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Common sense, available resources, and knowledge of the motivation for carrying out theexperiment often help in selecting important features that depend on the speci�c problem.In designing a clinical trial, where experiments are to be performed on people, the choice ofthe treatments to be compared is a central ethical issue. Whether or not a placebo is ethicaland, if not, what to use as a control treatment, is a problem that does not arise in designinga �eld experiment to compare yields from di�erent fertilizer combinations. Not all aspectsof experimental design are susceptible to abstract mathematical treatment. Choosing valuesfor the control variables however can be simply expressed in a mathematical framework.This problem has been considered at length in the scienti�c literature and is focused on inthis paper.When designing an experiment, decisions must be made before data collection, and datacollection is restricted by limited resources. Because information is usually available prior toexperimentation and, indeed, often motivates doing the experiment, Bayesian methods areideally suited to contribute to experimental design. Bayesian decision theory also motivatesprecise speci�cation of the reason the experiment is being conducted. Like most areas ofBayesian statistics, Bayesian experimental design has gained popularity in the past twodecades. But also like many areas of Bayesian statistics, applications to actual experimentsstill lag behind the theory. Apart from Flournoy (1993) there are no true \case studies"that we know of, where Bayesian ideas have been formally applied to the design of an actualscienti�c experiment before it is done. This is a very important area for future work. Thereare however several examples of examining an experiment in a Bayesian design frameworkafter it has been done: for example Clyde, M�uller and Parmigiani (1994) and some examplespresented in this paper.The basic idea in experimental design is that statistical inference about the quantities ofinterest can be improved by appropriately selecting the values of the control variables. Inestimation problems, estimators with small variance are usually desirable. Control variablesshould therefore be selected to achieve small variability for the estimator chosen. Muchdepends however on what is to be estimated, and how it will be estimated. Specifying thepurpose of the experiment generates various criteria for the choice of a design.We address the fundamental principles of design by providing a general Bayesian decision2



theoretic framework for a coherent approach. Most of the work in Bayesian design can beincluded as special cases in this general structure. The usefulness of this approach and theimprovement that can be obtained over designing within the non-Bayesian theory is shownwith some examples. Three examples are presented in Section 1.2. They will be examinedagain in Sections 3 and 6 to illustrate the type of improvement that can be obtained over non-Bayesian designs and that, sometimes, the experiments used in practice are approximatelyBayes optimal.1.2 ExamplesExample 1. Consider the one-way analysis of variance model where a given total of nobservations must be divided among t groups in an optimal way. The observations aremeasurements on the experimental units and the groups correspond to t treatments whosee�ects are of interest. Assume also that the variance of the observations is known. Assigningthe same number of observations to each group is a possibility, but di�erent choices of theseproportions might be more appropriate, depending on the type of experiment. The sameone-way analysis of variance model can be used either in a trial to study the e�ect of tdi�erent treatments, or when the e�ects of t� 1 similar treatments are to be compared witha standard control, or, perhaps, when a given drug is to be tested at t di�erent dose levels.Intuitively, it may be sensible to have di�erent designs for each of these situations.To give an idea of the di�erence a Bayesian approach can make, consider the following twoexperiments. One experiment consists in comparing t� 1 similar treatments with a control.A second one takes observations in t di�erent groups to study the e�ect of increasing levelsz1; z2; : : : zt of a certain drug. Both experiments are modeled through a one way analysis ofvariance but they are essentially di�erent. Section 3 presents a way to use prior knowledgein these examples. A prior distribution used in the �rst experiment will not necessarily beappropriate in the second. A non-Bayesian approach to design would typically consider thetwo experiments exactly the same and the same design would be chosen for both of them.The Bayesian approach has instead more 
exibility as is shown in Section 3.Example 2. At a University of Minnesota laboratory large numbers of animal experimentswere done to assess the potency of individual batches of drug. The laboratory performed3



logistic regressions on many di�erent drugs and biologic material.For one particular drug under study, 54 similar experiments were performed and thesame type of design was used for each of the experiments. The design usually consisted ofsix equally spaced doses with ten mice exposed to each dose. Sixty animals were required foreach experiment. Occasionally less than sixty animals were available in which case less thanten animals were exposed to the highest dose. The responses measured were the number ofsurviving mice one week after being given the dose. Di�erent numbers of mice died dependingon the potency of the batch of drug and by chance. Typically a high proportion (80% or90%) of the mice died at the high levels and a lower proportion (20% or 10%) died at thelow levels. After each experiment, the potency of the batch was calculated using maximumlikelihood to estimate the LD50, the dose at which the probability of a mice dying wasestimated to be 0.50. Two typical data sets are given in table 1 from a experiments thatlooked at the potency of di�erent concentrations of albumen.TABLE 1.Dose Number Number Dose Number NumberExposed Dead Exposed Dead2.5 10 0 2.5 10 03.0 10 1 3.0 10 23.5 10 1 3.5 10 14.0 10 3 4.0 10 44.5 10 5 4.5 10 75.0 10 6 5.0 10 8BATCH 1 BATCH 2This example will be discussed further in Section 6.2. The design used, six equally spaceddoses with ten animals at each dose, was chosen for convenience. It is straightforward todo the experiment, and with large numbers of experiments, it is simpler to use the samedesign each time. It is natural to ask whether the experiments could have been designeddi�erently. It is also natural to use results from this set of experiments for constructinga prior distribution to use for subsequent experiments. The 54 estimates of LD50 can bethought of a sample from a distribution of possible values. We therefore consider a priordistribution for the LD50 that reasonably re
ects the observed sample and has approximatelythe same �rst two moments as the sample. 4



Example 3. Atkinson, Chaloner, Herzberg and Juritz (1993) examined a designed exper-iment to investigate bioavailability. The experiment, described in a 1979 unpublished PhDthesis by Button at Texas A&M University, consisted of giving 15mg/kg of theophylline asaminophylline to a number of horses by intra-gastric administration. Blood samples werethen drawn at di�erent times, t, after injection and the concentration of drug, y, measured.The value of y was modeled to be related to t through an open one-compartment model with�rst-order absorption input: y = �3(e��1t � e��2t) + �:The observation errors � are independent and normally distributed with mean zero. Theunknown parameters (�1; �2; �3) are such that �2 > �1. At time t = 0 the expected responseis zero and, as t increases, it increases up to a maximum and then decreases to zero as tgets larger. Several quantities are of interest including the area under the expected responsecurve, the time at which the maximum is reached, and the value at the maximum. Thedesign problem is choosing the times at which to take blood samples. The design used inButton's thesis is fairly typical of these experiments and is an 18 point design with onemeasurement at each time and the times are approximately uniform on a log scale.As in example 2, this is another case of a nonlinear design problem. Atkinson, Chaloner,Herzberg and Juritz (1993) looked at the e�ciency of the 18 point design used by theexperimenter and constructed Bayesian optimal designs under several prior distributionssuggested by the data. This is further discussed in Section 6.4.1.3 Overview of the Bayesian ApproachExperimental design is the only situation where it is meaningful within the Bayesiantheory to average over the sample space. As the sample has not yet been observed, thegeneral principle of averaging over what is unknown applies. Following Rai�a and Schlaifer(1961), Lindley (1972, page 19 and 20) presented a decision theory approach to experimentaldesign. Lindley's argument is essentially the following.A design � must be chosen from some set H, and data y from a sample space Y will beobserved. Based on y a decision d will be chosen from some set D. The decision is in twoparts: �rst the selection of �, and then the choice of a terminal decision d. The unknown5



parameters are �, and the parameter space is �. A general utility function is of the formU(d; �; �;y).For any design �, the expected utility of the best decision is given byU(�) = ZY maxd2D Z� U(d; �; �;y) p(�jy; �) p(yj�)d�dy; (1)where p(�) denotes a probability density function with respect to an appropriate measure.The Bayesian solution to the experimental design problem is provided by the design ��maximizing: (1)U(��) = max�2H ZY maxd2D Z� U(d; �; �;y) p(�jy; �) p(yj�)d�dy: (2)In other words, Lindley's argument suggests that a good way for designing experimentsis to specify a utility function re
ecting the purpose of the experiment, regard the designchoice as a decision problem, and select a design that maximizes the expected utility.The present paper pursues Lindley's approach as a unifying formulation for the theoryof Bayesian experimental design. Selecting a utility function that appropriately describesthe goals of a given experiment is very important. A design that is optimal for estimation isnot necessarily also optimal for prediction. Even restricting attention to optimal designs forestimation, there are a variety of criteria that lead to di�erent designs, depending on whatis to be estimated and what utility function is used. The choice of a utility (or loss) functionexpresses various reasons for carrying out an experiment.In the linear model, the analogs of widely known non-Bayesian alphabetical design criteria(Box, 1982) such as A-optimality, D-optimality and others can be given decision theoreticjusti�cation. When inference about the parameters is the main goal of the analysis, forexample, a utility function based on Shannon information leads to Bayesian D-optimalityin the normal linear model (see, Bernardo, 1979). In addition, Shannon information can beused for prediction and in mixed utility functions that describe several simultaneous goalsfor an experiment. Bayesian equivalents of some other popular optimality criteria can alsobe derived by choosing appropriate utility functions. Some, but not all of the alphabeticaloptimality criteria, have a utility-based Bayesian version.6



There are cases where prediction might be considered more important than inferencewhen designing an experiment. This might be the case, for example, in settings like reliabilityand quality control where the future level of output has to be kept on target, or in clinicaltrials when it is important to obtain information on how patients will respond to sometreatment. For these types of problems the predictive Bayesian approach is appropriate forboth design and analysis. For a detailed treatment of this topic, see Geisser (1993).Other utility functions can be devised for designing experiments that take into accountmore speci�c issues. For example as argued by Lindley and Novick (1981) randomization isunnecessary for inference in a Bayesian experiment: it is \merely useful". Randomizationis an important practical aspect of design, especially in clinical trials. Verdinelli (1990) andBall, Smith and Verdinelli (1993) considered this problem for the linear model within thetheory of Bayesian optimal experimental design.1.4 NotationIn the linear model with n independent observations, X stands for a n�k design matrix.The rows of X, xTj ; j = 1 : : : n are elements of a compact set X of design points availableto the experimenter. The matrix XTX is denoted by nM and it is often referred to as theinformation matrix, since the Fisher information matrix is equal to ��2nM . If ni observationsare taken at the point xi 2 X , then the information matrix can be written as nP(ni=n) xixTiwith Pni=n = 1. Following Fedorov (1972, page 62) and many other authors, de�ne �i =ni=n so nM = nP �ixixTi . A design can now be seen as a probability measure � on theregion X of design points. It is usually convenient to relax the requirement for the ni's tobe integers so that the design problem becomes that of �nding an optimal design measure� from the set of all probability measures on X ; this set is denoted H. We will use bothnotations nM and nM(�) for the information matrix. In some situations, it may be ofinterest to �nd exact optimal designs where the probability measure � is such that, for aspeci�ed n, the values n�i are all integers.In some cases, using a linear model, exact calculations for expected utility, U(�) as givenby (1) and (2) in Section 1.3, are possible. For nonlinear models, expected utilities do nothave a closed form representation. Approximations are therefore required. It is often still7



possible, however, to formulate the problem in a similar way. The design problem is still tochoose values of the control variables xj; j = 1; : : : ; n from a compact set X . If, just as inthe linear case, we denote �i to be the proportion of observations at a point xi then in bothlinear and nonlinear models the design problem can be thought of as choosing a probabilitymeasure � over X from H. We will see in Sections 4, 5 and 6 that design for nonlinearmodels presents some challenges. A Bayesian approach can provide practical insight andlead to useful solutions.Relaxing the requirement for n�i to be integer values makes the problem more tractable.Designs where the proportions are not constrained to correspond to integers for some n arereferred to as approximate or continuous designs. An approximate design can be rounded toan exact design without losing too much e�ciency (see for example Pukelsheim, 1993, Chap-ter 12, for some rounding algorithms and discussion). Without the relaxation to non-integerdesigns the design problem is that of a hard integer programming problem. Majumdar (1988,1992) derived Bayesian exact designs for a two way analysis of variance model consideringa special subclass of prior distributions. This is a particularly useful approach when dealingwith the constraints of incomplete blocks. Toman (1994) derived Bayes optimal exact de-signs for two- and three-level factorial experiments, with and without blocking. One of theimportant problems she solved is that of choosing a fraction of the full factorial design.Most approaches to design assume that there is a �xed number n of observations to betaken. Subject to this constraint, a probability measure on X should be chosen to maximizethe expected utility. This formulation has led to a research area known as \Optimal design"or \Optimal Bayesian design". One of the most powerful tools for �nding designs is theGeneral Equivalence Theorem (Kiefer, 1959, Whittle, 1973). Of course there may be otherconstraints such as a �xed total cost, C, and each observation may cost a di�erent amountci. The problem then becomes to maximize utility subject to a �xed cost C. The equivalencetheorem can easily be adapted to deal with this extension. See for example Cherno� (1972,p. 16) who showed that a simple linear transformation can modify the problem to the morefamiliar one with a �xed sample size. This is applied to Bayesian linear design problemsin Chaloner (1982). Tuchscherer (1983) �nds Bayesian linear optimal designs for particularcost functions. 8



