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Abstract

This paper reviews the literature on Bayesian experimental design, both for linear
and nonlinear models. A unified view of the topic is presented by putting experimental
design in a decision theoretic framework. This framework justifies many optimality
criteria, and opens new possibilities. Various design criteria become part of a single,

coherent approach.
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1 Introduction

Non-Bayesian experimental design for linear models has been reviewed by Steinberg and
Hunter (1984) and in the recent book by Pukelsheim (1993). Ford, Kitsos and Titterington
(1989) reviewed non-Bayesian design for nonlinear models. This paper considers the theory
of non-Bayesian design only as needed for the development. DasGupta (1995) presents a

complementary review of Bayesian and non-Bayesian optimal design.

1.1 Experimental Design

The design of experiments is an important part of scientific research. Design involves
specifying all aspects of an experiment and choosing the values of variables that can be
controlled before the experiment starts. Control variables might include: choosing which
treatments to study, defining the treatments precisely, choosing blocking factors, choosing
how to randomize, specifying the experimental units to be used, specifying a length of time
for the experiment to be performed, choosing a sample size and choosing the proportion of

observations to allocate to each treatment. These are all relevant aspects in design.
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Common sense, available resources, and knowledge of the motivation for carrying out the
experiment often help in selecting important features that depend on the specific problem.
In designing a clinical trial, where experiments are to be performed on people, the choice of
the treatments to be compared is a central ethical issue. Whether or not a placebo is ethical
and, if not, what to use as a control treatment, is a problem that does not arise in designing
a field experiment to compare yields from different fertilizer combinations. Not all aspects
of experimental design are susceptible to abstract mathematical treatment. Choosing values
for the control variables however can be simply expressed in a mathematical framework.
This problem has been considered at length in the scientific literature and is focused on in
this paper.

When designing an experiment, decisions must be made before data collection, and data
collection is restricted by limited resources. Because information is usually available prior to
experimentation and, indeed, often motivates doing the experiment, Bayesian methods are
ideally suited to contribute to experimental design. Bayesian decision theory also motivates
precise specification of the reason the experiment is being conducted. Like most areas of
Bayesian statistics, Bayesian experimental design has gained popularity in the past two
decades. But also like many areas of Bayesian statistics, applications to actual experiments
still lag behind the theory. Apart from Flournoy (1993) there are no true “case studies”
that we know of, where Bayesian ideas have been formally applied to the design of an actual
scientific experiment before it is done. This is a very important area for future work. There
are however several examples of examining an experiment in a Bayesian design framework
after it has been done: for example Clyde, Miiller and Parmigiani (1994) and some examples
presented in this paper.

The basic idea in experimental design is that statistical inference about the quantities of
interest can be improved by appropriately selecting the values of the control variables. In
estimation problems, estimators with small variance are usually desirable. Control variables
should therefore be selected to achieve small variability for the estimator chosen. Much
depends however on what is to be estimated, and how it will be estimated. Specitying the
purpose of the experiment generates various criteria for the choice of a design.

We address the fundamental principles of design by providing a general Bayesian decision



theoretic framework for a coherent approach. Most of the work in Bayesian design can be
included as special cases in this general structure. The usefulness of this approach and the
improvement that can be obtained over designing within the non-Bayesian theory is shown
with some examples. Three examples are presented in Section 1.2. They will be examined
again in Sections 3 and 6 to illustrate the type of improvement that can be obtained over non-
Bayesian designs and that, sometimes, the experiments used in practice are approximately

Bayes optimal.

1.2 Examples

Example 1. Consider the one-way analysis of variance model where a given total of n
observations must be divided among ¢ groups in an optimal way. The observations are
measurements on the experimental units and the groups correspond to t treatments whose
effects are of interest. Assume also that the variance of the observations is known. Assigning
the same number of observations to each group is a possibility, but different choices of these
proportions might be more appropriate, depending on the type of experiment. The same
one-way analysis of variance model can be used either in a trial to study the effect of ¢
different treatments, or when the effects of t — 1 similar treatments are to be compared with
a standard control, or, perhaps, when a given drug is to be tested at ¢ different dose levels.
Intuitively, it may be sensible to have different designs for each of these situations.

To give an idea of the difference a Bayesian approach can make, consider the following two
experiments. One experiment consists in comparing ¢ — 1 similar treatments with a control.
A second one takes observations in ¢ different groups to study the effect of increasing levels
Z1, 22, ... %2 of a certain drug. Both experiments are modeled through a one way analysis of
variance but they are essentially different. Section 3 presents a way to use prior knowledge
in these examples. A prior distribution used in the first experiment will not necessarily be
appropriate in the second. A non-Bayesian approach to design would typically consider the
two experiments exactly the same and the same design would be chosen for both of them.
The Bayesian approach has instead more flexibility as is shown in Section 3.

FExample 2. At a University of Minnesota laboratory large numbers of animal experiments

were done to assess the potency of individual batches of drug. The laboratory performed



logistic regressions on many different drugs and biologic material.

For one particular drug under study, 54 similar experiments were performed and the
same type of design was used for each of the experiments. The design usually consisted of
six equally spaced doses with ten mice exposed to each dose. Sixty animals were required for
each experiment. Occasionally less than sixty animals were available in which case less than
ten animals were exposed to the highest dose. The responses measured were the number of
surviving mice one week after being given the dose. Different numbers of mice died depending
on the potency of the batch of drug and by chance. Typically a high proportion (80% or
90%) of the mice died at the high levels and a lower proportion (20% or 10%) died at the
low levels. After each experiment, the potency of the batch was calculated using maximum
likelihood to estimate the LD50, the dose at which the probability of a mice dying was
estimated to be 0.50. Two typical data sets are given in table 1 from a experiments that

looked at the potency of different concentrations of albumen.

TABLE 1.

Dose  Number Number || Dose  Number Number

Exposed Dead Exposed Dead
2.5 10 0 2.5 10 0
3.0 10 1 3.0 10 2
3.5 10 1 3.5 10 1
4.0 10 3 4.0 10 4
4.5 10 5 4.5 10 7
5.0 10 6 5.0 10 8

BATCH 1 BATCH 2

This example will be discussed further in Section 6.2. The design used, six equally spaced
doses with ten animals at each dose, was chosen for convenience. It is straightforward to
do the experiment, and with large numbers of experiments, it is simpler to use the same
design each time. It is natural to ask whether the experiments could have been designed
differently. It is also natural to use results from this set of experiments for constructing
a prior distribution to use for subsequent experiments. The 54 estimates of LD50 can be
thought of a sample from a distribution of possible values. We therefore consider a prior
distribution for the LD50 that reasonably reflects the observed sample and has approximately

the same first two moments as the sample.



FExample 3. Atkinson, Chaloner, Herzberg and Juritz (1993) examined a designed exper-
iment to investigate bioavailability. The experiment, described in a 1979 unpublished PhD
thesis by Button at Texas A&M University, consisted of giving 15mg/kg of theophylline as
aminophylline to a number of horses by intra-gastric administration. Blood samples were
then drawn at different times, ¢, after injection and the concentration of drug, y, measured.
The value of y was modeled to be related to ¢ through an open one-compartment model with
first-order absorption input:

y = (93(6_01t — e_eﬁ) + €.

The observation errors ¢ are independent and normally distributed with mean zero. The
unknown parameters (61, 85, 65) are such that 6 > 6;. At time ¢t = 0 the expected response
is zero and, as t increases, it increases up to a maximum and then decreases to zero as t
gets larger. Several quantities are of interest including the area under the expected response
curve, the time at which the maximum is reached, and the value at the maximum. The
design problem is choosing the times at which to take blood samples. The design used in
Button’s thesis is fairly typical of these experiments and is an 18 point design with one
measurement at each time and the times are approximately uniform on a log scale.

As in example 2, this is another case of a nonlinear design problem. Atkinson, Chaloner,
Herzberg and Juritz (1993) looked at the efficiency of the 18 point design used by the
experimenter and constructed Bayesian optimal designs under several prior distributions

suggested by the data. This is further discussed in Section 6.4.

1.3 Overview of the Bayesian Approach

Experimental design is the only situation where it is meaningful within the Bayesian
theory to average over the sample space. As the sample has not yet been observed, the
general principle of averaging over what is unknown applies. Following Raiffa and Schlaifer
(1961), Lindley (1972, page 19 and 20) presented a decision theory approach to experimental
design. Lindley’s argument is essentially the following.

A design n must be chosen from some set H, and data y from a sample space Y will be
observed. Based on y a decision d will be chosen from some set D. The decision is in two

parts: first the selection of 5, and then the choice of a terminal decision d. The unknown



parameters are §, and the parameter space is ©@. A general utility function is of the form

U(d7 07 777 Y)'
For any design 5, the expected utility of the best decision is given by

Ul = [ ma [ U(d.0.0.y) ploly.n) plyln)dody. (1

where p(-) denotes a probability density function with respect to an appropriate measure.
The Bayesian solution to the experimental design problem is provided by the design n*

maximizing: (1)

UGy =mas [ max [ U@ 0.0.y) pl6ly,n) plyln)dody. 2)

In other words, Lindley’s argument suggests that a good way for designing experiments
is to specify a utility function reflecting the purpose of the experiment, regard the design
choice as a decision problem, and select a design that maximizes the expected utility.

The present paper pursues Lindley’s approach as a unifying formulation for the theory
of Bayesian experimental design. Selecting a utility function that appropriately describes
the goals of a given experiment is very important. A design that is optimal for estimation is
not necessarily also optimal for prediction. Even restricting attention to optimal designs for
estimation, there are a variety of criteria that lead to different designs, depending on what
is to be estimated and what utility function is used. The choice of a utility (or loss) function
expresses various reasons for carrying out an experiment.

In the linear model, the analogs of widely known non-Bayesian alphabetical design criteria
(Box, 1982) such as A-optimality, D-optimality and others can be given decision theoretic
justification. When inference about the parameters is the main goal of the analysis, for
example, a utility function based on Shannon information leads to Bayesian D-optimality
in the normal linear model (see, Bernardo, 1979). In addition, Shannon information can be
used for prediction and in mixed utility functions that describe several simultaneous goals
for an experiment. Bayesian equivalents of some other popular optimality criteria can also
be derived by choosing appropriate utility functions. Some, but not all of the alphabetical

optimality criteria, have a utility-based Bayesian version.



There are cases where prediction might be considered more important than inference
when designing an experiment. This might be the case, for example, in settings like reliability
and quality control where the future level of output has to be kept on target, or in clinical
trials when it is important to obtain information on how patients will respond to some
treatment. For these types of problems the predictive Bayesian approach is appropriate for
both design and analysis. For a detailed treatment of this topic, see Geisser (1993).

Other utility functions can be devised for designing experiments that take into account
more specific issues. For example as argued by Lindley and Novick (1981) randomization is
unnecessary for inference in a Bayesian experiment: it is “merely useful”. Randomization
is an important practical aspect of design, especially in clinical trials. Verdinelli (1990) and
Ball, Smith and Verdinelli (1993) considered this problem for the linear model within the

theory of Bayesian optimal experimental design.

1.4 Notation

In the linear model with n independent observations, X stands for a n x k design matrix.
The rows of X, X;F,j = 1...n are elements of a compact set X of design points available
to the experimenter. The matrix X7 X is denoted by nM and it is often referred to as the

information matrix, since the Fisher information matrix is equal to c=2nM. If n; observations

T

are taken at the point x; € X', then the information matrix can be written as ny"(n;/n) x;x;
with - n;/n = 1. Following Fedorov (1972, page 62) and many other authors, define n; =
n;/n so nM = nynx;x’. A design can now be seen as a probability measure 5 on the
region X of design points. It is usually convenient to relax the requirement for the n;’s to
be integers so that the design problem becomes that of finding an optimal design measure
n tfrom the set of all probability measures on AX’; this set is denoted H. We will use both
notations nM and nM(n) for the information matrix. In some situations, it may be of
interest to find exact optimal designs where the probability measure 7 is such that, for a
specified n, the values nn; are all integers.

In some cases, using a linear model, exact calculations for expected utility, U(n) as given

by (1) and (2) in Section 1.3, are possible. For nonlinear models, expected utilities do not

have a closed form representation. Approximations are therefore required. It is often still



possible, however, to formulate the problem in a similar way. The design problem is still to
choose values of the control variables x;, 7 = 1,...,n from a compact set X'. If, just as in
the linear case, we denote 7; to be the proportion of observations at a point x; then in both
linear and nonlinear models the design problem can be thought of as choosing a probability
measure 1 over X from H. We will see in Sections 4, 5 and 6 that design for nonlinear
models presents some challenges. A Bayesian approach can provide practical insight and
lead to useful solutions.

