}. In
general, BF ⊆ BF ′ as more axioms lead to more theorems. We observe that the existence
of characteristic functions for BF and BF ′ has a similar property to the existence of Gödel
sentences for F and F ′. That is, assume F ′ is a consistent extension of F and a characteristic
function can be constructed for BF in F ′, then there is no way to construct in F ′ any
characteristic function of BF ′ as Lemma 2.2 also applies to F ′. We will use this property to
prove the following theorem.
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Theorem 2.3 There exists a set G of natural numbers whose characteristic function cannot
be constructed in any consistent formal system.

Proof. Let us consider BF = {⌜ϕ⌝ | ⊢F ϕ} from Lemma 2.2. If the characteristic function
of BF cannot be constructed in any consistent formal system, let G be BF and the theorem
is proved. If BF has a characteristic function g, then Lemma 2.2 claims that g must be
constructed in a nontrivial extension of F , but not in F .

Among all consistent extensions of F in which g can be constructed, we choose one
of the maximal extensions as F ′. Here, “maximal” means the set of theorems provable
by a formal system is maximal among all considered formal systems. That is, we assume
that F ′ does not have any nontrivial consistent extension in which g can be constructed.
Let BF ′ = {⌜ϕ⌝ | ⊢F ′ ϕ}. If the characteristic function of BF ′ cannot be constructed in
any consistent formal system, then let G be BF ′ and the theorem is proved. If BF ′ has a
characteristic function g′, then Lemma 2.2 claims that g′ cannot be constructed in F ′. If
g′ is constructed in a consistent extension F ′′ of F ′, since g can be also constructed in F ′′,
we have a contradiction to the assumption that F ′ does not have any nontrivial consistent
extension in which g can be constructed. □

Like Gödel’s first incompleteness theorem, the above theorem applies to any known or
unknown consistent formal system. The above result provides a negative answer to the
question in the section title: There exists a set G ⊂ N such that no characteristic functions
of G can be constructed in any consistent formal system.

In computation theory, an oracle for a set A ⊆ N is an external device (other than a
Turing machine) that is capable of reporting whether any number x ∈ N is a member of
A [13]. The oracle in this sense is a synonym of characteristic function, and they always
coexist. That is, if a set A has a characteristic function g, we may use g as its oracle;
if A does not have any characteristic function, then A does not have any oracle, because,
otherwise, we might use the oracle as its characteristic function.

Turing reduction is an important concept in theory of computation that uses oracles: A
set A is Turing reducible to a set B if A has an oracle machine, which is a modified Turing
machine that has the additional capability of querying the oracle of B, to decide any x is
a member of A. In other terms, A is Turing reducible to B if the characteristic function
of A is computable, assuming we can query freely the characteristic function of B. Two
sets of natural numbers are Turing equivalent if they are Turing reducible to each other.
A Turing degree is a set of Turing equivalent sets [2]. Turing reduction induces a partial
order over the set of all Turing degrees to assess the level of unsolvability. A great deal of
research has been conducted into the structure of the Turing degrees with this order [9].
However, none of these studies considered the non-existence of oracles in the application of
Turing reduction. It would be interesting to study the structure of the Turing degrees with
Theorem 2.3 in mind.

3 Is Every Set of Natural Numbers Countable?

Throughout this article, by the subset claim we mean the claim that “every subset of N
is countable.” The subset claim is widely accepted and appears in many textbooks on set
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theory, logic, discrete mathematics, or theory of computation [3, 7, 10, 14].
Recall that a bijection f : N 7→ S is called a counting bijection of S. We say f is

increasing if f(n) < f(n+ 1) for every n ∈ N . A typical proof of the subset claim uses the
fact that if we can construct a total function f : N 7→ S such that f(n) returns the (n+1)th

minimal number of S, then f is an increasing counting bijection of S [14]:

• Let f(0) be the smallest natural number in S.