1.5 Structure of the PaperSections 2 and 3 of this paper deal with designs for linear models. Bayesian analogs ofalphabetical design criteria are introduced in Section 2.2 and are examined in 2.3. Otherdesign criteria within the Bayesian decision theory approach are discussed in Section 2.4.The case of unknown error variance is considered in 2.5. Section 3 is devoted to the simplebut important case of analysis of variance models. The examples considered illustrate thee�ect of incorporating prior information in the linear model.Nonlinear models are examined in Sections 4 and 5. Various possible approximations toexpected utility are investigated in 4.2. Section 4.3 deals with some of the di�erent Bayesianapproaches. Local optimality is considered in 4.4. The approximations are compared in 4.5.Properties of optimal nonlinear Bayesian design are discussed in Section 5. For example itis shown that the number of support points in an optimal design may depend on the priordistribution. Some exact results are given and the available software is reviewed. Section6 considers a few other speci�c problems in nonlinear design such as sample size in clinicaltrials and design for reliability and quality control.Nonlinear problems generated from a linear model are considered in Section 7. Additionalproblems, such as design for variance components, for a mixture of linear models and formodel discrimination, are discussed in Section 8. Section 9 contains concluding remarks.2 Bayesian designs for the normal linear model2.1 IntroductionConsider the problem of choosing a design � for a normal linear regression model. Thedata y is a vector of n observations where yj�; �2 � N(X�; �2I), � is a vector of k unknownparameters, �2 is known and I is the n�n identitymatrix. Suppose that the prior informationis such that �j�2 is normally distributed with mean �0 and variance-covariance matrix �2R�1,where the k�k matrixR is known. Recall, from Section 1.4, that the matrixXTX is denotedby nM or, equivalently, nM(�). The posterior distribution for � is also normal with meanvector �� = (nM(�)+R)�1(XTy+R�0) and covariance matrix �2D(�) = �2(nM(�)+R)�1;D(�) is a function of the design � and of the prior precision matrix ��2R.9



2.2 Bayesian Alphabetical Optimality: OverviewFollowing Lindley's (1956) suggestion, several authors (Stone, 1959 a, b; DeGroot, 1962,1986; Bernardo, 1979) considered the expected gain in Shannon information given by anexperiment as a utility function (Shannon, 1948). These authors proposed choosing a designthat maximizes the expected gain in Shannon information or, equivalently, maximizes theexpected Kullback-Leibler distance between the posterior and the prior distributions:Z log p(�jy; �)p(�) p(y; �j�) d�dy: (3)The prior distribution does not depend on the design �, so the design � maximizing theexpected gain in Shannon information is the one that maximizes:U1(�) = Z logfp(�jy; �)g p(y; �j�) d�dy; (4)This is the expected Shannon information of the posterior distribution. This expected utilityU1(�) might be appropriate when the experiment is conducted for inference on the vector �.In the normal linear regression modelU1(�) = �k2 log(2�)� k2 + 12 log detf��2(nM(�) +R)g:This utility therefore reduces to maximizing the function �1(�) = detfnM(�) + Rg andit is known as Bayes D-optimality. Non-Bayesian D-optimality maximizes the determinantof M(�). Note the symbol �(�) is used to denote a design criterion function and U(�) is usedto denote an expected utility function.In the non-Bayesian design literature, there are papers discussing the augmentation ofa previous design. That is, for D-optimality choosing � to maximize the determinant of(nM + XT0 X0) where XT0 X0 is �xed, typically from a design obtained previously. This isclearly algebraically identical to Bayesian D-optimality and is discussed in Covey-Crumpand Silvey (1970), Dykstra (1971), Evans (1979), Mayer and Hendrickson (1973), Johnsonand Nachtsheim (1983) and Heiberger, Bhaumik and Holland (1993).A variation of non-BayesianD-optimality isDS -optimality, see, for example, Silvey (198010



p. 10-11). This criterion maximizes the inverse determinant of the covariance matrix forthe least squares estimator of a linear function  = sT � of the parameters. The equiva-lent Bayesian criterion is obtained considering the posterior distribution of  in (4). Notmuch attention has been given to this criterion in the Bayesian literature, but its use isstraightforward.Bayesian D-optimality can be derived from other utility functions as well. Assume thatinterest is in inference for � and that p(�) is chosen to represent its probability densityfunction. The following utility function is associated with the true value of the parameter �and with the function p(�) selected as probability density function for �:U(�; p(�); �) = 2p(�) � Z p2(~�)d~� : (5)This utility function is a proper scoring rule, �rst introduced by de Finetti (1962) for discrete�. Buehler (1971) proposed its use for eliciting beliefs about �, both in the discrete and inthe continuous case. Spezzaferri (1988) adopted (5) for designing experiments for modeldiscrimination and parameter estimation. He also showed that in the normal linear model,when interest is in estimation of �, (5) reduces to�2�p���k fdet [nM(�) +R]g1=2 ;thus obtaining the D-optimality criterion. Eaton, Giovagnoli and Sebastiani (1994) also useutility functions based on proper scoring rules for prediction and also derive D-optimalityas a special case.Another justi�cation of Bayesian D-optimality was derived by Tiao and Afonja (1976)through the following two valued utility function:U(�̂; �; �) = 8><>: 0 j�̂ � �j < a�1 j�̂ � �j > a ; (6)where �̂ denotes an estimator for � and a is an arbitrarily small positive constant.11



When the speci�c reason for conducting an experiment is to obtain a point estimateof the parameters, or of linear combinations of them, a quadratic loss function might beappropriate. In this case a design can be chosen to maximize the following expected utility:U2(�) = � Z (� � �̂)TA(� � �̂) p(y; �j�) d�dy; (7)where A is a symmetric non negative de�nite matrix. The Bayes procedure yields as ex-pected utility U2(�) = ��2trfAD(�)g and a corresponding criterion �2(�) = �trfAD(�)g =trfA(nM(�) + R)�1g. A design that maximizes �2(�) is called Bayes A-optimal, a gener-alization of the non-Bayesian A-optimality criterion, that minimizes trfAM(�)�1g. Thiscriterion also arises when minimizing the expected squared error loss for estimating cT �or when minimizing the squared error of prediction at c, where c is not necessarily �xedand a distribution is speci�ed on it. See Owen (1970), Brooks (1972, 1974, 1976, 1977),and Duncan and DeGroot (1976). Chaloner (1984) showed how an equivalence theorem canbe used for this criterion, derived a bound on the number of support points in an opti-mal design and presented some examples. Toman and Notz (1991) considered this criterionfor analysis of variance models with two-way heterogeneity. Toman (1992a) and Tomanand Gastwirth (1993) dealt with A-optimality in a robustness context and Toman (1994)examined A-optimality for factorial experiments.A special case of A-optimality is when rank(A) = 1, that is A = ccT and U2(�) =��2cTD(�)c; this variation of A-optimality is called Bayes c-optimality and it parallels thenon-Bayesian c-optimality. This optimality criterion is also obtained when the expectedsquared loss is used for estimating a given linear combination of the parameters:  = cT �where c is �xed. A Bayesian modi�cation of the geometric argument in Elfving's (1952)theorem for c-optimality was given in Chaloner (1984) and extended in El-Krunz and Studden(1991) and Dette (1993a, b).An extension of the notion of the c-optimality criterion is E-optimality, for which themaximum posterior variance of all possible normalized linear combinations of parameterestimates is minimized. As a heuristic argument to motivate E-optimality, consider anexperiment to estimate the linear function  = cT�, for unspeci�ed c, with the normalizing12



constraint kck = w. A minimax approach leads to searching for a design that is good fordi�erent choices of c. Denoting the maximum eigenvalue of a matrix H by �max[H], anE-optimal design minimizes supkck=w cTD(�)c = w2�max[D(�)]: (8)This criterion appears not to correspond to any utility function and so, although it is referredto as Bayes E-optimality, its Bayesian justi�cation, in a decision theoretic context, is unclear.Closely related to Bayesian E-optimality is Bayesian G-optimality. A G-optimal designis chosen to minimize supx2X xTD(�)x. Similarly to E-optimality, this does not correspondto maximizing a utility function (although there is an equivalence theorem, see Pukelsheim,1993, sect. 11.6, that states that continuous G-optimal designs are numerically identical toa corresponding continuous D-optimal design).Tiao and Afonja (1976) presented other utility functions aimed at the problems of select-ing the best of k parameters and of ranking the parameters. They also proposed, in additionto the utility (6), the quadratic utility in (7) and the following exponential utility:U(�) = 1� exp���2 (�̂ � �)T (�̂ � �)� :They considered the problem of choosing among a class of balanced designs to illustrate theuse of the above utilities and to show that a design often has to be selected from a limitedrange of available ones.It is important to recall brie
y the main relations between Bayesian and non-Bayesiandesign criteria. A characteristic of optimal Bayesian design measures is the dependence on thesample size n, since D(�) = n�1(M(�) + n�1R)�1. This identity shows that any di�erencesbetween a Bayesian design and its corresponding non-Bayesian one are unimportant if n islarge, since, in this case, (M(�) + n�1R) is approximately equal to M(�). This is intuitivelyreasonable: in experiments where the sample size is large the posterior distribution will bedriven by the data and will not be sensitive to the prior distribution. In contrast, if n issmall the prior distribution will have more of an e�ect on the posterior distribution and on13



the design.Letting n!1 is equivalent to R! 0 and a similar limiting result is seen. When thereis little prior information available, optimal Bayesian designs are close to the correspondingnon-Bayesian ones. Hence, when a noninformative prior distribution is used for inference,as may often be the case, there is no advantage to using the Bayesian approach for design.This limiting behavior is not seen in design for nonlinear models where usual non-Bayesianoptimal designs are again special cases of Bayesian design but correspond to a point massprior distribution rather than non informativeness. This is discussed further in section 4.Note also that non-Bayesian design criteria, such as c-optimality and DS -optimality mustbe adapted to allow for designs where the optimal choice of nM(�) may be singular. ForBayesian design criteria, no such adaptation is required. The matrix R is non-singular fora proper informative prior distribution, so the matrix nM(�) + R is always non-singularirrespective of whether nM(�) alone is.2.3 Bayesian Alphabetical Optimality: Related Work.In the 1970's Lindley's work had a profound in
uence on many aspects of Bayesianstatistics. In the area of experimental design, a set of papers by Brooks (Brooks 1972,1974, 1976, 1977) were inspired by work of Lindley's on the choice of variables in multipleregression (Lindley 1968). Brooks followed Lindley's approach to motivate the problem ofchoosing the best subset of regressors and the design points in a linear regression model.Predicting the future value of the dependent variable is the goal of the experiment andthe predictor is obtained substituting the Bayesian estimator in the regression function,rather than considering the predictive distribution for the future observation. A quadraticloss function, plus costs, is used to evaluate the di�erence of the future value of y and itspredictor. Bayes A-optimality with added costs is the design criterion derived. In his 1974paper, Brooks also looked for optimal sample size using the same loss function and in his1977 paper he dealt with design problems when controlling for the future value of y to beat a preassigned value y0. The setting considered in Brooks' early papers is too general toallow for many explicit solutions and few special cases are explored. Straight line regressionis examined in his 1976 paper. Brooks' work can be seen as a statement of the general14