Relaxing the requirement for nn; to be integer values makes the problem more tractable.
Designs where the proportions are not constrained to correspond to integers for some n are
referred to as approzimate or continuous designs. An approximate design can be rounded to
an exact design without losing too much efficiency (see for example Pukelsheim, 1993, Chap-
ter 12, for some rounding algorithms and discussion). Without the relaxation to non-integer
designs the design problem is that of a hard integer programming problem. Majumdar (1988,
1992) derived Bayesian exact designs for a two way analysis of variance model considering
a special subclass of prior distributions. This is a particularly useful approach when dealing
with the constraints of incomplete blocks. Toman (1994) derived Bayes optimal exact de-
signs for two- and three-level factorial experiments, with and without blocking. One of the
important problems she solved is that of choosing a fraction of the full factorial design.

Most approaches to design assume that there is a fixed number n of observations to be
taken. Subject to this constraint, a probability measure on X should be chosen to maximize
the expected utility. This formulation has led to a research area known as “Optimal design”
or “Optimal Bayesian design”. One of the most powerful tools for finding designs is the
General Equivalence Theorem (Kiefer, 1959, Whittle, 1973). Of course there may be other
constraints such as a fixed total cost, C', and each observation may cost a different amount
¢;. The problem then becomes to maximize utility subject to a fixed cost '. The equivalence
theorem can easily be adapted to deal with this extension. See for example Chernoff (1972,
p. 16) who showed that a simple linear transformation can modify the problem to the more
familiar one with a fixed sample size. This is applied to Bayesian linear design problems
in Chaloner (1982). Tuchscherer (1983) finds Bayesian linear optimal designs for particular

cost functions.



1.5 Structure of the Paper

Sections 2 and 3 of this paper deal with designs for linear models. Bayesian analogs of
alphabetical design criteria are introduced in Section 2.2 and are examined in 2.3. Other
design criteria within the Bayesian decision theory approach are discussed in Section 2.4.
The case of unknown error variance is considered in 2.5. Section 3 is devoted to the simple
but important case of analysis of variance models. The examples considered illustrate the
effect of incorporating prior information in the linear model.

Nonlinear models are examined in Sections 4 and 5. Various possible approximations to
expected utility are investigated in 4.2. Section 4.3 deals with some of the different Bayesian
approaches. Local optimality is considered in 4.4. The approximations are compared in 4.5.
Properties of optimal nonlinear Bayesian design are discussed in Section 5. For example it
is shown that the number of support points in an optimal design may depend on the prior
distribution. Some exact results are given and the available software is reviewed. Section
6 considers a few other specific problems in nonlinear design such as sample size in clinical
trials and design for reliability and quality control.

Nonlinear problems generated from a linear model are considered in Section 7. Additional
problems, such as design for variance components, for a mixture of linear models and for

model discrimination, are discussed in Section 8. Section 9 contains concluding remarks.

2 Bayesian designs for the normal linear model

2.1 Introduction

Consider the problem of choosing a design n for a normal linear regression model. The
data y is a vector of n observations where y |0, ~ N(X8,02I), 0 is a vector of k unknown
parameters, o2 is known and I is the n xn identity matrix. Suppose that the prior information
is such that f]c? is normally distributed with mean 6y and variance-covariance matrix c?R™!,
where the k x k matrix R is known. Recall, from Section 1.4, that the matrix X7 X is denoted
by nM or, equivalently, nM(n). The posterior distribution for # is also normal with mean
vector 6% = (nM(n)+ R)™* (XTy + Rfy) and covariance matrix a2D(n) = a*(nM(n)+ R)™";

D(n) is a function of the design n and of the prior precision matrix o~2R.



2.2 Bayesian Alphabetical Optimality: Overview

Following Lindley’s (1956) suggestion, several authors (Stone, 1959 a, b; DeGroot, 1962,
1986; Bernardo, 1979) considered the expected gain in Shannon information given by an
experiment as a utility function (Shannon, 1948). These authors proposed choosing a design
that maximizes the expected gain in Shannon information or, equivalently, maximizes the

expected Kullback-Leibler distance between the posterior and the prior distributions:

/10g P01y ) p(y,0ln) dody. (3)
p(0)

The prior distribution does not depend on the design 7, so the design n maximizing the

expected gain in Shannon information is the one that maximizes:

Us(n) = [1og{p(0ly.n)} ply.0ly) dody. (4)

This is the expected Shannon information of the posterior distribution. This expected utility
Uy(n) might be appropriate when the experiment is conducted for inference on the vector 6.

In the normal linear regression model

Ui(n) = —glog(Zﬂ') - g + %log det{c™*(nM(n)+ R)}.

This utility therefore reduces to maximizing the function ¢1(n) = det{nM(n) + R} and
it is known as Bayes D-optimality. Non-Bayesian D-optimality maximizes the determinant
of M(n). Note the symbol ¢(-) is used to denote a design criterion function and U(-) is used
to denote an expected utility function.

In the non-Bayesian design literature, there are papers discussing the augmentation of
a previous design. That is, for D-optimality choosing 1 to maximize the determinant of
(nM + XI'Xy) where XI Xy is fixed, typically from a design obtained previously. This is
clearly algebraically identical to Bayesian D-optimality and is discussed in Covey-Crump
and Silvey (1970), Dykstra (1971), Evans (1979), Mayer and Hendrickson (1973), Johnson
and Nachtsheim (1983) and Heiberger, Bhaumik and Holland (1993).

A variation of non-Bayesian D-optimality is Dgs-optimality, see, for example, Silvey (1980

10



p. 10-11). This criterion maximizes the inverse determinant of the covariance matrix for
the least squares estimator of a linear function @ = s”6 of the parameters. The equiva-
lent Bayesian criterion is obtained considering the posterior distribution of ¢ in (4). Not
much attention has been given to this criterion in the Bayesian literature, but its use is
straightforward.

Bayesian D-optimality can be derived from other utility functions as well. Assume that
interest is in inference for # and that p(-) is chosen to represent its probability density
function. The following utility function is associated with the true value of the parameter

and with the function p(-) selected as probability density function for §:

U0, p().m) = 2p(0) — [ p(B)dd . (5)

This utility function is a proper scoring rule, first introduced by de Finetti (1962) for discrete
6. Buehler (1971) proposed its use for eliciting beliefs about #, both in the discrete and in
the continuous case. Spezzaferri (1988) adopted (5) for designing experiments for model
discrimination and parameter estimation. He also showed that in the normal linear model,

when interest is in estimation of 4, (5) reduces to

(20v/7) " {det [nM(n) + R},

thus obtaining the D-optimality criterion. Eaton, Giovagnoli and Sebastiani (1994) also use
utility functions based on proper scoring rules for prediction and also derive D-optimality
as a special case.
Another justification of Bayesian D-optimality was derived by Tiao and Afonja (1976)
through the following two valued utility function:
0 [0—0] <a

Uh,0,n) = . : (6)
—1 [0—=0| >a

where § denotes an estimator for # and a is an arbitrarily small positive constant.

11



When the specific reason for conducting an experiment is to obtain a point estimate
of the parameters, or of linear combinations of them, a quadratic loss function might be

appropriate. In this case a design can be chosen to maximize the following expected utility:

Ua(n) = = [0 = 67 A0 = ) ply. 0ln) dbdy. (7)

where A is a symmetric non negative definite matrix. The Bayes procedure yields as ex-
pected utility Us(n) = —o?tr{AD(n)} and a corresponding criterion ¢5(n) = —tr{AD(n)} =
tr{A(nM(n) + R)™'}. A design that maximizes ¢3(n) is called Bayes A-optimal, a gener-
alization of the non-Bayesian A-optimality criterion, that minimizes tr{AM(n)~'}. This
criterion also arises when minimizing the expected squared error loss for estimating ¢’
or when minimizing the squared error of prediction at ¢, where ¢ is not necessarily fixed
and a distribution is specified on it. See Owen (1970), Brooks (1972, 1974, 1976, 1977),
and Duncan and DeGroot (1976). Chaloner (1984) showed how an equivalence theorem can
be used for this criterion, derived a bound on the number of support points in an opti-
mal design and presented some examples. Toman and Notz (1991) considered this criterion
for analysis of variance models with two-way heterogeneity. Toman (1992a) and Toman
and Gastwirth (1993) dealt with A-optimality in a robustness context and Toman (1994)
examined A-optimality for factorial experiments.

A special case of A-optimality is when rank(A) = 1, that is A = cc? and Uy(y) =
—o?c! D(n)e; this variation of A-optimality is called Bayes c-optimality and it parallels the
non-Bayesian c-optimality. This optimality criterion is also obtained when the expected
squared loss is used for estimating a given linear combination of the parameters: ) = ¢’
where ¢ is fixed. A Bayesian modification of the geometric argument in Elfving’s (1952)
theorem for c-optimality was given in Chaloner (1984) and extended in El-Krunz and Studden
(1991) and Dette (1993a, b).

An extension of the notion of the c-optimality criterion is F-optimality, for which the
maximum posterior variance of all possible normalized linear combinations of parameter
estimates is minimized. As a heuristic argument to motivate F-optimality, consider an

experiment to estimate the linear function ¢» = ¢’f, for unspecified ¢, with the normalizing
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constraint ||c|| = w. A minimax approach leads to searching for a design that is good for
different choices of ¢. Denoting the maximum eigenvalue of a matrix H by A,..[H], an

FE-optimal design minimizes

sup ¢’ D()e = 1w’ X[ D(1)]. (8)

llefl=w

This criterion appears not to correspond to any utility function and so, although it is referred
to as Bayes K-optimality, its Bayesian justification, in a decision theoretic context, is unclear.

Closely related to Bayesian E-optimality is Bayesian G-optimality. A G-optimal design
is chosen to minimize supy.y x* D(n)x. Similarly to E-optimality, this does not correspond
to maximizing a utility function (although there is an equivalence theorem, see Pukelsheim,
1993, sect. 11.6, that states that continuous G-optimal designs are numerically identical to
a corresponding continuous D-optimal design).

Tiao and Afonja (1976) presented other utility functions aimed at the problems of select-
ing the best of k£ parameters and of ranking the parameters. They also proposed, in addition

to the utility (6), the quadratic utility in (7) and the following exponential utility:

Un) =1 — exp {—g(é _0)T (- 9)}.

They considered the problem of choosing among a class of balanced designs to illustrate the
use of the above utilities and to show that a design often has to be selected from a limited
range of available ones.

It is important to recall briefly the main relations between Bayesian and non-Bayesian
design criteria. A characteristic of optimal Bayesian design measures is the dependence on the
sample size n, since D(n) = n~'(M(n) +n~"R)~'. This identity shows that any differences
between a Bayesian design and its corresponding non-Bayesian one are unimportant if n is
large, since, in this case, (M(n) +n~'R) is approximately equal to M(n). This is intuitively
reasonable: in experiments where the sample size is large the posterior distribution will be
driven by the data and will not be sensitive to the prior distribution. In contrast, if n is

small the prior distribution will have more of an effect on the posterior distribution and on
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the design.

Letting n — oo is equivalent to B — 0 and a similar limiting result is seen. When there
is little prior information available, optimal Bayesian designs are close to the corresponding
non-Bayesian ones. Hence, when a noninformative prior distribution is used for inference,
as may often be the case, there is no advantage to using the Bayesian approach for design.

This limiting behavior is not seen in design for nonlinear models where usual non-Bayesian
optimal designs are again special cases of Bayesian design but correspond to a point mass
prior distribution rather than non informativeness. This is discussed further in section 4.

Note also that non-Bayesian design criteria, such as c-optimality and Dg-optimality must
be adapted to allow for designs where the optimal choice of nM(n) may be singular. For
Bayesian design criteria, no such adaptation is required. The matrix R is non-singular for
a proper informative prior distribution, so the matrix nM(n) + R is always non-singular

irrespective of whether nM(n) alone is.