• For each n ∈ N , the set S − {f(0), f(1), ..., f(n)} is not empty since S is infinite.
Define f(n+ 1) to be the smallest natural number in S − {f(0), f(1), ..., f(n)}.

The existence of “the smallest natural number” is backed by the well-ordering principle. By
induction on n for any n ∈ N , we can show that f(n) is the (n + 1)th minimal number of
S. It is an easy exercise to check that f is an increasing counting bijection of S.

To construct f in the proof of the subset claim, strictly speaking, we need the charac-
teristic function of S, i.e., total function g : N 7→ {0, 1}, such that x ∈ S if and only if
g(x) = 1, to tell us which number is or is not a member of S. Without g, we cannot exclude
non-members of S as candidates for the smallest number of S. In other words, the above
proof of the subset claim assumes implicitly the existence of g. It turns out that “having a
counting bijection” is equivalent to “having a characteristic function” for any infinite set of
natural numbers.

Proposition 3.1 Let S ⊆ N be infinite. The following statements are logically equivalent
in first-order logic:

1. S has an increasing counting bijection.

2. S is countable.

3. S has a characteristic function.

Proof. (1) → (2): “S has a counting bijection” means “S is countably infinite.”
(2) → (3): Since S is countable, let f : N 7→ S be a bijection. For any x ∈ S, define

g(x) = 1 if ∃n ∈ N (f(n) = x) is true and 0, otherwise. Then g is a characteristic function
of S, since g(x) = 1 if and only if x ∈ S.

(3) → (1): The above proof of the subset claim can be used here. Formally, let g : N 7→
{0, 1} be the characteristic function of S. For any n ∈ N , define f(n) = h(n, 0), where
h : N ×N 7→ N is defined as follows:

h(n,m) = if (g(m) = 1)
then if (n = 0) then m else h(n− 1,m+ 1)
else h(n,m+ 1)

For any n,m ∈ N , h(n,m) is well-defined because S is infinite and g(m) = 1 for an infinite
number of m. It is easy to check that f(n) is the (n+ 1)th minimal element of S, and f is
an increasing counting bijection of S. □

The above proposition shows the coexistence of a counting bijection and a characteristic
function for any infinite set of natural numbers. A function f : N 7→ {0, 1} is called a
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decision function and defines uniquely S = {x ∈ N | f(x) = 1}. The characteristic function
of S can be obtained from f by g(x) = 1 if f(x) = 1 and g(x) = 0 if f(x) ̸= 1. A function
is computable if it can be computed by a Turing machine [13]. A set S is decidable if it
is defined by a total computable decision function (which is the same as the characteristic
function of S). A set is computable if it is defined by a computable decision function f . In
[15], it is shown that the properties of counting bijections are related to the computability
of a set. We combine these results in the following theorem.

Theorem 3.2 Let S ⊆ N be infinite and g : N 7→ {0, 1} be a characteristic function of S.

1. g exists if and only if S has a counting bijection.

2. S is computable if and only if S has a computable counting bijection.

3. S is decidable if and only if S has a computable increasing counting bijection.

Proof. (1) comes from Proposition 3.1. (2) and (3) come from Proposition 11.4.9 of [15].
The proof of Proposition 3.1 can be modified to show (2) and (3). □

Now we are ready to answer the question in the section title.

Theorem 3.3 There exists an infinite set G of natural numbers whose counting bijections
cannot be constructed in any consistent formal system.

Proof. Consider set G in Theorem 2.3. G is infinite because the set of theorems provable by
any extension of formal system P is infinite. If G is countable, let f be a counting bijection
of G that is constructed in a consistent formal system, say F . By Theorem 3.2(1), we might
construct the characteristic function of G in F , a contradiction to Theorem 2.3. □

Ignoring inconsistent formal systems, which treat all formulas as theorems, Theorem 3.3
implies that G is not countable, because no counting bijections of G can be constructed in
an acceptable formal system. G serves as a counterexample to the subset claim that “every
subset of N is countable.” The subset claim appears in many textbooks on set theory or
theory of computation [5, 7]. In a textbook on set theory [3] published in 1977, the author
simply wrote without proof that “Obviously every subset of a countable set is countable.”
In a textbook on theory of computation [10], the claim appears as Theorem 8.25. It also
appears in an influential textbook by Terence Tao [14] (Proposition 8.1.5).