principle that the Bayesian method has a way for dealing with the design problem. Bayesoptimality criteria are considered as elements of a class of linear criteria. This last featureshows the in
uence of Fedorov's 1972 book. It is also found in Pukelsheim (1980) and in Pilz'swork (for example Pilz,1991) where Bayesian design criteria are seen mostly as extensionsof the corresponding non-Bayesian criteria, the focus often being placed in showing thatnon-Bayesian criteria are limiting cases when di�use prior information is considered. Seealso Fedorov (1980, 1981).Brooks also examined the case of �2 being unknown and used the simple solution tothe problem that substitutes the value of �2 with its prior mean wherever it appears inthe �nal expression of the criterion. This approach was also used by other authors, forexample Sinha (1970), Guttman (1971) and more recently Pukelsheim (1993, chapter 11).They de�ned optimality criteria without a decision theory based framework and so have noclear extension to the case where �2 is unknown. In contrast, with a decision theory basedframework, the extension to the case where �2 is unknown is conceptually easy but, as isshown in Section 2.5, algebraically hard.Pilz dealt with Bayes experimental designs for a linear model in a series of papers (Pilz1979a, b, c, d, 1981a, b, c N�ather and Pilz 1980, Gladitz and Pilz 1982a, b, Bandemer,N�ather and Pilz 1987). See also the monograph, Pilz (1983) and the revised reprint of themonograph, Pilz (1991). His approach is very general, with no distributional assumptions forthe model or for the prior distribution. Pilz de�ned Bayes alphabetical optimality criteria asan extension of the corresponding non-Bayesian criteria and looked at them as special casesof a general \Linear optimality criterion". D-optimality and E-optimality do not fall intothis setting, so Pilz often derived separate results for these criteria. The methodology usedthroughout Pilz' work has the 
avor of classical decision theory. For example, he consideredadmissible and complete classes of designs to �nd conditions for the existence of Bayes designsin an admissible class. Pilz also adapted much of the existing theory on optimal design tothe Bayesian case. He used Whittle's (1973) general version of the equivalence theorem to�nd relations among the di�erent design criteria and to �nd bounds for the designs. Pilzalso showed that under certain conditions, Bayes alphabetical designs can be constructedas A-optimal designs for a transformed model. In some cases, A-optimality coincides with15



D- and E- optimality, but the conditions under which the above holds do not seem easy tosatisfy. Pilz did not give explicit designs and examine their practical implications and hiswork is somewhat abstract.2.4 Other Utility FunctionsAs noted in section 1, in certain experiments, prediction can be more important thanestimation. In quality control and in clinical trials prediction of future observations can beof special interest. In these cases the Bayesian approach uses predictive analysis which canalso be helpful in designing the experiment. The expected gain in Shannon information ona future observation yn+1 is used rather than the expected gain in information on the vectorof parameters. The expected Kullback-Leibler distance between the predictive distributionp(yn+1jy; �) = R p(yn+1j�)p(�jy; �) d� (posterior predictive) and the marginal distributionp(yn+1) (prior predictive) on yn+1 is the equivalent of the quantity (3) in section 2.2. Theprior predictive distribution does not depend on the design and the design that maximizesthe expected gain in Shannon information on yn+1 is equivalent to the design that maximizesthe expected utility: U3(�) = Z log p(yn+1jy; �) p(y; yn+1j�) dydyn+1: (9)This utility function has been used by San Martini and Spezzaferri (1984) for a modelselection problem and by Verdinelli, Polson and Singpurwalla (1993) for accelerated life testexperiments. In the normal linear model, maximizing U3(�) with respect to � correspondsto maximizing �12 nlog(2�) + 1 + log h�2xTn+1D(�)xn+1 + �2io ;where the next observation is going to be taken at the point xn+1 2 X . This is equivalentto minimizing the predictive variance�2n+1 = �2[xTn+1D(�)xn+1 + 1]:In the special case of prediction of yn+1 at a �xed point c = xn+1, the design maximizing16



U3(X) corresponds to the Bayes c-optimal design presented in section 2.2.Yet another situation is where the experimenter is concerned with the value of the re-sponse variable y. In these cases, one might be interested not only with inference on theparameters, but also with obtaining a large value of the outcome. Experimentation mightbe considered only if the design proposed is expected to produce a large value of outcomeas well as a large value of information. In such cases, one possibility is to look for a designthat maximizes a combination of the expected total output and the expected Shannon infor-mation for the posterior distribution. Verdinelli and Kadane (1992) proposed the followingexpected utility: U4(�) = Z h�yT1+ � log p(�jy; �)ip(y; �j�)dyd�: (10)The non-negative weights � and � express the relative contribution that the experimenter iswilling to attach to the two components of U4(�). In the normal linear model, these weightsa�ect the choice of the design through the ratio �=�. A design maximizing U4(�) is equivalentto a design maximizing Z yT1p(y)dy + �2� log detfD(�)g:Verdinelli (1992) suggested the use of another expected utility function when the goalof the experiment is both inference about the parameters and prediction about the futureobservation. It is given by a combination of U1(�) and U3(�), namely:U5(�) = 
 Z log p(yn+1jy; �)p(y; yn+1j�) dydyn+1 + ! Z log p(�jy; �) p(y; �j�) dyd�: (11)As in U4(�), the weights 
 and ! express the relative contribution of the predictive andthe inferential components of the utility. In this case, the two components are expressed inthe same units. In the linear model the expected utility U5 is maximized by a design thatmaximizes�
2 nlog(2�) + 1 + log h�2xTn+1D(�)xn+1 + �2io� !2 nk log(2�) + k � log det(��2D�1(�))o :17



This is equivalent to minimizing �2n+1detf�2D(�)g, where �2n+1 is the predictive variance,de�ned earlier. It turns out that the weights 
 and ! do not a�ect the choice of the design.Yet another formulation of the design problem as a decision problem is given in Toman(1995). She examined design when the purpose of the experiment is hypothesis testing.2.5 Unknown VarianceIf the variance �2 in the linear model of section 2.1 is unknown then the optimality criteriainduced by the utility functions of the earlier sections may need to be modi�ed, althoughconceptually the goal of maximizing a utility remains the same. Let the prior distributionfor (�; �2) be conjugate in the normal-inverted gamma family: �j�2 � N(�0; �2R�1) and��2j�; � � Ga(�; �), so that p(�2j�; �) / (�2)�(�+1)expf����2g. This implies that boththe prior and the posterior marginal distributions for � are multivariate t distributions.Denote by t�[m;�;�] the probability distribution of an m-variate t random variable with �degrees of freedom, mean vector � and scale matrix � (see for example DeGroot 1970, sec 5.6or Box and Tiao 1973 page 117). Recall that �� = (nM(�) +R)�1(XTy+R�0). Let h(�;y)denote the quantity (2�+n)�1 n(y �X�0)T hI �X(nM(�) +R)�1XT i (y�X�0) + 2�o andlet a = �=�. The prior and posterior marginal distributions for � are:� � t2� hk; �0; aR�1i and �jy; � � t2�+n hk; ��; h(�;y)(nM(�) +R)�1i :The distribution of y conditional on � alone is multivariate t: yj� � t2�[n;X�; aI]. Inaddition, the marginal distribution of the data y is multivariate t:yj� � t2� hn;X�0; a[I �X(nM(�) +R)�1XT ]�1i ;and the posterior predictive distribution for yn+1, a new observation at xn+1, is univariate t:yn+1jy; � � t2�+n [1;xn+1��; h(�;y)fxn+1(nM(�) +R)�1xn+1 + 1g].Evaluating the expected utilities presented in sections 2.2 and 2.4 is now a more compli-cated task. The integrals that de�ne U1; U3; U4 and U5 are now intractable since no closedform expression can be derived. Numerical approaches or approximations, such as the nor-mal approximations (12) or (13) described later, in section 4.2, are needed to �nd Bayesian18



designs.Things are somewhat simpler for A-optimality and U2. In the expression for U2(�),letting A = I, the integral in (7) reduces to R tr Var(�jy)p(y)dy where Var(�jy) denotes theposterior covariance matrix and p(y) is the marginal distribution of y. The A-optimalitycriterion reduces to �nding a design � that minimizes2�+ n2� + n� 2 tr (nM(�) +R)�1 � �Z h(�;y)p(y)dy� :The integral in the above formula is equal to [2�n(2�� 1)�1+2�]=(2�+n), which does notdepend on y. Hence Bayes A-optimality is insensitive to the knowledge of �2 and in thissense it is a robust criterion for choosing a design. See also Chaloner (1984). This featureof A-optimality makes it appealing to use. It remains to be seen how design developed fromdistributional distances are in
uenced by the prior distribution on �2.3 Design for analysis of variance models3.1 IntroductionIn section 2, we showed how a decision theoretic setting for experimental design leads towell de�ned optimality criteria for the linear model. This section deals with the importantspecial case of models for the analysis of variance. In these cases criteria from Section 2sometimes allow the derivation of explicit forms for optimal designs. Two di�erent ways ofbuilding normal prior distributions for the vector � are examined. Bayesian optimal designsare considered when � has prior mean �0 and covariance matrix �2R�1, as in section 2.1.In addition, Bayesian optimal designs under a hierarchical prior distribution, as in Lindleyand Smith (1972), are also derived. The hierarchical normal linear model can be used torepresent di�erent experimental settings. A given criterion like, say, Bayes D-optimalityyields di�erent designs for various choices of the hierarchical structure that describes theexperiment.3.2 Analysis of Variance ModelsIn the one way analysis of variance model, when the e�ects of t treatments are of interest,the matrix nM is simply diagfn1; n2; : : : ntg, where ni is the number of observations in the19



i-th group. Choosing an optimal design for this model consists in choosing the number ofobservations ni or the proportions of observations �i = ni=n on each treatment.Duncan and DeGroot (1976) considered the problem of Bayesian optimal design for theone way analysis of variance model using the A-optimality criterion, de�ned in section 2.2.In one of the cases they examined, one of the t treatments is a control and the contrasts ofinterest compare the t� 1 treatments to the control.In the two-way case, with the second factor being a blocking variable, there might be ttreatments and b blocks. The choice of a design for this model is equivalent to the choice ofnij, the number of observations taken on the i-th treatment in the j-th block. If the blocksizes kj are �xed, this is the same as choosing the proportions �ij = nij=kj of units to assignto the treatments in each of the blocks. Owen (1970) and Giovagnoli and Verdinelli (1983)considered Bayesian designs for the two-way model with treatments and blocks. One of thetreatments is a control and the parameters of interest are the contrasts of the treatmentswith the control. Owen dealt with A-optimality while Giovagnoli and Verdinelli examined aclass of criteria proposed, in a non-Bayesian context, by Kiefer (1975). The class is de�nedfor a parameter p � 0 as �p = fk�1tr[D(�)]pg1=p. Bayesian A-optimality is a special casewhen p = 1, Bayesian D-optimality results when p ! 0 and Bayesian E-optimality whenp ! 1. Having de�ned this class, Giovagnoli and Verdinelli then focused on D-optimaldesigns. Simeone and Verdinelli (1989) used nonlinear programming techniques to deriveE-optimal Bayes designs for the same model.Bayesian designs for analysis of variance models were derived in Toman (1992a, 1994,1995). Designs for models with two blocking factors were examined by Toman and Notz(1991), who mainly considered A-optimality criterion, but also presented solutions for D-and E-optimality.3.3 Example 1 ContinuedFollowing Duncan and DeGroot (1976) let us now consider the A-optimality criterion inthe one way analysis of variance model. Let � = (�1; �2; : : : �t)T represent the treatmente�ects and suppose the experiment is designed to study the contrasts �i � �1 of the e�ectsof t�1 new treatments compared with a control for i = 2; : : : ; t. Assume that the treatment20