2.3 Bayesian Alphabetical Optimality: Related Work.

In the 1970’s Lindley’s work had a profound influence on many aspects of Bayesian
statistics. In the area of experimental design, a set of papers by Brooks (Brooks 1972,
1974, 1976, 1977) were inspired by work of Lindley’s on the choice of variables in multiple
regression (Lindley 1968). Brooks followed Lindley’s approach to motivate the problem of
choosing the best subset of regressors and the design points in a linear regression model.
Predicting the future value of the dependent variable is the goal of the experiment and
the predictor is obtained substituting the Bayesian estimator in the regression function,
rather than considering the predictive distribution for the future observation. A quadratic
loss function, plus costs, is used to evaluate the difference of the future value of y and its
predictor. Bayes A-optimality with added costs is the design criterion derived. In his 1974
paper, Brooks also looked for optimal sample size using the same loss function and in his
1977 paper he dealt with design problems when controlling for the future value of y to be
at a preassigned value yo. The setting considered in Brooks’ early papers is too general to
allow for many explicit solutions and few special cases are explored. Straight line regression

is examined in his 1976 paper. Brooks’ work can be seen as a statement of the general

14



principle that the Bayesian method has a way for dealing with the design problem. Bayes
optimality criteria are considered as elements of a class of linear criteria. This last feature
shows the influence of Fedorov’s 1972 book. It is also found in Pukelsheim (1980) and in Pilz’s
work (for example Pilz,1991) where Bayesian design criteria are seen mostly as extensions
of the corresponding non-Bayesian criteria, the focus often being placed in showing that
non-Bayesian criteria are limiting cases when diffuse prior information is considered. See
also Fedorov (1980, 1981).

Brooks also examined the case of 0% being unknown and used the simple solution to
the problem that substitutes the value of ¢? with its prior mean wherever it appears in
the final expression of the criterion. This approach was also used by other authors, for
example Sinha (1970), Guttman (1971) and more recently Pukelsheim (1993, chapter 11).
They defined optimality criteria without a decision theory based framework and so have no

2

clear extension to the case where o° is unknown. In contrast, with a decision theory based

2 is unknown is conceptually easy but, as is

framework, the extension to the case where o
shown in Section 2.5, algebraically hard.

Pilz dealt with Bayes experimental designs for a linear model in a series of papers (Pilz
1979a, b, c, d, 1981a, b, ¢ Nather and Pilz 1980, Gladitz and Pilz 1982a, b, Bandemer,
Néther and Pilz 1987). See also the monograph, Pilz (1983) and the revised reprint of the
monograph, Pilz (1991). His approach is very general, with no distributional assumptions for
the model or for the prior distribution. Pilz defined Bayes alphabetical optimality criteria as
an extension of the corresponding non-Bayesian criteria and looked at them as special cases
of a general “Linear optimality criterion”. D-optimality and E-optimality do not fall into
this setting, so Pilz often derived separate results for these criteria. The methodology used
throughout Pilz” work has the flavor of classical decision theory. For example, he considered
admissible and complete classes of designs to find conditions for the existence of Bayes designs
in an admissible class. Pilz also adapted much of the existing theory on optimal design to
the Bayesian case. He used Whittle’s (1973) general version of the equivalence theorem to
find relations among the different design criteria and to find bounds for the designs. Pilz
also showed that under certain conditions, Bayes alphabetical designs can be constructed

as A-optimal designs for a transformed model. In some cases, A-optimality coincides with
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D- and E- optimality, but the conditions under which the above holds do not seem easy to
satisfy. Pilz did not give explicit designs and examine their practical implications and his

work is somewhat abstract.

2.4 Other Utility Functions

As noted in section 1, in certain experiments, prediction can be more important than
estimation. In quality control and in clinical trials prediction of future observations can be
of special interest. In these cases the Bayesian approach uses predictive analysis which can
also be helpful in designing the experiment. The expected gain in Shannon information on
a future observation y,41 is used rather than the expected gain in information on the vector
of parameters. The expected Kullback-Leibler distance between the predictive distribution
P(Ynt1ly,n) = [ p(yns1|9)p(0]y,n) df (posterior predictive) and the marginal distribution
P(Ynt1) (prior predictive) on y,41 is the equivalent of the quantity (3) in section 2.2. The
prior predictive distribution does not depend on the design and the design that maximizes
the expected gain in Shannon information on y,41 1s equivalent to the design that maximizes

the expected utility:

Us(n) = /10gp(yn+1|y,n) (Y Ynta|n) dydyn . (9)

This utility function has been used by San Martini and Spezzaferri (1984) for a model
selection problem and by Verdinelli, Polson and Singpurwalla (1993) for accelerated life test
experiments. In the normal linear model, maximizing Us(n) with respect to n corresponds
to maximizing

_% {log(2m) + 1+ log [0y D(n)xnss + o[ |

where the next observation is going to be taken at the point x,11 € X'. This is equivalent

to minimizing the predictive variance
07214-1 = 02[X5+1D(77)Xn+1 + 1.
In the special case of prediction of y,11 at a fixed point ¢ = x,,41, the design maximizing
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Us( X)) corresponds to the Bayes c-optimal design presented in section 2.2.

Yet another situation is where the experimenter is concerned with the value of the re-
sponse variable y. In these cases, one might be interested not only with inference on the
parameters, but also with obtaining a large value of the outcome. Experimentation might
be considered only if the design proposed is expected to produce a large value of outcome
as well as a large value of information. In such cases, one possibility is to look for a design
that maximizes a combination of the expected total output and the expected Shannon infor-
mation for the posterior distribution. Verdinelli and Kadane (1992) proposed the following
expected utility:

Us(n) = / [oy" 1+ 3 log p(6ly, )| p(y, 0|n)dydo. (10)

The non-negative weights p and 3 express the relative contribution that the experimenter is
willing to attach to the two components of Uy(n). In the normal linear model, these weights
affect the choice of the design through the ratio 3/p. A design maximizing Uy(n) is equivalent

to a design maximizing

[y 1y 5 logdet (D))

Verdinelli (1992) suggested the use of another expected utility function when the goal
of the experiment is both inference about the parameters and prediction about the future

observation. It is given by a combination of U;(n) and Us(n), namely:

Us(n) = 7/10gp(yn+1|y,n)p(y,ynﬂln) dy dy 1 +w/10gp(9ly,n) p(y,0ln) dydd. (11)

As in Uy(n), the weights v and w express the relative contribution of the predictive and
the inferential components of the utility. In this case, the two components are expressed in
the same units. In the linear model the expected utility Us is maximized by a design that

maximizes

—% {log(27r) +1+log [a%cfHD(n)an + 02]} = %{klog(%r) + k —log det(a_QD_l(n))}.
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This is equivalent to minimizing o, det{c?D(n)}, where o2, is the predictive variance,
defined earlier. It turns out that the weights v and w do not affect the choice of the design.
Yet another formulation of the design problem as a decision problem is given in Toman

(1995). She examined design when the purpose of the experiment is hypothesis testing.

2.5 Unknown Variance

If the variance o2 in the linear model of section 2.1 is unknown then the optimality criteria
induced by the utility functions of the earlier sections may need to be modified, although
conceptually the goal of maximizing a utility remains the same. Let the prior distribution
for (#,0%) be conjugate in the normal-inverted gamma family: 6|c? ~ N(fy,0?R™") and
o7 a, B ~ Gala, ), so that p(c?|a, B) « (02)" @ exp{—Fo2}. This implies that both
the prior and the posterior marginal distributions for § are multivariate ¢ distributions.
Denote by ts[m, i, ¥ the probability distribution of an m-variate ¢ random variable with é
degrees of freedom, mean vector p and scale matrix ¥ (see for example DeGroot 1970, sec 5.6
or Box and Tiao 1973 page 117). Recall that 0* = (nM(n) + R)"H(XTy + Rby). Let h(n,y)
denote the quantity (2a4n)™* {(y — X0p)T [] — X(nM(n) + R)_IXT] (y — X6o) + Zﬂ} and

let @ = #/a. The prior and posterior marginal distributions for 8 are:
0~ tao [k, 00,aR™| and 0Ly, n ~ baaga [k, 6% h(n, y)(nM(n) + R)7']

The distribution of y conditional on 6 alone is multivariate t: y|0 ~ ty,[n, X0, al]. In

addition, the marginal distribution of the data y is multivariate ¢:
¥l ~ tao [, Xbo.all = X (M () + B)7XT)7]

and the posterior predictive distribution for y,41, a new observation at x,11, is univariate ¢:
Yra1|Y> 1 ~ taoin (L Xng1 0, (0, y H{Xnga (M () + R) ' xpq1 + 1}].

Evaluating the expected utilities presented in sections 2.2 and 2.4 is now a more compli-
cated task. The integrals that define Uy, Us, Uy and Us are now intractable since no closed
form expression can be derived. Numerical approaches or approximations, such as the nor-

mal approximations (12) or (13) described later, in section 4.2, are needed to find Bayesian
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designs.

Things are somewhat simpler for A-optimality and U,. In the expression for Usx(n),
letting A = I, the integral in (7) reduces to [tr Var(0|y)p(y)dy where Var(f|y) denotes the
posterior covariance matrix and p(y) is the marginal distribution of y. The A-optimality

criterion reduces to finding a design 1 that minimizes

200+ n
20+ n — 2

tr (M) + R)7 < { [l vip(y )y |-

The integral in the above formula is equal to [28n(2a — 1)™' 4+ 23]/(2a + n), which does not
depend on y. Hence Bayes A-optimality is insensitive to the knowledge of % and in this
sense it is a robust criterion for choosing a design. See also Chaloner (1984). This feature
of A-optimality makes it appealing to use. It remains to be seen how design developed from

distributional distances are influenced by the prior distribution on 2.

3 Design for analysis of variance models

3.1 Introduction

In section 2, we showed how a decision theoretic setting for experimental design leads to
well defined optimality criteria for the linear model. This section deals with the important
special case of models for the analysis of variance. In these cases criteria from Section 2
sometimes allow the derivation of explicit forms for optimal designs. Two different ways of
building normal prior distributions for the vector  are examined. Bayesian optimal designs
are considered when 6 has prior mean y and covariance matrix c?R™!, as in section 2.1.
In addition, Bayesian optimal designs under a hierarchical prior distribution, as in Lindley
and Smith (1972), are also derived. The hierarchical normal linear model can be used to
represent different experimental settings. A given criterion like, say, Bayes D-optimality
yields different designs for various choices of the hierarchical structure that describes the

experiment.
3.2 Analysis of Variance Models

In the one way analysis of variance model, when the effects of ¢ treatments are of interest,

the matrix nM is simply diag{ni,ns,...n;}, where n; is the number of observations in the
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t-th group. Choosing an optimal design for this model consists in choosing the number of
observations n; or the proportions of observations n; = n;/n on each treatment.

Duncan and DeGroot (1976) considered the problem of Bayesian optimal design for the
one way analysis of variance model using the A-optimality criterion, defined in section 2.2.
In one of the cases they examined, one of the ¢ treatments is a control and the contrasts of
interest compare the ¢ — 1 treatments to the control.

In the two-way case, with the second factor being a blocking variable, there might be ¢
treatments and b blocks. The choice of a design for this model is equivalent to the choice of
n;;, the number of observations taken on the ¢-th treatment in the j-th block. If the block
sizes k; are fixed, this is the same as choosing the proportions 7;; = n;;/k; of units to assign
to the treatments in each of the blocks. Owen (1970) and Giovagnoli and Verdinelli (1983)
considered Bayesian designs for the two-way model with treatments and blocks. One of the
treatments is a control and the parameters of interest are the contrasts of the treatments
with the control. Owen dealt with A-optimality while Giovagnoli and Verdinelli examined a
class of criteria proposed, in a non-Bayesian context, by Kiefer (1975). The class is defined
for a parameter p > 0 as @, = {k~'tr[D(n)]*}'/?. Bayesian A-optimality is a special case
when p = 1, Bayesian D-optimality results when p — 0 and Bayesian F-optimality when
p — oo. Having defined this class, Giovagnoli and Verdinelli then focused on D-optimal
designs. Simeone and Verdinelli (1989) used nonlinear programming techniques to derive
FE-optimal Bayes designs for the same model.

Bayesian designs for analysis of variance models were derived in Toman (1992a, 1994,
1995). Designs for models with two blocking factors were examined by Toman and Notz
(1991), who mainly considered A-optimality criterion, but also presented solutions for D-

and F-optimality.

3.3 Example 1 Continued

Following Duncan and DeGroot (1976) let us now consider the A-optimality criterion in
the one way analysis of variance model. Let 6 = (aj,aq,...a;)T represent the treatment
effects and suppose the experiment is designed to study the contrasts «; — aq of the effects

of t — 1 new treatments compared with a control for = 2,...,¢. Assume that the treatment
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effects «; are independent and normally distributed with prior means p; and variance 7.