The subset claim has several equivalent statements.

Proposition 3.4 The following statements are logically equivalent:

1. Any subset of a countable set is countable.

2. Any subset of N is countable.

3. If there is an injective function from set S to N , then S is countable.

4. If there is a surjective function from N to S, then S is countable.
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Since Theorem 3.3 shows that the second statement of the above proposition is false,
the other three statements cannot be true.

When a subset of a countable set is uncountable, it is false to claim that S∪T and S−T
are uncountable when S is uncountable and T is countable. For instance, let S be set G in
Theorem 3.3 and T = N , then S is uncountable and S ⊂ T . However, both S ∪ T = N
and S − T = ∅ are countable. It is interesting to investigate the closure properties of set
operations in light of Theorem 3.3.

4 Conclusion

Using the set of Gödel numbers of all theorems in the proof of Gödel’s first incompleteness
theorem, we have shown that this set leads to an uncountable setG of natural numbers. That
is, G has neither characteristic functions nor counting bijections that can be constructed
in any consistent formal system. This result shows the everlasting influence of Gödel’s
incompleteness theorems and refutes the popular subset claim that “every set of natural
numbers is countable.”

Since every set specifiable in first-order logic has a characteristic function (i.e., the for-
mula defining the set has a model as its characteristic function), the subset claim remains
true by this modification: If a subset of N is specifiable in first-order logic, then it is count-
able. The modified subset claim works well in ZFC (Zermelo-Fraenkel set theory with the
axiom of choice), which is the standard form of first-order axiomatic set theory and serves as
the most common foundation of mathematics. In other words, correcting the subset claim
has little impact on ZFC.

For infinite sets, it is counter-intuitive to believe that a countable set contains an un-
countable subset, just like believing a set has the same size as its subset, as shown by
Hilbert’s hotel puzzle [6]. To overcome this counter-intuitivity, we propose a new view of
countability: An uncountable set is either larger in size than N , or too difficult to define its
counting bijection (due to high complexity). In both cases, a counting bijection of the set
cannot be constructed.

A majority of astronomers believe today that the universe is infinite, like an endless flat
disk. Using a 3D coordinate system, we may map each star to a coordinate of three integers.
Since the set of all coordinates is countable, if the subset claim is true, then the set of all
stars is countable. A star, as well as each unit cube in the coordinate system, contains
a finite number of atoms. We may draw the conclusion that the set of all atoms in the
universe is countable. However, the existence of black holes prevents us from constructing
a counting bijection for the set of all atoms in the universe, because of the high complexity
of black holes. Black holes are very much like set G in Theorem 3.3.

By Cantor’s definition, every finite set is countable. However, the word “countable”
does not mean that we can count one by one the elements of every finite set, because the
size of this set may be unknown due to the high complexity of the set. For example, how
many atoms does a given black hole contain? For further research, we are interested in the
following questions:

• Is it true or false that every finite set has a characteristic function?
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• What is the relation between the size of a finite set and the existence of its character-
istic function?

• If we do not know the size of a finite set, how can we show that this set is computable?

If Cantor’s original intention is that “countable” means the counting process of a set is
somehow constructible, we may adapt a new definition of being uncountable:

A set X is uncountable if either its size is larger than that of N , or the charac-
teristic function of X cannot be constructed in any consistent formal system.

For infinite sets, either of the above two conditions prevents X from having any counting
bijection. For finite sets, its countability depends on the existence of its characteristic
function.
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