e�ects �i are independent and normally distributed with prior means �i and variance � 2i .The use of utility function (7) for Bayesian A-optimality, leads to an optimal proportion ofobservations on the control�1 = max(0 ; 1 +Ptj=1 1=n� 2j1 +pt� 1 � 1n� 21 )and on the ith new treatment�i = max8<:0 ;pt� 1 �1 +Ptj=1 1=n� 2j �1 +pt� 1 � 1n� 2i 9=; ; for i = 2; : : : ; t;with the constraint Ptj=1 �j = 1. If the same prior mean and variance �2 and � 22 say, areassigned to all the new treatments, to represent that they are thought to be independentand have the same prior distribution, then the A-optimal proportions of observations can bewritten as: �1 = max(0 ; ��2�2 + �1 + (t� 1)�21 +pt� 1 )�2 = (t� 1)�1(1 � �1);where �1 = �2=n� 21 and �2 = �2=n� 22 . From these expressions we can see the limiting behaviorof �1 and �2. As the value of the prior variances gets large with respect to �2=n, that isfor �1 and �2 both small, the result approaches the non-Bayesian A-optimal proportion. Aproportion fpt� 1 + 1g�1 of the observations are on the control and the rest are equallydivided among the other t � 1 treatments. This design is sometimes called \the squareroot rule", since it places the same number of observations on all the new treatments andpt� 1 as many on the control. When, instead, �1 is large compared with �2 { meaning thatprior information is less precise on the new treatments that it is on the control { then theA-optimal design puts no observations on the control. Similarly, if �2 is large compared to�1 it may be optimal to put all the observations on the control.Assume now that the utility function chosen is U1(�) in (4) and the experiment is designedto be Bayesian D-optimal. Suppose that the new treatment e�ects are still assumed to be21



independent and identically distributed. The optimal proportion of observations on thecontrol, �1, depends again on the ratios �1 = �2=n� 21 and �2 = �2=n� 22 . When �1 and �2 areboth small, the non-BayesianD-optimal design is obtained, that places the same proportionsof observations 1=t on the new treatments and on the control. In contrast, if �1 is large, thereis precise knowledge of the e�ect of the control, and it may be optimal to take no observationson the control, just as in Bayesian A-optimality. Similarly if �2 is large the prior informationabout the new treatments is precise and no observations need to be taken on them.When the optimal design takes no observations on a treatment, then the only informationon that treatment in the posterior distribution will be from the prior information. Someexperimenters might well �nd this feature unappealing: some might argue that this is noteven an experiment. In implementing such a design the assumption is clearly critical thatthe prior information really does represent accurate information about the experimentalunits in this particular experiment. This is always an important assumption to examine,especially when the optimal Bayesian design is so di�erent from the corresponding optimalnon-Bayesian design. But of course it is in exactly these cases of precise prior informationor, equivalently, of small planned sample size, that Bayesian optimal designs can improveover non-Bayesian designs if the critical assumption holds.Similar results are obtained when the utility function chosen is (10) and concern is bothon inference and on yielding a large value of the total output. In this case, the optimalproportion �1 on the control depends both on the prior means and on the prior variances.It can be shown that there are two threshold values, F and G, functions of �1 and �2 only,such that if �2 � �1 � F then �1 = 1 and if �2 � �1 � G then �1 = 0. Hence the optimaldesign does not take observations on the new treatments if the prior mean �2 of the newtreatment e�ect is small compared with the prior mean of the control e�ect �1. Similarly noobservations are taken on the control if �2 is large compared to �1.3.4 Hierarchical form for the prior distributionThe use of a hierarchical normal linear model is motivated by Lindley and Smith (1972).The basic model consists of three stages. The �rst stage is the sampling distribution andit is just the usual normal linear model with a vector of parameters �, say, as described in22



section 2.1. The second and third stages together are used to model the prior distribution for�. The linear models of earlier sections are obtained when the prior distribution is expressedthrough one stage only. We now consider prior distributions speci�ed in two stages. Thedistribution of � at the �rst stage is expressed through a vector of hyperparameters and asecond stage is added to specify the distribution of the hyperparameters.For example in the one way analysis of variance model, let the sampling distribution besuch that the yij are independent andyijj�i � N(�i; �2);with �2 known. To represent the information that all the group e�ects �i are similar, thenthe �rst stage of the prior distribution is that, conditional on some value �, the �i areindependent with mean �, and with the same known variance � 2. That is the �i are a samplefrom the same distribution �ij� � N(�; � 2). The second stage of the prior distributionrepresents the uncertainty in �: for example � � N(0; !2). Then the marginal distributionof the parameters �i is such that the �i are exchangeable, but not independent. The �i's arepositively correlated, representing that they are believed to be similar. Even if !2 ! 1,representing vague prior knowledge, the distribution still retains a correlation structure.As Lindley and Smith (1972, page 7) remarked, it is the type of experiment that oftensuggests the speci�cations for the �rst stage of the prior, that describe the relationshipexisting among the elements of �. At the second stage, knowledge is likely to be weak,so it is natural to express this by assuming a distribution for the hyperparameters that isdispersed. Under this type of prior distribution, the marginal distribution of the data, y isformally that of a random e�ects model rather than a �xed e�ects model.Under this hierarchical structure, the Bayesian optimal design criteria derived from D-optimality (4) and A-optimality (7) are di�erent than under a prior distribution set onlyin one stage. Relatively little research has been done on design with a hierarchical priordistribution and more work is needed in this area.23



3.5 Example 1 ContinuedAssume again there is a control group and t � 1 treatment groups. The �rst stage ofthe prior distribution is such that, conditional on �1 and �2, the control e�ect is normallydistributed with mean �1 and variance � 21 , and the t�1 treatment e�ects (�2; �3; : : : ; �t) arenormal with a mean vector 1�2, where 1 is a (t� 1) vector of one's, and a variance matrix� 22 I. The variances � 21 and � 22 are assumed to be known. Let the prior distribution of �1 and�2 be 
at and improper to represent that not much is known about treatments and control,apart from the fact that �1 and �2 are thought to be di�erent. Collapsing the two-stagesgives a singular prior precision matrix ��2R:R = �2(t� 1) n� 22 2666664 0 : 0T� � � � � �0 : (t� 1)I � J 3777775 ;where J = 11T . The matrix R is such that the mean of the control e�ect is independent ofthe mean e�ects of the new treatments, that the new treatments means are exchangeable,but not independent of each other, and that the prior distribution is non-informative withrespect to the control. The symmetry built into this model is such that for any of the utilityfunctions of section 2, the optimal proportions of observations on each new treatment is thesame, �2 say, with 0 � �2 � (t� 1)�1, and the proportion of observations on the control is�1 = 1 � (t� 1)�2.In this case too, di�erent designs are generated from di�erent utilities. When (4) ischosen, for Bayesian D-optimality, and interest is on inference on either the vector � =(�1; �2; : : : ; �t) or on the contrasts �i � �1; for i = 2; : : : ; t, the optimal proportion ofobservations on the control �1, can be expressed as a function of the ratio � = �2=n� 22 .When � ! 1 the prior variance for the new treatments is small compared with the errorvariance �2=n. This implies that the new treatments are believed to be very similar toeach other (which might often be the case in practice) and lim�!1 �1(�) = 1=2. Hencehalf of the observations are on the control, and the rest are equally divided among the newtreatments. Intuitively, to compare two independent treatments, the observations would24



be divided equally between the two and this is, essentially, the situation when � ! 1. Incontrast, if the prior variance for the new treatments is large compared with �2=n, that is �!0, than lim�!0 �1(�) = 1=t. Exchangeability in this case reduces to the new treatments beingindependent, and all treatments, control and new, get an equal allocation of observations.The design derived from (7), is such that the A-optimal proportion �1 also depends onlyon �. When � ! 1 and the new treatment means are believed to be very similar then,lim�!1 �1(�) = 1=2. This solution is the same found for D-optimality when �!1. In fact,for this limiting case, all alphabetically optimal criteria coincide. In contrast, when the newtreatment means are independent, represented by � ! 0, we get again the square root rulegiven in Section 3.2.As mentioned in Section 1.2, let us consider now a di�erent experiment (Smith andVerdinelli, 1980) where the prior means of each group are formed to study the e�ects ofincreasing levels z1; z2; : : : zk of a given drug. This experiment too can be modeled specifyingthe prior distribution in two stages. At the �rst stage the prior means of each group are ona response curve described by a low degree polynomial. Hence�i � N(
0 + 
1zi + : : :+ 
rzri ; � 2)where i = 1; 2; : : : ; t; r < t; a straight line corresponds to choosing r = 1 and a quadratic tor = 2. At the second stage, the prior distribution for the hyperparameters 
0; 
1; : : : ; 
r ischosen to be non informative, thus representing that the only knowledge available is aboutthe type of response surface, not about its actual form. Deriving optimal designs for thistype of assumptions requires numerical implementation.Figure 1 shows how the D-optimal proportions �i vary when � = �2=n� 2 increases, forequally spaced zi and an orthogonal polynomial representation. The left hand side of the�gure shows D-optimal proportions for seven groups (t = 7) and a straight line at the �rststage of the prior distribution (r = 1). The right hand side of the �gure is essentiallythe same, but the D-optimal proportions are for nine groups (t = 9) and for a seconddegree polynomial at the �rst stage of the prior distribution (r = 2). Note how the D-optimal proportions in the groups behave consistently with the strength of prior beliefs in25



the polynomial at the �rst stage, as represented by the ratio � between sample and prior
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4 Nonlinear design problems4.1 IntroductionDesign is more di�cult when the model is not linear or when a nonlinear function ofthe coe�cients of a linear model is of interest. Such problems are referred to as \nonlineardesign problems". It will be shown that the design problem can be formulated as maximizingexpected utility but approximations must typically be used as the exact expected utility isoften a complicated integral. Designs can still be denoted by a probability measure � overthe design space X and the set of all such measures be denoted H. The measures may bearbitrary probability measures representing approximate, or continuous, designs, or measurescorresponding to exact designs which have mass 1=n on n, not necessarily distinct, points.4.2 Approximations to expected utilityMost approximations to expected utility involve using a normal approximation to theposterior distribution. Several normal approximations are possible, see for example Berger(1985, p. 224), and involve either the expected Fisher information matrix or the matrix ofsecond derivatives of the logarithm of either the likelihood or the posterior density. Theexpected Fisher information matrix for a model with unknown parameters �, a design �and a sample size of n is denoted by nI(�; �). Note that the matrix of moments, M , usedin the previous sections on linear design, is a very special case of I(�; �), where I(�; �)does not depend on �. For consistency with the literature, and to emphasize that I(�; �)is not necessarily a moment matrix, this separate notation is used for linear and nonlinearproblems.Let �̂ denote the maximum likelihood estimate of �. One normal approximation mightbe: �jy; � � N(�̂; [nI(�̂; �)]�1): (12)In (12) the posterior normal approximation only depends on the data through �̂. An alter-native approximation is: �jy; � � N(�̂; [R+ nI(�̂; �)]�1) (13)where �̂ now denotes the mode of the joint posterior distribution of � (also called the gener-27



alized maximum likelihood estimate of � as in Berger, 1985, p.133), and R is the matrix ofsecond derivatives of the logarithm of the prior density function, or the precision matrix ofthe prior distribution.Several other approximations are possible, for example using the exact posterior meanand variance as the mean and variance of the approximating normal distribution, or usingthe observed rather than expected Fisher information matrix. Although in speci�c problemsthere may be reasons to prefer one approximation to another, and the observed, rather thanthe expected information matrix, almost always gives a better normal approximation to theposterior distribution, in general there is no obviously best one to use. For design purposesthe expected Fisher information matrix is usually algebraically much more tractable. Usingapproximations other than (12) and (13) is an area for future research.If, for illustration, Shannon information is the choice of utility then the expected utilityU1(�) is given by equation (4), as in the linear model. U1(�) is the exact expected utility,which involves p(yj�), the marginal distribution of the data for a design �. As in the linearmodel p(yj�) = Z p(yj�; �)p(�)d�:In most cases this marginal distribution of y must also be approximated. When the posteriorutility only depends on y through some consistent estimate �̂ a further approximation, ofthe same order as (12) and (13), is to take the predictive distribution of �̂ to be the priordistribution. Using this approximation together with (12) gives an approximate value ofU1(�): � k2 log(2�)� k2 + 12 Z log detfnI(�; �)g p(�) d�: (14)As in earlier sections U(�) will be used to denote exact expected utility and �(�) a designcriterion. The constant terms and multiplier in (14) can be dropped to give�1(�) = Z log detfnI(�; �)gp(�) d� (15)28



as a design criterion. Similarly the design criterion derived using (13) gives:�1R(�) = Z log detfnI(�; �) +Rgp(�) d�: (16)Suppose now that the only quantity to be estimated is a function of the coe�cients g(�) andsquared error loss is appropriate, so that the utility is U2(�) in (7). De�ne the k vector c(�)to be the gradient vector of g(�). That is, the ith entry of c(�) is:ci(�) = @g(�)@�i : (17)Then, using (12), the approximate expected utility is�2(�) = � Z c(�)TfnI(�; �)g�1c(�) p(�) d�: (18)A slightly di�erent approximation involving R is given when (13) is used:�2R(�) = � Z c(�)TfR + nI(�; �)g�1c(�) p(�) d�: (19)Should more than one function of � be of interest, the total expected loss is the sum ofthe expected losses for all the nonlinear functions. This sum could be a weighted sum torepresent some functions being of more interest than others. If the matrix A(�) is the sum,or corresponding weighted sum, of the individual matrices c(�)c(�)T then the approximateexpected utility is �2(�) = � Z trfA(�)[nI(�; �)]�1g p(�) d� (20)with a similar expression involving the matrix R if (13) is used. Criteria (15), (18) and(20) will be referred to as Bayesian D-optimality, Bayesian c-optimality and Bayesian A-optimality respectively.Clyde (1993a) suggested that as these Bayesian design criteria are based on approximatenormality it is appropriate to design to ensure that, with high probability, the posteriordistribution is, approximately, normal. She suggested several approaches, including maxi-mizing the criteria discussed above subject to some constraints that help ensure normality.29