The use of utility function (7) for Bayesian A-optimality, leads to an optimal proportion of

observations on the control

B 0 1+ Z§:1 1/n7']42 1
(e 14+vt—1 nti

and on the :th new treatment

Vi—1(14+3¢, 1/n7? 1
m:max{(), ( i1/ ]) JJori=2,...,1

1+Vi—1 an

with the constraint Z§:1 n; = 1. If the same prior mean and variance uy and 74 say, are
assigned to all the new treatments, to represent that they are thought to be independent
and have the same prior distribution, then the A-optimal proportions of observations can be

written as:

—  max 0 0__20'2—|—51—|—(t—1)52
m 9 1_|_ /—t_1

o= (=171 —mn)

where 6; = 0?/nt} and 6, = 0% /n7}. From these expressions we can see the limiting behavior
of n; and ny. As the value of the prior variances gets large with respect to o?/n, that is
for 6; and 65 both small, the result approaches the non-Bayesian A-optimal proportion. A
proportion {y/t —1 + 1}~! of the observations are on the control and the rest are equally
divided among the other ¢ — 1 treatments. This design is sometimes called “the square
root rule”, since it places the same number of observations on all the new treatments and
\/t — 1 as many on the control. When, instead, &, is large compared with §, — meaning that
prior information is less precise on the new treatments that it is on the control — then the
A-optimal design puts no observations on the control. Similarly, if 6, is large compared to
01 it may be optimal to put all the observations on the control.

Assume now that the utility function chosen is Uy (n) in (4) and the experiment is designed

to be Bayesian D-optimal. Suppose that the new treatment effects are still assumed to be
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independent and identically distributed. The optimal proportion of observations on the
control, 1, depends again on the ratios 6; = 0?/n7? and §; = o?/n7}. When §; and &, are
both small, the non-Bayesian D-optimal design is obtained, that places the same proportions
of observations 1/t on the new treatments and on the control. In contrast, if é; is large, there
is precise knowledge of the effect of the control, and it may be optimal to take no observations
on the control, just as in Bayesian A-optimality. Similarly if 65 is large the prior information
about the new treatments is precise and no observations need to be taken on them.

When the optimal design takes no observations on a treatment, then the only information
on that treatment in the posterior distribution will be from the prior information. Some
experimenters might well find this feature unappealing: some might argue that this is not
even an experiment. In implementing such a design the assumption is clearly critical that
the prior information really does represent accurate information about the experimental
units in this particular experiment. This is always an important assumption to examine,
especially when the optimal Bayesian design is so different from the corresponding optimal
non-Bayesian design. But of course it is in exactly these cases of precise prior information
or, equivalently, of small planned sample size, that Bayesian optimal designs can improve
over non-Bayesian designs if the critical assumption holds.

Similar results are obtained when the utility function chosen is (10) and concern is both
on inference and on yielding a large value of the total output. In this case, the optimal
proportion 71 on the control depends both on the prior means and on the prior variances.
It can be shown that there are two threshold values, F' and &, functions of 6; and 65 only,
such that if gy — gy < F then 5y = 1 and if gy — py > G then 1, = 0. Hence the optimal
design does not take observations on the new treatments if the prior mean py of the new
treatment effect is small compared with the prior mean of the control effect ;. Similarly no

observations are taken on the control if s is large compared to p.
3.4 Hierarchical form for the prior distribution

The use of a hierarchical normal linear model is motivated by Lindley and Smith (1972).
The basic model consists of three stages. The first stage is the sampling distribution and

it is just the usual normal linear model with a vector of parameters 0, say, as described in
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section 2.1. The second and third stages together are used to model the prior distribution for
f. The linear models of earlier sections are obtained when the prior distribution is expressed
through one stage only. We now consider prior distributions specified in two stages. The
distribution of # at the first stage is expressed through a vector of hyperparameters and a
second stage is added to specify the distribution of the hyperparameters.

For example in the one way analysis of variance model, let the sampling distribution be

such that the y;; are independent and

yij|0: ~ N(0;,0%),

with o2 known. To represent the information that all the group effects ; are similar, then
the first stage of the prior distribution is that, conditional on some value u, the 6; are
independent with mean p, and with the same known variance 72. That is the §; are a sample
from the same distribution ;| ~ N(u,7%). The second stage of the prior distribution
represents the uncertainty in p: for example g ~ N(0,w?). Then the marginal distribution
of the parameters 6, is such that the §; are exchangeable, but not independent. The 8,’s are
positively correlated, representing that they are believed to be similar. Even if w? — oo,
representing vague prior knowledge, the distribution still retains a correlation structure.

As Lindley and Smith (1972, page 7) remarked, it is the type of experiment that often
suggests the specifications for the first stage of the prior, that describe the relationship
existing among the elements of #. At the second stage, knowledge is likely to be weak,
so it is natural to express this by assuming a distribution for the hyperparameters that is
dispersed. Under this type of prior distribution, the marginal distribution of the data, y is
formally that of a random effects model rather than a fixed effects model.

Under this hierarchical structure, the Bayesian optimal design criteria derived from D-
optimality (4) and A-optimality (7) are different than under a prior distribution set only
in one stage. Relatively little research has been done on design with a hierarchical prior

distribution and more work is needed in this area.
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3.5 Example 1 Continued

Assume again there is a control group and ¢ — 1 treatment groups. The first stage of
the prior distribution is such that, conditional on gy and g9, the control effect is normally
distributed with mean py and variance 77, and the ¢ — 1 treatment effects (g, aa, . .., o) are
normal with a mean vector 1z, where 1 is a (t — 1) vector of one’s, and a variance matrix
r1. The variances 77 and 73 are assumed to be known. Let the prior distribution of y; and
o be flat and improper to represent that not much is known about treatments and control,
apart from the fact that gy and py are thought to be different. Collapsing the two-stages

gives a singular prior precision matrix o~ ?R:

0 ol
o?

R:m .
0 : (t—1I-J

where J = 117, The matrix R is such that the mean of the control effect is independent of
the mean effects of the new treatments, that the new treatments means are exchangeable,
but not independent of each other, and that the prior distribution is non-informative with
respect to the control. The symmetry built into this model is such that for any of the utility
functions of section 2, the optimal proportions of observations on each new treatment is the
same, 72 say, with 0 < ny < (¢ — 1)7!, and the proportion of observations on the control is
m=1- (t_ 1)772-

In this case too, different designs are generated from different utilities. When (4) is
chosen, for Bayesian D-optimality, and interest is on inference on either the vector § =
(o1, @2,...,a¢) or on the contrasts a; — aq; for ¢« = 2,...,t, the optimal proportion of
observations on the control 7y, can be expressed as a function of the ratio § = o?/n73.
When 6 — oo the prior variance for the new treatments is small compared with the error
variance o?/n. This implies that the new treatments are believed to be very similar to
each other (which might often be the case in practice) and lims_.. m1(6) = 1/2. Hence
half of the observations are on the control, and the rest are equally divided among the new

treatments. Intuitively, to compare two independent treatments, the observations would
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be divided equally between the two and this is, essentially, the situation when 6 — oc. In
contrast, if the prior variance for the new treatments is large compared with o?/n, that is § —
0, than lims_on1(6) = 1/t. Exchangeability in this case reduces to the new treatments being
independent, and all treatments, control and new, get an equal allocation of observations.

The design derived from (7), is such that the A-optimal proportion 1y also depends only
on 6. When 6 — oo and the new treatment means are believed to be very similar then,
lims_c 71(6) = 1/2. This solution is the same found for D-optimality when 6 — oo. In fact,
for this limiting case, all alphabetically optimal criteria coincide. In contrast, when the new
treatment means are independent, represented by 6 — 0, we get again the square root rule
given in Section 3.2.

As mentioned in Section 1.2, let us consider now a different experiment (Smith and
Verdinelli, 1980) where the prior means of each group are formed to study the effects of
increasing levels zq, z5, ... z; of a given drug. This experiment too can be modeled specifying
the prior distribution in two stages. At the first stage the prior means of each group are on

a response curve described by a low degree polynomial. Hence

ai~N(yo+mzi+ ... +72,7°)

where: = 1,2,...,t; r < t; a straight line corresponds to choosing r = 1 and a quadratic to
r = 2. At the second stage, the prior distribution for the hyperparameters v, v1,...,7, 1s
chosen to be non informative, thus representing that the only knowledge available is about
the type of response surface, not about its actual form. Deriving optimal designs for this
type of assumptions requires numerical implementation.

Figure 1 shows how the D-optimal proportions 7; vary when § = o%/n7? increases, for
equally spaced z; and an orthogonal polynomial representation. The left hand side of the
figure shows D-optimal proportions for seven groups (f = 7) and a straight line at the first
stage of the prior distribution (r = 1). The right hand side of the figure is essentially
the same, but the D-optimal proportions are for nine groups (! = 9) and for a second
degree polynomial at the first stage of the prior distribution (r = 2). Note how the D-

optimal proportions in the groups behave consistently with the strength of prior beliefs in
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the polynomial at the first stage, as represented by the ratio 6 between sample and prior
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Figure 1
Left D-optimal proportions for & = 7 groups and a straight line at the first stage of the prior

Right D-optimal proportions for & = 9 groups and a parabola at the first stage of the prior

variances. The optimal proportions of observations on the ¢ groups vary from the non-
Bayesian D-optimal design for the one way model n; = 1/, when ¢ is small, to the non-
Bayesian D-optimal designs for the polynomial chosen when ¢ is large. This last case cor-
responds to assuming a strong prior knowledge about the polynomial relationship for the ¢

groups, while not considering the one-way structure particularly relevant.
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4 Nonlinear design problems
4.1 Introduction

Design is more difficult when the model is not linear or when a nonlinear function of
the coefficients of a linear model is of interest. Such problems are referred to as “nonlinear
design problems”. It will be shown that the design problem can be formulated as maximizing
expected utility but approximations must typically be used as the exact expected utility is
often a complicated integral. Designs can still be denoted by a probability measure i over
the design space X' and the set of all such measures be denoted H. The measures may be
arbitrary probability measures representing approximate, or continuous, designs, or measures

corresponding to exact designs which have mass 1/n on n, not necessarily distinct, points.

4.2 Approximations to expected utility

Most approximations to expected utility involve using a normal approximation to the
posterior distribution. Several normal approximations are possible, see for example Berger
(1985, p. 224), and involve either the expected Fisher information matrix or the matrix of
second derivatives of the logarithm of either the likelihood or the posterior density. The
expected Fisher information matrix for a model with unknown parameters 6, a design 75
and a sample size of n is denoted by nZ(8,7n). Note that the matrix of moments, M, used
in the previous sections on linear design, is a very special case of Z(8,n), where Z(8,n)
does not depend on . For consistency with the literature, and to emphasize that Z(0,n)
is not necessarily a moment matrix, this separate notation is used for linear and nonlinear
problems.

Let 0 denote the maximum likelihood estimate of §. One normal approximation might
be:

Oly,n ~ N0, [nZ(0,n)]™"). (12)

In (12) the posterior normal approximation only depends on the data through 0. An alter-

native approximation is:

Oly,n ~ N(0,[R+nZ(0,n)]™) (13)
where § now denotes the mode of the joint posterior distribution of # (also called the gener-
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alized maximum likelihood estimate of 6 as in Berger, 1985, p.133), and R is the matrix of
second derivatives of the logarithm of the prior density function, or the precision matrix of
the prior distribution.

Several other approximations are possible, for example using the exact posterior mean
and variance as the mean and variance of the approximating normal distribution, or using
the observed rather than expected Fisher information matrix. Although in specific problems
there may be reasons to prefer one approximation to another, and the observed, rather than
the expected information matrix, almost always gives a better normal approximation to the
posterior distribution, in general there is no obviously best one to use. For design purposes
the expected Fisher information matrix is usually algebraically much more tractable. Using
approximations other than (12) and (13) is an area for future research.

If, for illustration, Shannon information is the choice of utility then the expected utility
Ui(n) is given by equation (4), as in the linear model. U;(n) is the exact expected utility,
which involves p(y|n), the marginal distribution of the data for a design 5. As in the linear

model

plyln) = /p(ylﬁ,n)p(e)de.

In most cases this marginal distribution of y must also be approximated. When the posterior
utility only depends on y through some consistent estimate 0 a further approximation, of
the same order as (12) and (13), is to take the predictive distribution of 0 to be the prior

distribution. Using this approximation together with (12) gives an approximate value of

Ui(n):
k

_ §log(2ﬂ') — g + %/log det{nZ(0,n)} p(0) db. (14)

As in earlier sections U(-) will be used to denote exact expected utility and ¢(-) a design

criterion. The constant terms and multiplier in (14) can be dropped to give

61(n) = [ log det{nT(0.)}p(6) do (15)
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as a design criterion. Similarly the design criterion derived using (13) gives:

Grnln) = [ logdet{nT(0,) + R}p(6) do. (16)

Suppose now that the only quantity to be estimated is a function of the coefficients ¢() and
squared error loss is appropriate, so that the utility is Ux(-) in (7). Define the k vector ¢(9)
to be the gradient vector of g(6). That is, the ith entry of c() is:

c;(0) = —. (17)
Then, using (12), the approximate expected utility is

Gan) =~ [ e(0) {nZ(0,)}"e(0) p(0) db. (18)

A slightly different approximation involving R is given when (13) is used:

Garln) = = [ c(0)'{R +nT(0.1)} " e(0) p(0) do. (19)

Should more than one function of # be of interest, the total expected loss is the sum of
the expected losses for all the nonlinear functions. This sum could be a weighted sum to
represent some functions being of more interest than others. If the matrix A(#) is the sum,
or corresponding weighted sum, of the individual matrices ¢()c()? then the approximate
expected utility is

6a) = — [ e AT (0,7)] 7"} p(0) (20)

with a similar expression involving the matrix R if (13) is used. Criteria (15), (18) and
(20) will be referred to as Bayesian D-optimality, Bayesian c-optimality and Bayesian A-
optimality respectively.

Clyde (1993a) suggested that as these Bayesian design criteria are based on approximate
normality it is appropriate to design to ensure that, with high probability, the posterior
distribution is, approximately, normal. She suggested several approaches, including maxi-

mizing the criteria discussed above subject to some constraints that help ensure normality.
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The constraints she used are developed from the ideas of Slate (1991) and Kass and Slate
(1994) who gave diagnostics for posterior normality. For small sample sizes the constraints
are active but for large sample sizes posterior normality is more likely and so the constraints
are typically satisfied by the design maximizing the Bayesian criterion. She also looked at
other ways of combining the two objectives of maximizing approximate utility and attaining
approximate normality. Hamilton and Watts (1985) and Pazman and Pronzato (1992a, b),
took a related non-Bayesian approach.

Miller and Parmigiani (1995) suggested estimating the exact expected utility using
Markov Chain Monte Carlo methods but the effectiveness of this suggestion in specific prob-

lems has yet to be demonstrated.

4.3 Bayesian criteria

Some of the earliest papers putting design for nonlinear models in a Bayesian perspective
are Tsutakawa (1972) and Zacks (1977). They both used the matrix Z(4,n) in their design
criteria. Tsutakawa considered a one parameter logistic regression with known slope coeffi-
cient and unknown L.D50, denoted by #. The criterion he maximized was the univariate case

of (19), that is:

6(n) = = [{R +nZ(0.9)}"p(0) do. (21)

where the integrand is a scalar. Tsutakawa numerically found designs maximizing (21),
restricting the designs to equally spaced design points with equal numbers of Bernoulli
observations at each design point. He gave the arguments of Section 4.2 to justify (19). In
a later paper (Tsutakawa 1980), he extended similar ideas to design for the estimation of
other percentile responses.

Zacks (1977) considered problems where the data are to be sampled from an exponen-
tial family with known scale parameter and where some function of the mean is linear in
an explanatory variable. This class of generalized linear models includes quantal response
models and models for exponential lifetimes. The Fisher information matrix has a common
form for these models and Zacks considered designs that maximize the expected value of the

determinant of Z(8,n), that is:
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o(n) = [ det{nZ(0.n)} p(0) do. (22)

Zacks examined several examples and also found optimal multistage designs for quantal
response experiments. Note that the criterion in (22), unlike (15), is not readily interpretable
as an approximation to the expected utility (4).

A similar approach to that of Tsutakawa and Zacks to design for nonlinear models, called
“robust experimental design”, was developed in the field of pharmacokinetics and biological
modeling. This was initially developed without mention of any Bayesian motivation. These
procedures are described in Walter and Pronzato (1985) and Pronzato and Walter (1985,
1987, 1988), see also Landaw (1982, 1984). This work also relates to work on dynamic
systems as in Mehra (1974) and Goodwin and Payne (1977).

In addition to using the criterion (22) Pronzato and Walter also used several other criteria

such as:

o(n) = — [1det T(0,7))™" p(6) db. (23)

é(n) = det {I [/ op(0) do, n] } . (24)

They also discussed and derived designs based on minimax criteria.

There is a rich related literature, mostly non-Bayesian, on design, for complex phar-
macokinetic and biological models. A feature which makes these methods different is that
often allowances are made for inter- and intra-subject variability. Another feature of such
models that is often used is non-constant error variance. Further references can be found in
Launay and Iliadis (1988), Mallet and Mentre (1988), D’Argenio and Van Guilder (1988),
Thomaseth and Cobelli (1988) and D’Argenio (1990). With a few exceptions, such as Katz
and D’Argenio (1983), this important work is not in the mainstream statistics literature but

in the scientific literature of pharmacokinetics and mathematical biology.

4.4 Local optimality

A crude approximation to expected utility would be to approximate the marginal distri-

bution of 0 by a one point distribution. The one point would represent a “best guess”. This
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approach, known as local optimality, has been used extensively in nonlinear design and is
due to Chernoff (1953, 1962). It is also used in the pioneering paper of Box and Lucas (1959)
where the important issues in design for nonlinear regression were identified. Although they
used local optimality, Box and Lucas suggested extending this by taking into account a prior
distribution on the parameter values. Draper and Hunter (1967a) extend the work of Box
and Lucas. White (1973, 1975) showed how results from linear design theory can be adapted
to apply to local optimality in nonlinear models and she also derived locally optimal designs
for binary regression experiments.

As local optimality is a very crude approximation to expected utility, it can be considered
as being approximately Bayesian although it is typically not justified in this way and is
usually used in a non-Bayesian framework.

The experimenter is required to specify a best guess, 6, for the unknown parameters 6.

Local D-optimality involves choosing the design n maximizing

P10,(n) = det{Z(bo, )} (25)

for a fixed value y. Similarly, local c-optimality is to choose 1 to maximize:

620,() = =" (00)Z (0o, 1) e(0) = —trA(0o)Z (00, 7)™ (26)

which can clearly be generalized to local A-optimality. As in (18) and (19) the vector c(6y)
is the gradient vector of the function of interest, evaluated at 6. Typically ¢(y) depends on
0o as does the matrix A(y) = c(fy)c(0y)?. If more than one function of the parameters is of
interest then the matrix A(6p) is the, possibly weighted, sum of matrices corresponding to
the individual functions. The weights are the relative importance of each nonlinear function.

To our knowledge versions of (25) and (26) involving the matrix R have not been used.

4.5 Comparison of the approximations

The various ways to approximate (1) presented earlier and their implications will now
be compared. For Bayesian D-optimality and maximizing Shannon information we compare

criteria (15) and (16) and, for Bayesian c-optimality and minimizing squared error loss, (18)
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and (19). These criteria are asymptotic approximations of the same order. Several aspects

do distinguish them. The criteria (16) and (19)

e require the specification of R.
e give optimal designs which depend on the sample size

e avoid technical problems using prior distributions with unbounded support where, for
a design with bounded support, Z(6,7) may be arbitrarily close to being singular (as
discussed in Tsutakawa, 1972).

The criteria (15) and (18) alternatively,

e can be interpreted as a procedure where a different prior distribution will be used for
the analysis than was used in the design stage. A noninformative prior distribution
will be used in the analysis, hence giving R identically zero, but all available prior
information will be used in the design process and an informative p(#) will be used to
average over in the integral. This echoes the idea given in Tsutakawa (1972) of using
different prior distributions for design and for analysis. (See also Etzione and Kadane,

1993).

o for similar reasons these criteria are appealing in a non-Bayesian framework where it
is accepted that prior information must be used in design but should not be used in

the analysis. Indeed this is the motivation of Pronzato and Walter (1985, 1987).

For these reasons we prefer (15) and (18) over (16) and (19). But note that for large sample
sizes, or for cases where the matrix R corresponds to imprecise information, there will be
very little difference between the two sets of criteria.

Versions of these criteria using the observed rather than expected information matrix,
or the second derivative of the logarithm of the posterior do not appear to have been in-
vestigated and might give better designs, especially for small samples. Similarly not much
is known in general about how well these criteria, which approximate expected utility, per-

form empirically. For a special case of example 3, Atkinson, Chaloner, Herzberg and Juritz
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(1993) showed by simulation that the Bayesian criteria do well empirically. Clyde (1993)
also presented some simulations. A recent paper by Sun, Tsutakawa and Lu (1995) showed
by simulation that the numerical approximation of Tsutakawa (1972) for design in the one

parameter logistic regression example is remarkably accurate.

4.6 Discussion

Apart from the ideal approach of maximizing exact expected utility precisely as in say (1),
no single approach can comfortably be labeled as the definitive “Bayesian nonlinear design
criterion”. The criteria derived in this section are all approximations to the ideal. This has
not always been fully understood. For example Atkinson and Donev (1992) present “Five
versions of Bayesian D-optimality” in Table 19.1. They explain that the (15) corresponds
to “pre-posterior expected loss” but do not explain that it is Shannon information as utility

rather than loss, and it is an approximation.

5 Optimal nonlinear Bayesian design
5.1 Introduction

Chaloner (1987) and Chaloner and Larntz (1986, 1988, 1989) developed the use of criteria
such as those given by (15) which are the expectation, over a prior distribution of a local
optimality criterion. We refer to such criteria as “Bayesian design criteria”. These design
criteria are concave on H, the space of all probability measures on X'. Subject to some
regularity conditions, an equivalence theorem can be derived. The equivalence theorem was
stated by Whittle (1973) in the context of linear design problems, but its application to
nonlinear problems was not then apparent and the regularity conditions required for its use
in the nonlinear case not stated. See also Lauter (1974, 1976) and Dubov (1977). The
theorem states that, in order to verify that a design measure is optimal, it is necessary only
to check that the appropriate directional derivative at that design measure, in the direction of
all one point design measures is everywhere non positive. A candidate optimal approximate
design can be found using numerical optimization and the theorem makes it easy to check
whether the candidate design is indeed globally optimal over H.

The theorem applies to any criterion that is an average, over a prior distribution, of a
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local optimality criterion concave on H. Most of the criteria in common usage, including
those given by (15), (16), (18), (19) and (20) satisfy this condition.
For a criterion ¢(-) the derivative at a design measure n in the direction of another

measure 17, is, when the limit exists:

DO1y1e) =l (6401 = ) — en.) = 6(0)]

The extreme points of ‘H are the measures putting point mass at a single = in X’ and are
denoted n,. The directional derivative of ¢(n) in the direction n, is D(n,n,) and is denoted
d(n, ).

For example ¢(-) defined by (15), Bayesian D-optimality, the derivative is:

(. ) = [ 6T(0..)T(0, ) p(0)d0 ~ k.

where k is the dimension of 6.

Regularity conditions that are sufficient for the equivalence theorem to hold are that
there is at least one design n such that ¢(n) is finite, that ¢(n) is continuous on H in some
topology such as weak convergence, and that the derivatives d(n, ) of ¢(n) exist and are
continuous in x.

The extension of Bayesian criteria to situations involving nuisance parameters is straight-
forward under the general approach of maximizing expected utility. For Bayesian c-optima-
lity and A-optimality no extension is required as nuisance parameters are inherent in their
definition. A Bayesian D;-criterion and its corresponding equivalence theorem can also be
easily derived.

Unlike in linear problems the criterion function ¢(-) is not necessarily a concave function
over a finite dimensional space and so the equivalence theorem does not provide any bound
for the minimum number of points in an optimal design. This is discussed in the following

section.
5.2 Number of support points

In most non-Bayesian linear problems an upper bound on the number of support points
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in an optimal design is available, see Pukelsheim (1993, p. 188-9). For linear models deriving
the bound relies on the fact that the matrix M depends only on the first few moments of
the design measure 1 and Carathéodory’s theorem is used. The D-optimality criterion in
linear models typically leads to an optimal number of support points that is the same as the
number of unknown parameters and the design takes an equal number of observations at
each point (Silvey, 1980, p. 42, and Pukelsheim, 1993, section 9.5 for polynomial models).

Designs on a small number of support points are easy to find and their theoretical prop-
erties are readily examined. They are not very appealing in practice, however, as they do
not allow for checking of the model after the experiment is performed.

The bound also applies to most local optimality criteria and Bayesian criteria for linear
models (see, for example Chernoff, 1972, p. 27 and Chaloner, 1984). In contrast for nonlinear
models there is no such bound available on the number of support points. Although the
criteria are concave on H, the space of probability measures, they are not concave functions
on a finite dimensional moment space and so Carathéodory’s theorem cannot be invoked.