The constraints she used are developed from the ideas of Slate (1991) and Kass and Slate(1994) who gave diagnostics for posterior normality. For small sample sizes the constraintsare active but for large sample sizes posterior normality is more likely and so the constraintsare typically satis�ed by the design maximizing the Bayesian criterion. She also looked atother ways of combining the two objectives of maximizing approximate utility and attainingapproximate normality. Hamilton and Watts (1985) and P�azman and Pronzato (1992a, b),took a related non-Bayesian approach.M�uller and Parmigiani (1995) suggested estimating the exact expected utility usingMarkov Chain Monte Carlo methods but the e�ectiveness of this suggestion in speci�c prob-lems has yet to be demonstrated.4.3 Bayesian criteriaSome of the earliest papers putting design for nonlinear models in a Bayesian perspectiveare Tsutakawa (1972) and Zacks (1977). They both used the matrix I(�; �) in their designcriteria. Tsutakawa considered a one parameter logistic regression with known slope coe�-cient and unknown LD50, denoted by �. The criterion he maximized was the univariate caseof (19), that is: �(�) = � Z fR + nI(�; �)g�1p(�) d�: (21)where the integrand is a scalar. Tsutakawa numerically found designs maximizing (21),restricting the designs to equally spaced design points with equal numbers of Bernoulliobservations at each design point. He gave the arguments of Section 4.2 to justify (19). Ina later paper (Tsutakawa 1980), he extended similar ideas to design for the estimation ofother percentile responses.Zacks (1977) considered problems where the data are to be sampled from an exponen-tial family with known scale parameter and where some function of the mean is linear inan explanatory variable. This class of generalized linear models includes quantal responsemodels and models for exponential lifetimes. The Fisher information matrix has a commonform for these models and Zacks considered designs that maximize the expected value of thedeterminant of I(�; �), that is: 30



�(�) = Z detfnI(�; �)g p(�) d�: (22)Zacks examined several examples and also found optimal multistage designs for quantalresponse experiments. Note that the criterion in (22), unlike (15), is not readily interpretableas an approximation to the expected utility (4).A similar approach to that of Tsutakawa and Zacks to design for nonlinear models, called\robust experimental design", was developed in the �eld of pharmacokinetics and biologicalmodeling. This was initially developed without mention of any Bayesian motivation. Theseprocedures are described in Walter and Pronzato (1985) and Pronzato and Walter (1985,1987, 1988), see also Landaw (1982, 1984). This work also relates to work on dynamicsystems as in Mehra (1974) and Goodwin and Payne (1977).In addition to using the criterion (22) Pronzato and Walter also used several other criteriasuch as: �(�) = � Z [detI(�; �)]�1 p(�) d�: (23)�(�) = det�I �Z �p(�) d�; ��� : (24)They also discussed and derived designs based on minimax criteria.There is a rich related literature, mostly non-Bayesian, on design, for complex phar-macokinetic and biological models. A feature which makes these methods di�erent is thatoften allowances are made for inter- and intra-subject variability. Another feature of suchmodels that is often used is non-constant error variance. Further references can be found inLaunay and Iliadis (1988), Mallet and Mentre (1988), D'Argenio and Van Guilder (1988),Thomaseth and Cobelli (1988) and D'Argenio (1990). With a few exceptions, such as Katzand D'Argenio (1983), this important work is not in the mainstream statistics literature butin the scienti�c literature of pharmacokinetics and mathematical biology.4.4 Local optimalityA crude approximation to expected utility would be to approximate the marginal distri-bution of �̂ by a one point distribution. The one point would represent a \best guess". This31



approach, known as local optimality, has been used extensively in nonlinear design and isdue to Cherno� (1953, 1962). It is also used in the pioneering paper of Box and Lucas (1959)where the important issues in design for nonlinear regression were identi�ed. Although theyused local optimality, Box and Lucas suggested extending this by taking into account a priordistribution on the parameter values. Draper and Hunter (1967a) extend the work of Boxand Lucas. White (1973, 1975) showed how results from linear design theory can be adaptedto apply to local optimality in nonlinear models and she also derived locally optimal designsfor binary regression experiments.As local optimality is a very crude approximation to expected utility, it can be consideredas being approximately Bayesian although it is typically not justi�ed in this way and isusually used in a non-Bayesian framework.The experimenter is required to specify a best guess, �0 for the unknown parameters �.Local D-optimality involves choosing the design � maximizing�1�0(�) = detfI(�0; �)g: (25)for a �xed value �0. Similarly, local c-optimality is to choose � to maximize:�2�0(�) = �cT (�0)I(�0; �)�1c(�0) = �trA(�0)I(�0; �)�1 (26)which can clearly be generalized to local A-optimality. As in (18) and (19) the vector c(�0)is the gradient vector of the function of interest, evaluated at �0. Typically c(�0) depends on�0 as does the matrix A(�0) = c(�0)c(�0)T . If more than one function of the parameters is ofinterest then the matrix A(�0) is the, possibly weighted, sum of matrices corresponding tothe individual functions. The weights are the relative importance of each nonlinear function.To our knowledge versions of (25) and (26) involving the matrix R have not been used.4.5 Comparison of the approximationsThe various ways to approximate (1) presented earlier and their implications will nowbe compared. For Bayesian D-optimality and maximizing Shannon information we comparecriteria (15) and (16) and, for Bayesian c-optimality and minimizing squared error loss, (18)32



and (19). These criteria are asymptotic approximations of the same order. Several aspectsdo distinguish them. The criteria (16) and (19)� require the speci�cation of R.� give optimal designs which depend on the sample size� avoid technical problems using prior distributions with unbounded support where, fora design with bounded support, I(�; �) may be arbitrarily close to being singular (asdiscussed in Tsutakawa, 1972).The criteria (15) and (18) alternatively,� can be interpreted as a procedure where a di�erent prior distribution will be used forthe analysis than was used in the design stage. A noninformative prior distributionwill be used in the analysis, hence giving R identically zero, but all available priorinformation will be used in the design process and an informative p(�) will be used toaverage over in the integral. This echoes the idea given in Tsutakawa (1972) of usingdi�erent prior distributions for design and for analysis. (See also Etzione and Kadane,1993).� for similar reasons these criteria are appealing in a non-Bayesian framework where itis accepted that prior information must be used in design but should not be used inthe analysis. Indeed this is the motivation of Pronzato and Walter (1985, 1987).For these reasons we prefer (15) and (18) over (16) and (19). But note that for large samplesizes, or for cases where the matrix R corresponds to imprecise information, there will bevery little di�erence between the two sets of criteria.Versions of these criteria using the observed rather than expected information matrix,or the second derivative of the logarithm of the posterior do not appear to have been in-vestigated and might give better designs, especially for small samples. Similarly not muchis known in general about how well these criteria, which approximate expected utility, per-form empirically. For a special case of example 3, Atkinson, Chaloner, Herzberg and Juritz33



(1993) showed by simulation that the Bayesian criteria do well empirically. Clyde (1993)also presented some simulations. A recent paper by Sun, Tsutakawa and Lu (1995) showedby simulation that the numerical approximation of Tsutakawa (1972) for design in the oneparameter logistic regression example is remarkably accurate.4.6 DiscussionApart from the ideal approach of maximizing exact expected utility precisely as in say (1),no single approach can comfortably be labeled as the de�nitive \Bayesian nonlinear designcriterion". The criteria derived in this section are all approximations to the ideal. This hasnot always been fully understood. For example Atkinson and Donev (1992) present \Fiveversions of Bayesian D-optimality" in Table 19.1. They explain that the (15) correspondsto \pre-posterior expected loss" but do not explain that it is Shannon information as utilityrather than loss, and it is an approximation.5 Optimal nonlinear Bayesian design5.1 IntroductionChaloner (1987) and Chaloner and Larntz (1986, 1988, 1989) developed the use of criteriasuch as those given by (15) which are the expectation, over a prior distribution of a localoptimality criterion. We refer to such criteria as \Bayesian design criteria". These designcriteria are concave on H, the space of all probability measures on X . Subject to someregularity conditions, an equivalence theorem can be derived. The equivalence theorem wasstated by Whittle (1973) in the context of linear design problems, but its application tononlinear problems was not then apparent and the regularity conditions required for its usein the nonlinear case not stated. See also L�auter (1974, 1976) and Dubov (1977). Thetheorem states that, in order to verify that a design measure is optimal, it is necessary onlyto check that the appropriate directional derivative at that design measure, in the direction ofall one point design measures is everywhere non positive. A candidate optimal approximatedesign can be found using numerical optimization and the theorem makes it easy to checkwhether the candidate design is indeed globally optimal over H.The theorem applies to any criterion that is an average, over a prior distribution, of a34



local optimality criterion concave on H. Most of the criteria in common usage, includingthose given by (15), (16), (18), (19) and (20) satisfy this condition.For a criterion �(�) the derivative at a design measure � in the direction of anothermeasure �� is, when the limit exists:D(�; ��) = lim�#0 1� [�f(1� �)� � ���g � �(�)] :The extreme points of H are the measures putting point mass at a single x in X and aredenoted �x. The directional derivative of �(�) in the direction �x is D(�; �x) and is denotedd(�; x).For example �(�) de�ned by (15), Bayesian D-optimality, the derivative is:d(�; x) = Z trI(�; �x)I(�; �)�1p(�)d� � k ;where k is the dimension of �.Regularity conditions that are su�cient for the equivalence theorem to hold are thatthere is at least one design � such that �(�) is �nite, that �(�) is continuous on H in sometopology such as weak convergence, and that the derivatives d(�; x) of �(�) exist and arecontinuous in x.The extension of Bayesian criteria to situations involving nuisance parameters is straight-forward under the general approach of maximizing expected utility. For Bayesian c-optima-lity and A-optimality no extension is required as nuisance parameters are inherent in theirde�nition. A Bayesian Ds-criterion and its corresponding equivalence theorem can also beeasily derived.Unlike in linear problems the criterion function �(�) is not necessarily a concave functionover a �nite dimensional space and so the equivalence theorem does not provide any boundfor the minimum number of points in an optimal design. This is discussed in the followingsection.5.2 Number of support pointsIn most non-Bayesian linear problems an upper bound on the number of support points35



in an optimal design is available, see Pukelsheim (1993, p. 188-9). For linear models derivingthe bound relies on the fact that the matrix M depends only on the �rst few moments ofthe design measure � and Carath�eodory's theorem is used. The D-optimality criterion inlinear models typically leads to an optimal number of support points that is the same as thenumber of unknown parameters and the design takes an equal number of observations ateach point (Silvey, 1980, p. 42, and Pukelsheim, 1993, section 9.5 for polynomial models).Designs on a small number of support points are easy to �nd and their theoretical prop-erties are readily examined. They are not very appealing in practice, however, as they donot allow for checking of the model after the experiment is performed.The bound also applies to most local optimality criteria and Bayesian criteria for linearmodels (see, for example Cherno�, 1972, p. 27 and Chaloner, 1984). In contrast for nonlinearmodels there is no such bound available on the number of support points. Although thecriteria are concave on H, the space of probability measures, they are not concave functionson a �nite dimensional moment space and so Carath�eodory's theorem cannot be invoked.Chaloner and Larntz (1986, 1989) gave the �rst examples of how the number of supportpoints in an optimal Bayesian design increases as the prior distribution becomes more dis-persed. They found that for prior distributions that have support over a very small regionthe Bayesian optimal designs are almost the same as the locally optimal design and theyhave the same number of support points as the number of unknown parameters. For moredispersed prior distributions there are more support points. This is a useful feature for a de-sign as, if there are more support points than unknown parameters, the model assumptionscan be checked with data from the experiment. This is discussed further in Section 8.5.Other examples of Bayesian nonlinear designs where the number of support points is not�xed can be found in Atkinson and Donev (1992), O'Brien and Rawlings (1994 a, b, c),Ridout (1994), Chaloner (1993) and Atkinson, Chaloner, Juritz and Herzberg (1993).5.3 Exact ResultsFor local optimality there are several papers deriving closed form expressions for designs:for example White (1975), Kitsos, Titterington and Torsney (1988), Ford, Torsney and Wu(1992) and Wu (1988). For a particular value of the unknown parameters the problem often36