Chaloner and Larntz (1986, 1989) gave the first examples of how the number of support
points in an optimal Bayesian design increases as the prior distribution becomes more dis-
persed. They found that for prior distributions that have support over a very small region
the Bayesian optimal designs are almost the same as the locally optimal design and they
have the same number of support points as the number of unknown parameters. For more
dispersed prior distributions there are more support points. This is a useful feature for a de-
sign as, if there are more support points than unknown parameters, the model assumptions
can be checked with data from the experiment. This is discussed further in Section 8.5.

Other examples of Bayesian nonlinear designs where the number of support points is not
fixed can be found in Atkinson and Donev (1992), O’Brien and Rawlings (1994 a, b, ¢),
Ridout (1994), Chaloner (1993) and Atkinson, Chaloner, Juritz and Herzberg (1993).

5.3 Exact Results

For local optimality there are several papers deriving closed form expressions for designs:
for example White (1975), Kitsos, Titterington and Torsney (1988), Ford, Torsney and Wu

(1992) and Wu (1988). For a particular value of the unknown parameters the problem often
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reduces to an equivalent linear problem.

Finding optimal Bayesian designs algebraically is much harder and thus implementing
Bayesian design criteria requires that designs be found by numerical optimization. Excep-
tions to this are simple special cases: these cases are not very useful in practice, but they
give insight into properties of the optimal designs for more realistic and practical situations.
Exact, algebraic results are quite difficult to derive as none of the tools from local optimality
are very helpful.

In Chaloner (1993) for example, in a one parameter problem, with prior distributions
with only two support points, it is possible to examine exactly how the transition from
a one point optimal design to a two point optimal design occurs as the prior distribution
is changed. Mukhopadhyay and Haines (1995), Dette and Neugebauer (1995a, b), Dette
and Sperlich (1994b) and Haines (1995) all considered some nonlinear regression problems
involving an exponential mean function, and gave conditions under which the optimal design
is of a particular form. Loosely speaking these results can be generalized to say that if the
prior distribution is not too dispersed and does not have heavy tails then an optimal Bayesian
design has the same number of support points as there are unknown parameters. Haines
(1995) gave an insightful geometric interpretation of this and demonstrated how, for a prior
distribution with finite support, the problem reduces to a particular convex programming

problem.
5.4 Design Software

It is clear that if Bayesian designs for nonlinear problems are to be used in practice then
software must be readily available. Chaloner and Larntz (1988) describe such software for
logistic regression. These are menu driven FORTRAN programs that are easy to use and
compile and are available from the authors by email. A more powerful and flexible Bayesian
design system is the object-oriented environment of Clyde (1993b), developed within XLISP-
STAT (Tierney, 1990). This system enables both exact designs and approximate design
measures to be easily found for both linear and nonlinear problems. Locally optimal designs
and non-Bayesian linear designs can also be found as a special case of Bayesian designs. The

system also allows for constraints in the optimization process as suggested in Clyde (1993a).
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This powerful software environment is a little difficult to use initially but can be easily
adapted to solve a multitude of design problems and makes Bayesian design a very practical
reality. The availability of this software makes it straightforward to derive designs for a
variety of prior distributions, model assumptions and criteria and so examine robustness.
The software is available from the author (by email) and requires the NPSOL FORTRAN
library of Gill et al (1986) to be loaded. Documentation, installation and availability by ftp
is described in Clyde (1993b).

Warner (1993) describes some other software, which we have not examined, using the
Gibbs sampler.

When software provides a continuous (approximate) design and an exact design is re-
quired then Pukelsheim and Rieder (1992) and Pukelsheim (1993, p. 424) can be consulted

for procedures rounding continuous design measures to exact designs.
5.5 Sequential design

In any design problem an optimal sequential design procedure must be at least as good
as a fixed design procedure. In most linear design problems, however, both Bayesian and
non-Bayesian, the optimal sequential procedure is the fixed, non-sequential procedure. There
is nothing to be gained by designing sequentially. This is easily seen when the error variance
0% is known: the posterior utility depends on the design 7, but does not depend on the data

2 is unknown it is not so clear. For A-optimality and ¢? unknown

y. For the case when o
with a conjugate prior distribution, the analysis of section 2.5 shows that there is nothing to
be gained by sequential design in this case. For other linear problems it is unclear whether
sequential design is better. For nonlinear problems the posterior utility clearly depends on
the data y, or a function of y such as é, and there should be a gain from choosing design
points sequentially.

Sequential design, however, may be unrealistic in practice. Consider for illustration the
experiments of example 2 done in the University of Minnesota laboratory. Theoretically the

dose for each one of the 60 animals could be decided upon one at a time and the extensive

statistical literature on sequential design of binary response experiments consulted (see for
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example Wu, 1985). But

1. as death over the 7 days following injection of the drug is the response, the experiment

would be prolonged from a total of 7 days to many months.

2. time trends or seasonal effects may be introduced if the experimental conditions change
over time. Similar animals might not always be available and the drugs deteriorate

over time.

3. the probability of error in doses and calculations is increased when 60 calculations are
done to determine the next dose. A non-sequential procedure is easily implemented

and requires less training of laboratory staff.

Several powerful sequential Bayesian design procedures have been developed: see, for
example Berry and Fristedt (1985) who reviewed the extensive work in bandit problems and
Kuo (1983) who develops procedures for nonparametric binary regression. Freeman (1970)
solved the Bayesian sequential design problem exactly for a very small and simple binary
regression experiment. We do not attempt to review this work here.

Batch sequential procedures rather than fully sequential procedures (as in Zacks, 1977,
and Ridout, 1995) might prove to be more practical. There is a practical concern, however,

that the experimental conditions from one batch to the next might be different.
5.6 Discussion

Whatever criterion is used, Bayesian or non-Bayesian, prior information must be consid-
ered for nonlinear design as, unlike in a linear model, the posterior utility of a design depends
on the data. An experimenter may be willing to specify an informative prior distribution
in designing the experiment but may prefer to use a noninformative prior distribution for

inference.

6 Specific nonlinear design problems
6.1 Binary response models

Tsutakawa (1972, 1980), Owen (1975), Zacks (1977), Chaloner and Larntz (1989),
Flournoy (1993), and Clyde, Miiller and Parmigiani (1994) all use Bayesian design ideas
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in binary regression models. These models are important and have many applications in
toxicology and reliability studies. They are also interesting from a design perspective be-
cause they are so very different from linear regression models.

Consider, for example, a simple linear regression model and a closed design interval X'. It
is straightforward to show that the linear D-optimal design, under a vague prior distribution,
is to take half the observations at one extreme of the interval and the other half at the other
extreme. In contrast consider a binary regression with a binary response variable which
is, “success” or “failure”. Suppose that the probability of success near one extreme of the
design interval X is close to 0 and at the other extreme it is close to 1. A design that
puts all observations at the two extremes of X would be very inefficient. There would be a
good chance that the experiment will yield no useful information: all the responses at the
high value of  might be successes and all the responses at the other value of x might be
failures. In this case the likelihood has no well defined mode and the experiment is not very
informative.

It can be shown that design points of the Bayesian D-optimality criterion for a binary
regression are spread throughout over the interval X and, as the support of the prior dis-
tribution gets wider, the number of support points of the optimal design increase. Good
designs for binary regression problems have, therefore, quite different properties than good

designs for linear regression problems.
6.2 Example 2 continued

Recall example 2 where the University of Minnesota laboratory performed many logistic
regression experiments on several different drugs and biologic material.

For one particular drug under study, 54 similar experiments were performed. The drug
was at one of several concentrations: 120, 121, 122 or 124 mg/ml and a similar design was
used for each of the 54 experiments. The design was a design of 6 equally spaced doses of
2.5, 3.0, 3.5, 4.0, 4.5 and 5.0, with 10 mice exposed to each dose. 60 animals were used
in each experiment. Sometimes less than 60 animals were available in which case less than
10 animals were exposed to the highest dose. The responses measured were the number

of surviving mice, usually 7 days after being given the dose. Estimates of the LD50 were
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calculated for each experiment and these estimates range from 3.2 to 4.2 and the slopes
range from about -4.0 to -1.5. The LD50’s were used to estimate the potency of each batch
of drug.

The design does not correspond to any locally optimal design, as a locally optimal design
has two dose levels only, with half of the animals at each dose.

Could Bayesian design ideas have been useful in this example? To examine this question
the set of 54 estimates can be used to construct a prior distribution to design future experi-
ments. The 54 estimates can be thought of a sample from a distribution of possible values
that might be encountered in future experiments. A prior distribution was therefore con-
structed where the LD50 and the slope both have independent Beta distributions, Beta(4,4),
and the LD50 lies between 3.2 and 4.2 and the slope between -4.0 and 1.5. This prior distri-
bution reasonably reflects the sample and has, approximately, the same first two moments
as the sample. It reflects the actual values obtained in the experiments performed. Before
the experiments were performed a more realistic prior distribution might be one representing
more uncertainty and so a second prior distribution was constructed which is uniform on the
same interval.

For the independent Beta(4,4) distributions the Bayesian ¢q-optimal design for minimiz-
ing the posterior variance of the LD50 is easily found using the software of Chaloner and
Larntz (1989) or Clyde (1993b). It is a 4 point design, symmetric around the prior mean
for the LD50 of 3.6, and it takes observations at 3.07, 3.47, 3.73, 4.13 with weights 0.30,
0.20, 0.20 and 0.30 respectively. The design points are not equally spaced. Under this prior
distribution, the design actually used in the lab, with an equal number of animals at each
of 6 equally spaced doses between 2.5 and 5.0, has a ¢o-criterion value 1.52 times of that of
the ¢9-optimal design. A 5 point design obtained by omitting the highest dose of 5.0 from
the 6 point design and dividing the 60 animals equally between the remaining 5 doses has
a criterion value of 1.29 times that of the optimal value. If the lowest dose in the 5 point
design is also omitted and the animals equally divided between the remaining 4 doses of
3.0, 3.5, 4.0, and 4.5 the criterion value is 1.13 times that of the optimal value. Thus, if
the Beta(4,4) distributions reflected the experimenters’ beliefs well, if they were willing to

use the optimal Bayesian design they could have reduced the variability of their estimates
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considerably. If they wanted to use equally spaced doses at convenient values spaced 0.5
units apart and include integer values they could have got very close to an optimal Bayesian
design using a 4 point design by omitting the two extreme design points of their design.

The Beta(4,4) prior distributions correspond to quite accurate knowledge of values to
expect and so, for further illustration, consider the prior distribution that is uniform over the
same interval. This prior distribution might have represented beliefs before the experiments
were done. In this case the optimal design is a 5 point design, again centered at 3.6 units,
taking observations at 2.78, 3.21, 3.6, 3.99, 4.42 with weights 0.28, 0.15, 0.14, 0.15 and
0.28 respectively. Although the points are almost equally spaced there is more mass at the
extremes than at the center points. The equally spaced, equal weight, designs considered
earlier are amazingly efficient for this prior distribution. The 6 point design used by the
experimenters with equal weight at 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 has a criterion value 1.13 times
that of the optimal value, the 5 point design with equal weight at 2.5, 3.0, 3.5, 4.0, 4.5 has a
criterion value 1.02 times that of the optimal one and the 4 point design with equal weight
at 3.0, 3.5, 4.0, 4.5 has a criterion value 1.08 of the optimal value.

If the expectations of the experimenters could be reasonably represented by the uniform
distribution then the design they used is close to the Bayesian optimal design. This example
has, therefore, not illustrated that Bayesian design could have greatly improved efficiency
of estimation in this laboratory, but rather illustrated that what they were doing may well

have been close to being optimal in a Bayesian sense.
6.3 Nonlinear regression models

In a nonlinear regression model, the mean of a normally distributed response variable y
is related to explanatory variables @ by a nonlinear function f(x,9). That is fori =1,...,n,
we have y; = f(x;,0)+e¢;. The errors e; are independent and normally distributed with mean
zero and variance 2. The expected Fisher information matrix for these models depends on

the gradient vector g(x, ) and is
nI(ev 77) = Zg(xiv G)gT(xiv 0)
=1

Design for nonlinear regression models has recently received considerable attention and
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Bayesian criteria, such as ¢q-optimality and ¢,-optimality, have been influential. Pron-
zato, Huang, Walter, Le Roux and Frydman (1989), Huang, Walter and Pronzato (1991)
and Atkinson, Chaloner, Herzberg and Juritz (1993) focused on compartmental models and
found designs numerically. As did Chaloner and Larntz (1986, 1989), these authors all
noted that as the prior distribution becomes more dispersed the number of support points
typically increases. Chaloner (1993), Mukhopadhyay and Haines (1994), He, Studden and
Sun (1995), Dette and Neugebauer (1995a), Dette and Neugebauer (1995b) and Dette and
Sperlich (1994b) all examine simple special cases and prove optimality analytically.

The important paper by Haines (1995) is quite different and introduces some novel ge-
ometric interpretations of Bayesian optimal designs and also identifies several parallels be-
tween optimal Bayesian design and other areas. The paper by Dette and Sperlich (1994a)
is also noteworthy as it uses an expansion of the Stieltjes transform of the design measure.
The result provides a different perspective on the numerical optimization problem and gives

valuable examples.
6.4 Example 3 continued

Example 3 is a case of design for nonlinear regression. The design problem is to choose
times at which to take blood samples to measure the level of a drug. The experimenter used
an 18 point design with the observations approximately equally spaced in the logarithm of
time. The 18 point design takes one observation at times (in hours) 0.166, 0.333, .5, .666,
1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 24, 30, and 48. Atkinson, Chaloner, Herzberg and Juritz
constructed Bayesian optimal designs under two prior distributions suggested by the data.
They also constructed locally optimal designs. Under each prior distribution separate ¢s-
optimal designs were constructed for estimating each of the three functions of interest (the
area under the expected response curve or AUC, the time to maximum concentration or ¢,
and the maximum concentration ¢,q,). One of the two prior distributions is such that 6; has
a uniform distribution on .05884 4+ .04 and, independently, #; has a uniform distribution on
4.298 4 4.0: the parameter 03 is taken to be point mass at 21.80. For this prior distribution
the 18 point design used by the experimenter is actually fairly efficient for estimating these

three quantities.
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Specifically denote 715 to be the 18 point design and n; to be the ¢,-optimal design for
estimating ¢,,,, under this prior distribution. The ¢9-optimal design 7, is a five point design
with mass .29, .29, .15, .22, .06 at times .25, .94, 2.8, 8.8 and 24.7. The ratio ¢5(91s)/d2(n:) is
only 1.3 which means that the 18 point design is fairly efficient for estimating ¢,,,,, with an
expected posterior variance of ¢,,,, of only 1.3 times the best possible value. For estimating
Cmaz the optimal design minimizes an appropriate ¢o-criterion and is denoted .. This is
also a five point design with mass .10, .36, .32, .16 and .06 at times .37, 1.1, 2.4, 6.1 and
24.1. The ratio ¢2(n1s)/d2(n.) is 1.4. Again the 18 point design is fairly efficient. For AUC
the corresponding ¢,-optimal design is a 4 point design putting mass .01, .03, .26 and .70 at
times .29, 1.7, 13.1 and 39.6 and the corresponding ratio of criteria is 3.2, and so the 18 point
design is not as efficient for estimating the AUC" as it is .4, and ¢,,4,. Atkinson, Chaloner,
Herzberg and Juritz showed that under this prior distribution it is possible to improve on
the 18 point design, but not by much. The AUC was found to be not well estimated under
any design except one specifically designed to estimate it. Designs efficient for the AUC
are very inefficient for estimating ¢,,,, and ¢,,4,. If there is very precise prior information,
however, or if the area under the curve is of primary importance, the 18 point design can be
improved upon considerably using Bayesian design.

So, interestingly, this is a similar situation as example 2, in that it may well be that what

the experimenters were doing in practice was close to a Bayesian optimal design.
6.5 Sample size for clinical trials

Sample size calculations are especially important in the design and planning of clinical
trials to compare two or more different treatments. The primary non-Bayesian approach is
to specify the magnitude of the effect that the trial should be able to detect and choose the
sample size to give a required power for a hypothesis test at that alternative. It is usually
recommended to make allowances for patients who do not take their assigned medication
(noncompliance) and patients who take a different medication than assigned (switchover).
This is described for example in Lakatos (1988), Dupont and Plummer (1990) and Wu, Fisher
and DeMets (1980). Several computer programs are available to implement variations on

these methods.
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A partially Bayesian approach to this problem is given in Spiegelhalter and Freedman
(1986) who used a prior distribution, as an approximation to a predictive distribution, to
average over the power. Berry (1991) described a Bayesian approach for a very simple
situation using dynamic programming and sequential updating. Achcar (1984) looked at
Bayesian calculations of sample size when sampling from a single Weibull distribution. A
completely Bayesian approach is advocated in Brooks (1987) who considered the expected
gain in information from a two group experiment with Weibull lifetimes. He dealt with
the sample size, the proportion of observations in each group, the length of time to accrue
patients and how long to follow them. He obtained some closed form expressions for the
gain in Shannon information under normal prior distributions for the unknown parameters
and also made some approximations. Some of these calculations are similar to Brooks (1982)
where he discussed the information lost, for exponential lifetimes, when censoring is present.
Sylvester (1988) examines the sample size for a Phase II clinical trial using Bayesian decision
theory when the responses are Bernoulli.

These Bayesian approaches appear not to have been used much in practice. Perhaps this
is because they fail to account explicitly for noncompliance and switchover. Or, perhaps this
is because there are no freely available computer programs to make these methods accessible.
For the non-Bayesian solutions, Shih (1995) described a SAS macro computer program that
implements the method of Lakatos (1988).

6.6 Other sample size problems

Deciding on the sample size n in an experiment is always part of design. DasGupta and
Mukhopadhyay (1994) take a Bayesian approach choice of sample size for a sample from a
single normal distribution with a conjugate normal prior distribution. They define criteria
which make the sample size robust to the future data. DasGupta and Vidakovic (1994)
take a Bayesian approach to sample size choice for hypothesis testing in a one way analysis
of variance model of example 1 where hypothesis testing is the purpose of the experiment.
They also give Mathematica code for their method.

There are opportunities for further research in this area for more general, non-normal

models. See DasGupta (1995).
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6.7 Design problems in reliability and quality control

DeGroot and Goel (1979) considered a Bayesian approach to designing studies of ex-
ponential lifetimes where experimental units may, or may not, be subject to an increased
stress and where units may be subject to a high stress, if they do not fail in a specified
period of time under a low stress. DeGroot and Goel call this “tampering”. They derived
exact Bayesian optimal designs under particular loss functions and costs. DeGroot and Goel
(1988) is a review of this work and appeared in a volume, Clarotti and Lindley (1988), de-
voted to Bayesian analysis and design in reliability. This volume also contains other relevant
papers: for example the chapter by Barlow, Mensing and Smiriga (1988) discusses influence
diagrams and their use in optimal design.

Chaloner and Larntz (1992) took the approach described in Section 4.2 to derive Bayesian
optimal designs for accelerated life testing where the lifetimes have either Weibull or log-
normal distributions and the length of time available for the experiment is fixed. Their
methods are extended in Naylor (1994). Verdinelli, Polson and Singpurwalla (1993) dis-
cussed Bayesian design for accelerated life testing experiments where prediction is the goal.
They used Shannon information in (9) as utility and considered the case where the lifetimes
have a lognormal distribution. Mitchell and Scott (1987) also designed to maximize Shannon
information in a group testing experiment: they provided free software for their method.

Verdinelli and Wynn (1988) examined some aspects of keeping an expected response on
target which is an important problem in the Taguchi approach to design. They proposed,
as a Bayesian alternative to non-Bayesian methods, to set the predictive mean at the target

value and to minimize the predictive variance.
6.8 Large computer experiments

Some exciting recent developments have occurred in applying ideas from optimal design
to the problem of choosing the values at which to run a large deterministic computer model.
The situation can be thought of as having a response surface which is known to be smooth
but its general form is unknown and the values of the response surface can be determined
without error. Sacks, Welch, Mitchell and Wynn (1989) review this work. Recent advances
are described in Welch et al (1992), Morris, Mitchell and Ylvisaker (1993) and Bates, Buck,
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Riccomagno and Wynn (1995). Much of this work involves sequential design but non-
sequential design has also been found helpful as in Currin, Mitchell, Morris and Ylvisaker
(1991). A Bayesian formulation of the problem has proved fruitful. Rather than attempt to
review this work here the reader is referred to the above references. This important problem

has unique aspects.
6.8 Other nonlinear design problems

Ridout (1994) applied Bayesian design ideas to a seed testing experiment similar to the
dilution assay problem. Parmigiani (1993) and Parmigiani and Kamlet (1993) used Bayesian
decision theory to study the design problem of when to screen for disease and applied this to
breast and cervical cancer screening. They presented a powerful case for the use of Bayesian
methods in these types of designs and decision making.

Parmigiani and Berry (1994) examined several problems using the exact expected utility,
as calculated by (1), for clinical design problems. They mainly consider exponential or
binomial responses with conjugate prior distributions. Lad and Deely (1995) also do exact
calculations for a simple decision problem and elicit prior probabilities and utilities directly.

Apart from Draper and Hunter (1966, 1967b) little research has been done in using
Bayesian design for multivariate response models, either linear or nonlinear. Draper and
Hunter developed and used a criterion similar to (16) where a prior precision is incorporated
into the criterion. in their examples they either used a prior estimate for the nonlinear
parameters, similar to local optimality, or they used sequential design. It is a potential area
of research to use criteria which more closely approximate expected utility in the multivariate

response case.
7 Nonlinear estimation within a linear model
7.1 General problem

When a nonlinear function of the regression coefficients in a linear model is of primary
interest then the expected utility cannot be calculated exactly and the problem has more in
common with nonlinear design than with linear design. Asymptotic approximations similar
to those in section 4.2 can be used to give design criteria.

Assume that the model is as in section 2 and that a nonlinear function of the parameters
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g(0) is of interest. Define the k vector ¢(#) to be the gradient vector of ¢(#) as in (17).

Approximations similar to those in section 4.2 give a squared error loss of either
2e(0)T(nM)'e(f)  or, ()T (nM + R)"Le(h)

where R is either the prior precision matrix or the matrix of second derivatives of the prior

distribution. As in section 4.2, the criteria
b = / o2c(0)" (M)~ c(6) p(d, o)dbdo

and

ban = [ oe(0)7 (R + M) e(6) p(0, 0)d0do

can be expressed as a form of A-optimality. That is the design, 5, should be chosen to
minimize either trAM =1 or tr A(R + M)~ with A = E[o%c(0)c(0)], the expectation being
over the prior distribution of #. If more than one nonlinear function of é is of interest,
say ¢;(0) for ¢ = 1,...,m, then the matrix A is the sum, or possibly the weighted sum, of
individual matrices E[o?c;(0)c;(0)T]. Note however that, unlike the case for the usual linear
A-optimality, it should be possible to get a better design by choosing the design points
sequentially.

One such design problem is that of estimating the turning point in a quadratic regression.
This problem is discussed in Mandal (1978), Buonaccorsi and Iyer (1984, 1985), Buonaccorsi
(1985), and Chaloner (1989). Buonaccorsi and Iyer (1986) also examined several other
problems involving design for the ratio of the coefficients in linear model. A special case of
estimating such a ratio is the calibration problem where n independent observations y; are

taken from a simple linear regression model. That is
yi = 0o+ 012; + ¢

where e;,7 = 1,...,n are normally distributed with mean zero and variance 2. There are

n observations y and an (n + 1)st observation y,41 for which it is required to estimate
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the corresponding value of x,41. One solution is to estimate the nonlinear function ¢(8) =
(Yn+1 — 60)/01. Buonaccorsi and Iyer (1986) discussed design for this problem using both
local optimality and Bayesian A-optimality. A different but related Bayesian approach was

taken in Barlow, Mensing and Smiriga (1991) who put a prior distribution on 4.
7.2 Turning point example

Asin other nonlinear design problems the usual non-Bayesian approach to these problems
is to use the local optimality approach of Chernoff (1953). The problem of estimating the
turning point in a quadratic regression will be used to illustrate an important limitation of
local optimality. This example is used to illustrate non-Bayesian nonlinear design in Ford
and Silvey (1980) and Ford, Titterington and Wu (1985) and Bayesian nonlinear design in
Chaloner (1989).

Suppose that the expectation of the response y at x is 0y + 012 + 032%. Then the turning
point is g(0) = —0,/(20,). Define c(0) to be the gradient vector (0,1/(205),0,/(202))T. The

asymptotic variance of the maximum likelihood estimator of ¢(8) is then:
o0y M~ e(0) (27)

with nM = n % nixx? defined in Section 1. Local optimality requires a best guess for
6, 6y say. The value of 0 is substituted into (27) and the design n is chosen to minimize
(27). Suppose now that observations x; can be taken anywhere in the interval [—1,1] and
that ¢(6y) = % is the best guess value to be used for local optimality. It is straightforward
to show that the locally optimal design takes half the observations at * = 1 and half at
x = 0, giving nM as a singular 3 x 3 matrix of rank 2. The two design points + = 1 and
x = 0 are two points where the expected value of y is equal and the turning point x = ¢(9)
is half way between these two points. If this experiment were to be carried out, using no
prior information in the estimation process, then it is clearly impossible to fit a quadratic
regression to two data points and estimate the turning point. The locally optimal design is
therefore useless for practical purposes.