reduces to an equivalent linear problem.Finding optimal Bayesian designs algebraically is much harder and thus implementingBayesian design criteria requires that designs be found by numerical optimization. Excep-tions to this are simple special cases: these cases are not very useful in practice, but theygive insight into properties of the optimal designs for more realistic and practical situations.Exact, algebraic results are quite di�cult to derive as none of the tools from local optimalityare very helpful.In Chaloner (1993) for example, in a one parameter problem, with prior distributionswith only two support points, it is possible to examine exactly how the transition froma one point optimal design to a two point optimal design occurs as the prior distributionis changed. Mukhopadhyay and Haines (1995), Dette and Neugebauer (1995a, b), Detteand Sperlich (1994b) and Haines (1995) all considered some nonlinear regression problemsinvolving an exponential mean function, and gave conditions under which the optimal designis of a particular form. Loosely speaking these results can be generalized to say that if theprior distribution is not too dispersed and does not have heavy tails then an optimal Bayesiandesign has the same number of support points as there are unknown parameters. Haines(1995) gave an insightful geometric interpretation of this and demonstrated how, for a priordistribution with �nite support, the problem reduces to a particular convex programmingproblem.5.4 Design SoftwareIt is clear that if Bayesian designs for nonlinear problems are to be used in practice thensoftware must be readily available. Chaloner and Larntz (1988) describe such software forlogistic regression. These are menu driven FORTRAN programs that are easy to use andcompile and are available from the authors by email. A more powerful and 
exible Bayesiandesign system is the object-oriented environment of Clyde (1993b), developed within XLISP-STAT (Tierney, 1990). This system enables both exact designs and approximate designmeasures to be easily found for both linear and nonlinear problems. Locally optimal designsand non-Bayesian linear designs can also be found as a special case of Bayesian designs. Thesystem also allows for constraints in the optimization process as suggested in Clyde (1993a).37



This powerful software environment is a little di�cult to use initially but can be easilyadapted to solve a multitude of design problems and makes Bayesian design a very practicalreality. The availability of this software makes it straightforward to derive designs for avariety of prior distributions, model assumptions and criteria and so examine robustness.The software is available from the author (by email) and requires the NPSOL FORTRANlibrary of Gill et al (1986) to be loaded. Documentation, installation and availability by ftpis described in Clyde (1993b).Warner (1993) describes some other software, which we have not examined, using theGibbs sampler.When software provides a continuous (approximate) design and an exact design is re-quired then Pukelsheim and Rieder (1992) and Pukelsheim (1993, p. 424) can be consultedfor procedures rounding continuous design measures to exact designs.5.5 Sequential designIn any design problem an optimal sequential design procedure must be at least as goodas a �xed design procedure. In most linear design problems, however, both Bayesian andnon-Bayesian, the optimal sequential procedure is the �xed, non-sequential procedure. Thereis nothing to be gained by designing sequentially. This is easily seen when the error variance�2 is known: the posterior utility depends on the design �, but does not depend on the datay. For the case when �2 is unknown it is not so clear. For A-optimality and �2 unknownwith a conjugate prior distribution, the analysis of section 2.5 shows that there is nothing tobe gained by sequential design in this case. For other linear problems it is unclear whethersequential design is better. For nonlinear problems the posterior utility clearly depends onthe data y, or a function of y such as �̂, and there should be a gain from choosing designpoints sequentially.Sequential design, however, may be unrealistic in practice. Consider for illustration theexperiments of example 2 done in the University of Minnesota laboratory. Theoretically thedose for each one of the 60 animals could be decided upon one at a time and the extensivestatistical literature on sequential design of binary response experiments consulted (see for38



example Wu, 1985). But1. as death over the 7 days following injection of the drug is the response, the experimentwould be prolonged from a total of 7 days to many months.2. time trends or seasonal e�ects may be introduced if the experimental conditions changeover time. Similar animals might not always be available and the drugs deteriorateover time.3. the probability of error in doses and calculations is increased when 60 calculations aredone to determine the next dose. A non-sequential procedure is easily implementedand requires less training of laboratory sta�.Several powerful sequential Bayesian design procedures have been developed: see, forexample Berry and Fristedt (1985) who reviewed the extensive work in bandit problems andKuo (1983) who develops procedures for nonparametric binary regression. Freeman (1970)solved the Bayesian sequential design problem exactly for a very small and simple binaryregression experiment. We do not attempt to review this work here.Batch sequential procedures rather than fully sequential procedures (as in Zacks, 1977,and Ridout, 1995) might prove to be more practical. There is a practical concern, however,that the experimental conditions from one batch to the next might be di�erent.5.6 DiscussionWhatever criterion is used, Bayesian or non-Bayesian, prior information must be consid-ered for nonlinear design as, unlike in a linear model, the posterior utility of a design dependson the data. An experimenter may be willing to specify an informative prior distributionin designing the experiment but may prefer to use a noninformative prior distribution forinference.6 Speci�c nonlinear design problems6.1 Binary response modelsTsutakawa (1972, 1980), Owen (1975), Zacks (1977), Chaloner and Larntz (1989),Flournoy (1993), and Clyde, M�uller and Parmigiani (1994) all use Bayesian design ideas39



in binary regression models. These models are important and have many applications intoxicology and reliability studies. They are also interesting from a design perspective be-cause they are so very di�erent from linear regression models.Consider, for example, a simple linear regression model and a closed design interval X . Itis straightforward to show that the linear D-optimal design, under a vague prior distribution,is to take half the observations at one extreme of the interval and the other half at the otherextreme. In contrast consider a binary regression with a binary response variable whichis, \success" or \failure". Suppose that the probability of success near one extreme of thedesign interval X is close to 0 and at the other extreme it is close to 1. A design thatputs all observations at the two extremes of X would be very ine�cient. There would be agood chance that the experiment will yield no useful information: all the responses at thehigh value of x might be successes and all the responses at the other value of x might befailures. In this case the likelihood has no well de�ned mode and the experiment is not veryinformative.It can be shown that design points of the Bayesian D-optimality criterion for a binaryregression are spread throughout over the interval X and, as the support of the prior dis-tribution gets wider, the number of support points of the optimal design increase. Gooddesigns for binary regression problems have, therefore, quite di�erent properties than gooddesigns for linear regression problems.6.2 Example 2 continuedRecall example 2 where the University of Minnesota laboratory performed many logisticregression experiments on several di�erent drugs and biologic material.For one particular drug under study, 54 similar experiments were performed. The drugwas at one of several concentrations: 120, 121, 122 or 124 mg/ml and a similar design wasused for each of the 54 experiments. The design was a design of 6 equally spaced doses of2.5, 3.0, 3.5, 4.0, 4.5 and 5.0, with 10 mice exposed to each dose. 60 animals were usedin each experiment. Sometimes less than 60 animals were available in which case less than10 animals were exposed to the highest dose. The responses measured were the numberof surviving mice, usually 7 days after being given the dose. Estimates of the LD50 were40



calculated for each experiment and these estimates range from 3.2 to 4.2 and the slopesrange from about -4.0 to -1.5. The LD50's were used to estimate the potency of each batchof drug.The design does not correspond to any locally optimal design, as a locally optimal designhas two dose levels only, with half of the animals at each dose.Could Bayesian design ideas have been useful in this example? To examine this questionthe set of 54 estimates can be used to construct a prior distribution to design future experi-ments. The 54 estimates can be thought of a sample from a distribution of possible valuesthat might be encountered in future experiments. A prior distribution was therefore con-structed where the LD50 and the slope both have independent Beta distributions, Beta(4,4),and the LD50 lies between 3.2 and 4.2 and the slope between -4.0 and 1.5. This prior distri-bution reasonably re
ects the sample and has, approximately, the same �rst two momentsas the sample. It re
ects the actual values obtained in the experiments performed. Beforethe experiments were performed a more realistic prior distribution might be one representingmore uncertainty and so a second prior distribution was constructed which is uniform on thesame interval.For the independent Beta(4,4) distributions the Bayesian �2-optimal design for minimiz-ing the posterior variance of the LD50 is easily found using the software of Chaloner andLarntz (1989) or Clyde (1993b). It is a 4 point design, symmetric around the prior meanfor the LD50 of 3.6, and it takes observations at 3.07, 3.47, 3.73, 4.13 with weights 0.30,0.20, 0.20 and 0.30 respectively. The design points are not equally spaced. Under this priordistribution, the design actually used in the lab, with an equal number of animals at eachof 6 equally spaced doses between 2.5 and 5.0, has a �2-criterion value 1.52 times of that ofthe �2-optimal design. A 5 point design obtained by omitting the highest dose of 5.0 fromthe 6 point design and dividing the 60 animals equally between the remaining 5 doses hasa criterion value of 1.29 times that of the optimal value. If the lowest dose in the 5 pointdesign is also omitted and the animals equally divided between the remaining 4 doses of3.0, 3.5, 4.0, and 4.5 the criterion value is 1.13 times that of the optimal value. Thus, ifthe Beta(4,4) distributions re
ected the experimenters' beliefs well, if they were willing touse the optimal Bayesian design they could have reduced the variability of their estimates41



considerably. If they wanted to use equally spaced doses at convenient values spaced 0.5units apart and include integer values they could have got very close to an optimal Bayesiandesign using a 4 point design by omitting the two extreme design points of their design.The Beta(4,4) prior distributions correspond to quite accurate knowledge of values toexpect and so, for further illustration, consider the prior distribution that is uniform over thesame interval. This prior distribution might have represented beliefs before the experimentswere done. In this case the optimal design is a 5 point design, again centered at 3.6 units,taking observations at 2.78, 3.21, 3.6, 3.99, 4.42 with weights 0.28, 0.15, 0.14, 0.15 and0.28 respectively. Although the points are almost equally spaced there is more mass at theextremes than at the center points. The equally spaced, equal weight, designs consideredearlier are amazingly e�cient for this prior distribution. The 6 point design used by theexperimenters with equal weight at 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 has a criterion value 1.13 timesthat of the optimal value, the 5 point design with equal weight at 2.5, 3.0, 3.5, 4.0, 4.5 has acriterion value 1.02 times that of the optimal one and the 4 point design with equal weightat 3.0, 3.5, 4.0, 4.5 has a criterion value 1.08 of the optimal value.If the expectations of the experimenters could be reasonably represented by the uniformdistribution then the design they used is close to the Bayesian optimal design. This examplehas, therefore, not illustrated that Bayesian design could have greatly improved e�ciencyof estimation in this laboratory, but rather illustrated that what they were doing may wellhave been close to being optimal in a Bayesian sense.6.3 Nonlinear regression modelsIn a nonlinear regression model, the mean of a normally distributed response variable yis related to explanatory variables x by a nonlinear function f(x; �). That is for i = 1; : : : ; n,we have yi = f(xi; �)+ei. The errors ei are independent and normally distributed with meanzero and variance �2. The expected Fisher information matrix for these models depends onthe gradient vector g(x; �) and isnI(�; �) = nXi=1 g(xi; �)gT (xi; �):Design for nonlinear regression models has recently received considerable attention and42