The above illustrates the general point that the locally optimal design for cases of nonlin-

ear estimation within a linear model, can lead to a matrix nM which minimizes (27) but is
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singular and in this case the quantity of interest ¢(#) may not be estimable. This is different
from the linear c-optimality case where, although the optimal design may give a singular

matrix nM, the contrast of interest, ¢76, is always estimable.

8 Other design problems

8.1 Variance components models

Designs for the estimation of variances are important in quality control research. An-
derson (1975), for example, reviewed this topic. More recently Mukerjee and Huda (1988)
examined optimality and Giovagnoli and Sebastiani (1989) considered the design problem
when both the variance components and the fixed effects are of interest. The approach has
always been to use local optimality until the recent paper of Lohr (1995), who looked at
a Bayesian approach to design. She used Bayesian D-optimality and A-optimality for the
estimation of the variance components or their sum or their ratio. She gave conditions under
which a balanced design is optimal and showed the optimality of a balanced design under a
large class of prior distributions. In the context of hierarchical models with unknown vari-
ance components for multi-center clinical trials Stangl and Mukhopadhyay (1993) also used

Bayesian methods for design.

8.2 Mixtures of linear models

Lauter (1974, 1976) proposed a design criterion that is an average of design criteria, the
average being over a number m of models. She used a criterion ¢(n) = 3.7, w;¢;(n), where,
for example, ¢;(n) is the D-optimality criterion under the ith of m candidate models. The
weight, w; on the ¢th model is the prior probability on that model. Cook and Nachtsheim
(1982) applied such a criterion to design for polynomial regression when the degree of the
polynomial is unknown. The criterion, ¢(7), they used was based on A-optimality for pre-
dicting the response over the design interval. For the :th model and a design 5 the variance
of the predicted mean response over the design interval is proportional to trA;M~1 where
A; is a specified matrix. This criterion is sometimes referred to as (- or L-optimality. But
rather than average the A-optimality criteria directly Cook and Nachtsheim averaged effi-
ciency criteria. Specifically let n; be the A-optimal design for the :th model,z = 1,...,m, for

minimizing the variance of prediction over the design region, and let M; be the information
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matrix for the :th model. Then they maximized

_ n ' tI’AiMZ’(n)_l
¢(77) - Z thI’AZ’MZ’(m)_l '

=1

They gave a number of numerical examples using this criterion to predict the uranium content
of a log.

These ideas are similar to those of Bayesian non-linear design although the motivation
of Cook and Nachtsheim is not Bayesian. This is apparent through their use of average
efficiency: it is unclear how this corresponds to maximizing expected utility. A Bayesian
approach, with squared error loss, would argue for an averaging of the A-optimality criteria
directly rather than their efficiencies. In other words a Bayesian approach would use the

criterion

o(n) = — fj witr A;M;(n) ™"

i=1

Similarly in using D-optimality averaged over a collection of models, it is unclear, unless
utility is considered, whether to average ¢;(n) = log det(M,), or ¢;(n) = det(M;), or ¢;(n) =
\/@(Mi), or perhaps an efficiency measure, like that of Cook and Nachtsheim, such as
é(n) = det[M;(n)]/det[M;(n;)], where n; is the D-optimal design for the ith model. From a
Bayesian perspective of maximizing expected utility, however, the answer is clear: expected
utility should be maximized, not expected efficiency.

An excellent summary of the mathematics of such criteria and how the general equiva-
lence theorem can be applied is in Pukelsheim (1993, p. 286-296). Dette (1990) gave some
general results for D-optimality and polynomial regression. Dette (1991, 1993a, 1993b) used
mixtures of Bayesian linear model criteria involving the prior precision matrix. He also de-
rived a version of Elfving’s (1952) theorem for this case. Dette and Studden (1994) provided
further results characterizing the optimal design in terms of its canonical moments. Haines

(1995) gave further geometric insight into such criteria.

8.3 Design for model discrimination

In an experiment where several models are compared, in order to select one of them,

a number of non-Bayesian approaches to design have been suggested. Usually a method
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for discriminating between models and a method for estimating the parameters within each
model are combined. These procedures are reviewed in Pukelsheim and Rosenberger (1993)
who also provide valuable insight into the mixture criteria of the previous section and suggest
a number of ways of designing for a number of simultaneous objectives. See also Ponce De
Leon and Atkinson (1991).

Spezzaferri (1988) presented a Bayesian approach to design for choosing between two
linear models and to design with the dual goal of model selection and parameter estimation.
He used the utility function in (5) of section 2.2 for both problems. For discriminating
between two models, the design criterion he derived leads to minimizing the expectation of
the posterior probability of one model, when the other is assumed to be true. In the case
of multivariate normal nested models, when using diffuse prior information, this criterion is
the same as non-Bayesian D-optimality for testing the hypothesis 8y = 0, where 8, is the
subvector of extra parameters in the larger model (see, for example, Atkinson 1972).

For the dual purpose of model discrimination and parameter estimation for two nested
normal linear models, Spezzaferri showed that the optimality criterion using utility (5) is
given by the product of two factors. One is the determinant of the information matrix of the
smaller model. The other factor is the expectation of the posterior probability of the smaller
model, when it is assumed to be true. The optimal design for discrimination and estimation

maximizes the product of these factors.

8.4 Robustness

It is important to check the sensitivity of the design to prior distribution. DasGupta and
Studden (1991) constructed a framework for robust Bayesian experimental design for linear
models. They found designs that maximize expected utility for a fixed prior distribution
subject to being robust for a class of prior distributions. DasGupta, Mukhopadhyay and
Studden (1992) gave a detailed approach to design in a linear model when the variance
of the response is proportional to an exponential or power function of the mean response.
They developed examples of “compromise designs” where the experimenter wants to find a
design that is highly efficient for several design problems. They considered both Bayesian

and non-Bayesian formulations of the design criteria.
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Seo and Larntz (1992) suggested some criteria for nonlinear design that make the design
robust to specification of the prior distribution. They used the design problem of estimating
the turning point in a quadratic regression as their motivating example. They suggested a
criterion of designing for a “major” prior distribution subject to a constraint of attaining a
certain efficiency over a class of closely related prior distributions.

Toman (1992a, b) and Toman and Gastwirth (1993, 1994) also considered robustness of
Bayesian design in the normal linear model with respect to the prior distribution. These
papers dealt mainly with the one way analysis of variance model. To allow for possible
misspecification of prior variances, Toman (1992a, b) proposed using a class of normal prior
distributions where the variances take values in specified intervals. The criteria she suggested
for choosing designs are maximizing the average, over the class of posterior distributions, of
either the determinant or the trace of the posterior precision matrix. Averages are taken
with respect to a distribution on the prior precision parameters.

Toman and Gastwirth (1993) examined both robust estimation and robust design for
analysis of variance models when the prior distribution is in a class of finite mixtures of
normals. They used a squared loss function and considered an average of the posterior risk
over the class of corresponding posterior distributions.

Toman and Gastwirth (1994) suggested specifying the prior distribution on treatment
means using results from a pilot study. They assumed that the error variances of the pilot
and of the follow up studies to be unknown, but that the intervals in which they vary can
be specified. They adopted a squared loss function and proposed to use, for the design and

the estimator, a minimax criterion, over the class of posterior distributions.

8.5 Model unknown

A major criticism of traditional optimal design for linear models is that the number of
support points in an optimal design is often the same as the number of parameters — in which
case no model checking can be done. In addition, under the assumption that the model is
known, the design points are usually at the boundary of the design region — but if the linear
response surface is, as is quite usual, a linear approximation to some smooth but unknown

surface, then it is at the boundary of this region that the approximation is most inaccurate.
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These criticisms are not new (see for example Box and Draper, 1959, Sacks and Ylvisaker,
1984, 1985) and apply to both Bayesian and non-Bayesian optimal design for linear models.
As discussed in Section 5.2 these criticisms sometimes do not apply to Bayesian opti-
mal designs for nonlinear problems. In these cases there is no bound on the number of
support points in an optimal design and the support points may be spread throughout the
experimental region. It is unclear, however, under what circumstances this is so.

Among attempts at incorporating model uncertainty into the design problem is the mix-
ture approach as described in section 8.2. More recent work by DuMouchel and Jones (1994)
introduced a modified Bayesian D-optimal approach for the special case of factorial models.
They constructed a prior distribution with a structure recognizing “primary” and “potential”
terms. The resulting Bayesian D-optimal designs have very desirable properties. Indeed they
provided a Bayesian justification for resolution IV designs. DuMouchel and Jones showed
several compelling examples of the use of their methods. This work recognizes model uncer-
tainty, which is almost always present in a practical setting. It specifically accounts for the
belief, that has long been held by practitioners, that when certain interactions or effects are
assumed to be zero to derive a fractional design the experimenter does not believe that such
effects are exactly zero but rather that they are small compared to other effects. DuMouchel
and Jones have succeeded in formalizing the otherwise heuristic justification for resolution
IV designs over other designs which have the same value of the D-optimality criterion.

Steinberg (1985) considered two-level factorial experiments to represent a response surface
problem and also used a Bayesian formulation to introduce uncertainty about the adequacy
of the proposed model. He derived a method for choosing the scale of the two factor ex-
periment: that is he chose the “high” and the “low” levels for each factor conditional on
a particular fractional factorial design being used. In this way the trade off is recognized
between choosing design points on the boundary of the design regions to maximize infor-
mation and choosing them towards the center of the region where the model is believed
to hold to better approximation. Steinberg’s approach is reminiscent of earlier work by
O’Hagan (1978). O’Hagan considered a Bayesian approach to design for curve fitting where
the curve to be fit is a smooth function and design points are chosen based on the predictive

distribution.
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These approaches all use Bayesian ideas to solve the very practical aspect of real design
problems. In real problems the model is almost never known exactly. There is clearly a need

for further research here.

9 Concluding remarks

Bayesian design is an exciting and fast developing area of research. The Bayesian method-
ology has much to offer in experimental design, where prior information has always been used
for the choice of experiment, explanatory factors, sample size, and model. A Bayesian ap-
proach to design gives a mechanism for formally incorporating such information into the
design process. The decision theoretic formulation presented in this paper shows that utility
functions can clarify the approach to design.

The examples presented, especially examples 2 and 3 of nonlinear problems, illustrate
that some experimenters may already be actually using designs which can be justified as
approximately optimal under a Bayesian formulation. A formal Bayesian approach to ex-
perimental design may well lead to substantial improvements. It does remain regrettable,
however, that so few real case studies appear in the statistical literature of Bayesian optimal
design. The same can be said of non-Bayesian nonlinear design where there is considerable
theoretical research but few real case studies.

There are many specific design problems that remain to be investigated by a Bayesian
approach. In particular, within the linear model context, there is a need for methods incorpo-
rating hierarchical linear models and hierarchical prior distributions and unknown variance
components. The simple examples presented in section 3 illustrate that more sensible designs
can be obtained when the prior distribution is specified within the hierarchical linear model.
But, as remarked by Goldstein (1992), there is also the need for these ideas to be applied to
actual experiments.

In both linear and nonlinear problems there is the need for methods which reflect the
reality that the model for analysis is almost never known with certainty before the experiment
is done. The experimental design process should incorporate model uncertainty into the
design process.

There is also a parallel need for methods to be developed for the specification and quantifi-
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cation of prior beliefs. Prior beliefs maybe entirely subjective, based on personal experience,
or may be based on previous experiments and past data. Whatever the source of prior in-
formation very little guidance is available on how to collect and quantify such information.
A notable exception to this is the important work of Garthwaite and Dickey, for example
Garthwaite and Dickey (1988), who have developed useful methods for elicitation for the
linear model. It remains a challenge to develop methods for prior elicitation for distributions
to be used in design for nonlinear models. A welcome beginning is the study of Flournoy
(1993) who gives a nice example of the entire design process, including expert elicitation.

Bayesian design also requires a specification of a utility function. It is clearly helpful,
in the design process, to carefully consider the reason the experiment is being done and to
consider what utility should be used. Although Shannon information and squared error have
been widely used in the statistical literature, it would also be interesting to see alternatives
constructed and explored in future research.

As most Bayesian methods for design require numerical optimization and integration
there is a need for software to find such designs, both exact and continuous. Without
available and user friendly software these methods will not be used in real problems. The
software of Clyde (1993b) has the potential to make Bayesian designs accessible to the

scientist.
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