Bayesian criteria, such as �1-optimality and �2-optimality, have been in
uential. Pron-zato, Huang, Walter, Le Roux and Frydman (1989), Huang, Walter and Pronzato (1991)and Atkinson, Chaloner, Herzberg and Juritz (1993) focused on compartmental models andfound designs numerically. As did Chaloner and Larntz (1986, 1989), these authors allnoted that as the prior distribution becomes more dispersed the number of support pointstypically increases. Chaloner (1993), Mukhopadhyay and Haines (1994), He, Studden andSun (1995), Dette and Neugebauer (1995a), Dette and Neugebauer (1995b) and Dette andSperlich (1994b) all examine simple special cases and prove optimality analytically.The important paper by Haines (1995) is quite di�erent and introduces some novel ge-ometric interpretations of Bayesian optimal designs and also identi�es several parallels be-tween optimal Bayesian design and other areas. The paper by Dette and Sperlich (1994a)is also noteworthy as it uses an expansion of the Stieltjes transform of the design measure.The result provides a di�erent perspective on the numerical optimization problem and givesvaluable examples.6.4 Example 3 continuedExample 3 is a case of design for nonlinear regression. The design problem is to choosetimes at which to take blood samples to measure the level of a drug. The experimenter usedan 18 point design with the observations approximately equally spaced in the logarithm oftime. The 18 point design takes one observation at times (in hours) 0.166, 0.333, .5, .666,1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 24, 30, and 48. Atkinson, Chaloner, Herzberg and Juritzconstructed Bayesian optimal designs under two prior distributions suggested by the data.They also constructed locally optimal designs. Under each prior distribution separate �2-optimal designs were constructed for estimating each of the three functions of interest (thearea under the expected response curve or AUC, the time to maximum concentration or tmaxand the maximum concentration cmax). One of the two prior distributions is such that �1 hasa uniform distribution on :05884 � :04 and, independently, �2 has a uniform distribution on4:298� 4:0: the parameter �3 is taken to be point mass at 21.80. For this prior distributionthe 18 point design used by the experimenter is actually fairly e�cient for estimating thesethree quantities. 43



Speci�cally denote �18 to be the 18 point design and �t to be the �2-optimal design forestimating tmax under this prior distribution. The �2-optimal design �t is a �ve point designwith mass .29, .29, .15, .22, .06 at times .25, .94, 2.8, 8.8 and 24.7. The ratio �2(�18)=�2(�t) isonly 1.3 which means that the 18 point design is fairly e�cient for estimating tmax, with anexpected posterior variance of tmax of only 1.3 times the best possible value. For estimatingcmax the optimal design minimizes an appropriate �2-criterion and is denoted �c. This isalso a �ve point design with mass .10, .36, .32, .16 and .06 at times .37, 1.1, 2.4, 6.1 and24.1. The ratio �2(�18)=�2(�c) is 1.4. Again the 18 point design is fairly e�cient. For AUCthe corresponding �2-optimal design is a 4 point design putting mass .01, .03, .26 and .70 attimes .29, 1.7, 13.1 and 39.6 and the corresponding ratio of criteria is 3.2, and so the 18 pointdesign is not as e�cient for estimating the AUC as it is tmax and cmax. Atkinson, Chaloner,Herzberg and Juritz showed that under this prior distribution it is possible to improve onthe 18 point design, but not by much. The AUC was found to be not well estimated underany design except one speci�cally designed to estimate it. Designs e�cient for the AUCare very ine�cient for estimating tmax and cmax. If there is very precise prior information,however, or if the area under the curve is of primary importance, the 18 point design can beimproved upon considerably using Bayesian design.So, interestingly, this is a similar situation as example 2, in that it may well be that whatthe experimenters were doing in practice was close to a Bayesian optimal design.6.5 Sample size for clinical trialsSample size calculations are especially important in the design and planning of clinicaltrials to compare two or more di�erent treatments. The primary non-Bayesian approach isto specify the magnitude of the e�ect that the trial should be able to detect and choose thesample size to give a required power for a hypothesis test at that alternative. It is usuallyrecommended to make allowances for patients who do not take their assigned medication(noncompliance) and patients who take a di�erent medication than assigned (switchover).This is described for example in Lakatos (1988), Dupont and Plummer (1990) and Wu, Fisherand DeMets (1980). Several computer programs are available to implement variations onthese methods. 44



A partially Bayesian approach to this problem is given in Spiegelhalter and Freedman(1986) who used a prior distribution, as an approximation to a predictive distribution, toaverage over the power. Berry (1991) described a Bayesian approach for a very simplesituation using dynamic programming and sequential updating. Achcar (1984) looked atBayesian calculations of sample size when sampling from a single Weibull distribution. Acompletely Bayesian approach is advocated in Brooks (1987) who considered the expectedgain in information from a two group experiment with Weibull lifetimes. He dealt withthe sample size, the proportion of observations in each group, the length of time to accruepatients and how long to follow them. He obtained some closed form expressions for thegain in Shannon information under normal prior distributions for the unknown parametersand also made some approximations. Some of these calculations are similar to Brooks (1982)where he discussed the information lost, for exponential lifetimes, when censoring is present.Sylvester (1988) examines the sample size for a Phase II clinical trial using Bayesian decisiontheory when the responses are Bernoulli.These Bayesian approaches appear not to have been used much in practice. Perhaps thisis because they fail to account explicitly for noncompliance and switchover. Or, perhaps thisis because there are no freely available computer programs to make these methods accessible.For the non-Bayesian solutions, Shih (1995) described a SAS macro computer program thatimplements the method of Lakatos (1988).6.6 Other sample size problemsDeciding on the sample size n in an experiment is always part of design. DasGupta andMukhopadhyay (1994) take a Bayesian approach choice of sample size for a sample from asingle normal distribution with a conjugate normal prior distribution. They de�ne criteriawhich make the sample size robust to the future data. DasGupta and Vidakovic (1994)take a Bayesian approach to sample size choice for hypothesis testing in a one way analysisof variance model of example 1 where hypothesis testing is the purpose of the experiment.They also give Mathematica code for their method.There are opportunities for further research in this area for more general, non-normalmodels. See DasGupta (1995). 45



6.7 Design problems in reliability and quality controlDeGroot and Goel (1979) considered a Bayesian approach to designing studies of ex-ponential lifetimes where experimental units may, or may not, be subject to an increasedstress and where units may be subject to a high stress, if they do not fail in a speci�edperiod of time under a low stress. DeGroot and Goel call this \tampering". They derivedexact Bayesian optimal designs under particular loss functions and costs. DeGroot and Goel(1988) is a review of this work and appeared in a volume, Clarotti and Lindley (1988), de-voted to Bayesian analysis and design in reliability. This volume also contains other relevantpapers: for example the chapter by Barlow, Mensing and Smiriga (1988) discusses in
uencediagrams and their use in optimal design.Chaloner and Larntz (1992) took the approach described in Section 4.2 to derive Bayesianoptimal designs for accelerated life testing where the lifetimes have either Weibull or log-normal distributions and the length of time available for the experiment is �xed. Theirmethods are extended in Naylor (1994). Verdinelli, Polson and Singpurwalla (1993) dis-cussed Bayesian design for accelerated life testing experiments where prediction is the goal.They used Shannon information in (9) as utility and considered the case where the lifetimeshave a lognormal distribution. Mitchell and Scott (1987) also designed to maximize Shannoninformation in a group testing experiment: they provided free software for their method.Verdinelli and Wynn (1988) examined some aspects of keeping an expected response ontarget which is an important problem in the Taguchi approach to design. They proposed,as a Bayesian alternative to non-Bayesian methods, to set the predictive mean at the targetvalue and to minimize the predictive variance.6.8 Large computer experimentsSome exciting recent developments have occurred in applying ideas from optimal designto the problem of choosing the values at which to run a large deterministic computer model.The situation can be thought of as having a response surface which is known to be smoothbut its general form is unknown and the values of the response surface can be determinedwithout error. Sacks, Welch, Mitchell and Wynn (1989) review this work. Recent advancesare described in Welch et al (1992), Morris, Mitchell and Ylvisaker (1993) and Bates, Buck,46



Riccomagno and Wynn (1995). Much of this work involves sequential design but non-sequential design has also been found helpful as in Currin, Mitchell, Morris and Ylvisaker(1991). A Bayesian formulation of the problem has proved fruitful. Rather than attempt toreview this work here the reader is referred to the above references. This important problemhas unique aspects.6.8 Other nonlinear design problemsRidout (1994) applied Bayesian design ideas to a seed testing experiment similar to thedilution assay problem. Parmigiani (1993) and Parmigiani and Kamlet (1993) used Bayesiandecision theory to study the design problem of when to screen for disease and applied this tobreast and cervical cancer screening. They presented a powerful case for the use of Bayesianmethods in these types of designs and decision making.Parmigiani and Berry (1994) examined several problems using the exact expected utility,as calculated by (1), for clinical design problems. They mainly consider exponential orbinomial responses with conjugate prior distributions. Lad and Deely (1995) also do exactcalculations for a simple decision problem and elicit prior probabilities and utilities directly.Apart from Draper and Hunter (1966, 1967b) little research has been done in usingBayesian design for multivariate response models, either linear or nonlinear. Draper andHunter developed and used a criterion similar to (16) where a prior precision is incorporatedinto the criterion. in their examples they either used a prior estimate for the nonlinearparameters, similar to local optimality, or they used sequential design. It is a potential areaof research to use criteria which more closely approximate expected utility in the multivariateresponse case.7 Nonlinear estimation within a linear model7.1 General problemWhen a nonlinear function of the regression coe�cients in a linear model is of primaryinterest then the expected utility cannot be calculated exactly and the problem has more incommon with nonlinear design than with linear design. Asymptotic approximations similarto those in section 4.2 can be used to give design criteria.Assume that the model is as in section 2 and that a nonlinear function of the parameters47



g(�) is of interest. De�ne the k vector c(�) to be the gradient vector of g(�) as in (17).Approximations similar to those in section 4.2 give a squared error loss of either�2c(�̂)T (nM)�1c(�̂) or; �2c(�̂)T (nM +R)�1c(�̂)where R is either the prior precision matrix or the matrix of second derivatives of the priordistribution. As in section 4.2, the criteria�2 = Z �2c(�)T (nM)�1c(�) p(�; �)d�d�and �2R = Z �2c(�)T (R + nM)�1c(�) p(�; �)d�d�can be expressed as a form of A-optimality. That is the design, �, should be chosen tominimize either trAM�1 or trA(R+M)�1 with A = E[�2c(�)c(�)T ], the expectation beingover the prior distribution of �. If more than one nonlinear function of � is of interest,say gi(�) for i = 1; : : : ;m, then the matrix A is the sum, or possibly the weighted sum, ofindividual matrices E[�2ci(�)ci(�)T ]. Note however that, unlike the case for the usual linearA-optimality, it should be possible to get a better design by choosing the design pointssequentially.One such design problem is that of estimating the turning point in a quadratic regression.This problem is discussed in Mandal (1978), Buonaccorsi and Iyer (1984, 1985), Buonaccorsi(1985), and Chaloner (1989). Buonaccorsi and Iyer (1986) also examined several otherproblems involving design for the ratio of the coe�cients in linear model. A special case ofestimating such a ratio is the calibration problem where n independent observations yi aretaken from a simple linear regression model. That isyi = �0 + �1xi + eiwhere ei; i = 1; : : : ; n are normally distributed with mean zero and variance �2. There aren observations y and an (n + 1)st observation yn+1 for which it is required to estimate48



the corresponding value of xn+1. One solution is to estimate the nonlinear function g(�) =(yn+1 � �0)=�1. Buonaccorsi and Iyer (1986) discussed design for this problem using bothlocal optimality and Bayesian A-optimality. A di�erent but related Bayesian approach wastaken in Barlow, Mensing and Smiriga (1991) who put a prior distribution on xn+1.7.2 Turning point exampleAs in other nonlinear design problems the usual non-Bayesian approach to these problemsis to use the local optimality approach of Cherno� (1953). The problem of estimating theturning point in a quadratic regression will be used to illustrate an important limitation oflocal optimality. This example is used to illustrate non-Bayesian nonlinear design in Fordand Silvey (1980) and Ford, Titterington and Wu (1985) and Bayesian nonlinear design inChaloner (1989).Suppose that the expectation of the response y at x is �0+ �1x+ �2x2. Then the turningpoint is g(�) = ��1=(2�2). De�ne c(�) to be the gradient vector (0; 1=(2�2); �1=(2�22))T . Theasymptotic variance of the maximum likelihood estimator of g(�) is then:�2c(�)TM�1c(�) (27)with nM = nPki=1 �ixixTi de�ned in Section 1. Local optimality requires a best guess for�, �0 say. The value of �0 is substituted into (27) and the design � is chosen to minimize(27). Suppose now that observations xi can be taken anywhere in the interval [�1; 1] andthat g(�0) = 12 is the best guess value to be used for local optimality. It is straightforwardto show that the locally optimal design takes half the observations at x = 1 and half atx = 0, giving nM as a singular 3 � 3 matrix of rank 2. The two design points x = 1 andx = 0 are two points where the expected value of y is equal and the turning point x = g(�)is half way between these two points. If this experiment were to be carried out, using noprior information in the estimation process, then it is clearly impossible to �t a quadraticregression to two data points and estimate the turning point. The locally optimal design istherefore useless for practical purposes.The above illustrates the general point that the locally optimal design for cases of nonlin-ear estimation within a linear model, can lead to a matrix nM which minimizes (27) but is49



singular and in this case the quantity of interest g(�) may not be estimable. This is di�erentfrom the linear c-optimality case where, although the optimal design may give a singularmatrix nM , the contrast of interest, cT�, is always estimable.8 Other design problems8.1 Variance components modelsDesigns for the estimation of variances are important in quality control research. An-derson (1975), for example, reviewed this topic. More recently Mukerjee and Huda (1988)examined optimality and Giovagnoli and Sebastiani (1989) considered the design problemwhen both the variance components and the �xed e�ects are of interest. The approach hasalways been to use local optimality until the recent paper of Lohr (1995), who looked ata Bayesian approach to design. She used Bayesian D-optimality and A-optimality for theestimation of the variance components or their sum or their ratio. She gave conditions underwhich a balanced design is optimal and showed the optimality of a balanced design under alarge class of prior distributions. In the context of hierarchical models with unknown vari-ance components for multi-center clinical trials Stangl and Mukhopadhyay (1993) also usedBayesian methods for design.8.2 Mixtures of linear modelsL�auter (1974, 1976) proposed a design criterion that is an average of design criteria, theaverage being over a number m of models. She used a criterion �(�) = Pmi=1 wi�i(�), where,for example, �i(�) is the D-optimality criterion under the ith of m candidate models. Theweight, wi on the ith model is the prior probability on that model. Cook and Nachtsheim(1982) applied such a criterion to design for polynomial regression when the degree of thepolynomial is unknown. The criterion, �(�), they used was based on A-optimality for pre-dicting the response over the design interval. For the ith model and a design � the varianceof the predicted mean response over the design interval is proportional to trAiM�1 whereAi is a speci�ed matrix. This criterion is sometimes referred to as Q- or L-optimality. Butrather than average the A-optimality criteria directly Cook and Nachtsheim averaged e�-ciency criteria. Speci�cally let �i be the A-optimal design for the ith model, i = 1; : : : ;m, forminimizing the variance of prediction over the design region, and let Mi be the information50



matrix for the ith model. Then they maximized�(�) = � mXi=1wi trAiMi(�)�1trAiMi(�i)�1 :They gave a number of numerical examples using this criterion to predict the uranium contentof a log.These ideas are similar to those of Bayesian non-linear design although the motivationof Cook and Nachtsheim is not Bayesian. This is apparent through their use of averagee�ciency: it is unclear how this corresponds to maximizing expected utility. A Bayesianapproach, with squared error loss, would argue for an averaging of the A-optimality criteriadirectly rather than their e�ciencies. In other words a Bayesian approach would use thecriterion �(�) = � mXi=1witrAiMi(�)�1:Similarly in using D-optimality averaged over a collection of models, it is unclear, unlessutility is considered, whether to average �i(�) = log det(Mi), or �i(�) = det(Mi), or �i(�) =pdet(Mi), or perhaps an e�ciency measure, like that of Cook and Nachtsheim, such as�(�) = det[Mi(�)]=det[Mi(�i)], where �i is the D-optimal design for the ith model. From aBayesian perspective of maximizing expected utility, however, the answer is clear: expectedutility should be maximized, not expected e�ciency.An excellent summary of the mathematics of such criteria and how the general equiva-lence theorem can be applied is in Pukelsheim (1993, p. 286-296). Dette (1990) gave somegeneral results for D-optimality and polynomial regression. Dette (1991, 1993a, 1993b) usedmixtures of Bayesian linear model criteria involving the prior precision matrix. He also de-rived a version of Elfving's (1952) theorem for this case. Dette and Studden (1994) providedfurther results characterizing the optimal design in terms of its canonical moments. Haines(1995) gave further geometric insight into such criteria.8.3 Design for model discriminationIn an experiment where several models are compared, in order to select one of them,a number of non-Bayesian approaches to design have been suggested. Usually a method51



for discriminating between models and a method for estimating the parameters within eachmodel are combined. These procedures are reviewed in Pukelsheim and Rosenberger (1993)who also provide valuable insight into the mixture criteria of the previous section and suggesta number of ways of designing for a number of simultaneous objectives. See also Ponce DeLeon and Atkinson (1991).Spezzaferri (1988) presented a Bayesian approach to design for choosing between twolinear models and to design with the dual goal of model selection and parameter estimation.He used the utility function in (5) of section 2.2 for both problems. For discriminatingbetween two models, the design criterion he derived leads to minimizing the expectation ofthe posterior probability of one model, when the other is assumed to be true. In the caseof multivariate normal nested models, when using di�use prior information, this criterion isthe same as non-Bayesian D-optimality for testing the hypothesis �0 = 0, where �0 is thesubvector of extra parameters in the larger model (see, for example, Atkinson 1972).For the dual purpose of model discrimination and parameter estimation for two nestednormal linear models, Spezzaferri showed that the optimality criterion using utility (5) isgiven by the product of two factors. One is the determinant of the information matrix of thesmaller model. The other factor is the expectation of the posterior probability of the smallermodel, when it is assumed to be true. The optimal design for discrimination and estimationmaximizes the product of these factors.8.4 RobustnessIt is important to check the sensitivity of the design to prior distribution. DasGupta andStudden (1991) constructed a framework for robust Bayesian experimental design for linearmodels. They found designs that maximize expected utility for a �xed prior distributionsubject to being robust for a class of prior distributions. DasGupta, Mukhopadhyay andStudden (1992) gave a detailed approach to design in a linear model when the varianceof the response is proportional to an exponential or power function of the mean response.They developed examples of \compromise designs" where the experimenter wants to �nd adesign that is highly e�cient for several design problems. They considered both Bayesianand non-Bayesian formulations of the design criteria.52



Seo and Larntz (1992) suggested some criteria for nonlinear design that make the designrobust to speci�cation of the prior distribution. They used the design problem of estimatingthe turning point in a quadratic regression as their motivating example. They suggested acriterion of designing for a \major" prior distribution subject to a constraint of attaining acertain e�ciency over a class of closely related prior distributions.Toman (1992a, b) and Toman and Gastwirth (1993, 1994) also considered robustness ofBayesian design in the normal linear model with respect to the prior distribution. Thesepapers dealt mainly with the one way analysis of variance model. To allow for possiblemisspeci�cation of prior variances, Toman (1992a, b) proposed using a class of normal priordistributions where the variances take values in speci�ed intervals. The criteria she suggestedfor choosing designs are maximizing the average, over the class of posterior distributions, ofeither the determinant or the trace of the posterior precision matrix. Averages are takenwith respect to a distribution on the prior precision parameters.Toman and Gastwirth (1993) examined both robust estimation and robust design foranalysis of variance models when the prior distribution is in a class of �nite mixtures ofnormals. They used a squared loss function and considered an average of the posterior riskover the class of corresponding posterior distributions.Toman and Gastwirth (1994) suggested specifying the prior distribution on treatmentmeans using results from a pilot study. They assumed that the error variances of the pilotand of the follow up studies to be unknown, but that the intervals in which they vary canbe speci�ed. They adopted a squared loss function and proposed to use, for the design andthe estimator, a minimax criterion, over the class of posterior distributions.8.5 Model unknownA major criticism of traditional optimal design for linear models is that the number ofsupport points in an optimal design is often the same as the number of parameters { in whichcase no model checking can be done. In addition, under the assumption that the model isknown, the design points are usually at the boundary of the design region { but if the linearresponse surface is, as is quite usual, a linear approximation to some smooth but unknownsurface, then it is at the boundary of this region that the approximation is most inaccurate.53



These criticisms are not new (see for example Box and Draper, 1959, Sacks and Ylvisaker,1984, 1985) and apply to both Bayesian and non-Bayesian optimal design for linear models.As discussed in Section 5.2 these criticisms sometimes do not apply to Bayesian opti-mal designs for nonlinear problems. In these cases there is no bound on the number ofsupport points in an optimal design and the support points may be spread throughout theexperimental region. It is unclear, however, under what circumstances this is so.Among attempts at incorporating model uncertainty into the design problem is the mix-ture approach as described in section 8.2. More recent work by DuMouchel and Jones (1994)introduced a modi�ed Bayesian D-optimal approach for the special case of factorial models.They constructed a prior distribution with a structure recognizing \primary" and \potential"terms. The resulting Bayesian D-optimal designs have very desirable properties. Indeed theyprovided a Bayesian justi�cation for resolution IV designs. DuMouchel and Jones showedseveral compelling examples of the use of their methods. This work recognizes model uncer-tainty, which is almost always present in a practical setting. It speci�cally accounts for thebelief, that has long been held by practitioners, that when certain interactions or e�ects areassumed to be zero to derive a fractional design the experimenter does not believe that suche�ects are exactly zero but rather that they are small compared to other e�ects. DuMoucheland Jones have succeeded in formalizing the otherwise heuristic justi�cation for resolutionIV designs over other designs which have the same value of the D-optimality criterion.Steinberg (1985) considered two-level factorial experiments to represent a response surfaceproblem and also used a Bayesian formulation to introduce uncertainty about the adequacyof the proposed model. He derived a method for choosing the scale of the two factor ex-periment: that is he chose the \high" and the \low" levels for each factor conditional ona particular fractional factorial design being used. In this way the trade o� is recognizedbetween choosing design points on the boundary of the design regions to maximize infor-mation and choosing them towards the center of the region where the model is believedto hold to better approximation. Steinberg's approach is reminiscent of earlier work byO'Hagan (1978). O'Hagan considered a Bayesian approach to design for curve �tting wherethe curve to be �t is a smooth function and design points are chosen based on the predictivedistribution. 54



These approaches all use Bayesian ideas to solve the very practical aspect of real designproblems. In real problems the model is almost never known exactly. There is clearly a needfor further research here.9 Concluding remarksBayesian design is an exciting and fast developing area of research. The Bayesian method-ology has much to o�er in experimental design, where prior information has always been usedfor the choice of experiment, explanatory factors, sample size, and model. A Bayesian ap-proach to design gives a mechanism for formally incorporating such information into thedesign process. The decision theoretic formulation presented in this paper shows that utilityfunctions can clarify the approach to design.The examples presented, especially examples 2 and 3 of nonlinear problems, illustratethat some experimenters may already be actually using designs which can be justi�ed asapproximately optimal under a Bayesian formulation. A formal Bayesian approach to ex-perimental design may well lead to substantial improvements. It does remain regrettable,however, that so few real case studies appear in the statistical literature of Bayesian optimaldesign. The same can be said of non-Bayesian nonlinear design where there is considerabletheoretical research but few real case studies.There are many speci�c design problems that remain to be investigated by a Bayesianapproach. In particular, within the linear model context, there is a need for methods incorpo-rating hierarchical linear models and hierarchical prior distributions and unknown variancecomponents. The simple examples presented in section 3 illustrate that more sensible designscan be obtained when the prior distribution is speci�ed within the hierarchical linear model.But, as remarked by Goldstein (1992), there is also the need for these ideas to be applied toactual experiments.In both linear and nonlinear problems there is the need for methods which re
ect thereality that the model for analysis is almost never known with certainty before the experimentis done. The experimental design process should incorporate model uncertainty into thedesign process.There is also a parallel need for methods to be developed for the speci�cation and quanti�-55



cation of prior beliefs. Prior beliefs maybe entirely subjective, based on personal experience,or may be based on previous experiments and past data. Whatever the source of prior in-formation very little guidance is available on how to collect and quantify such information.A notable exception to this is the important work of Garthwaite and Dickey, for exampleGarthwaite and Dickey (1988), who have developed useful methods for elicitation for thelinear model. It remains a challenge to develop methods for prior elicitation for distributionsto be used in design for nonlinear models. A welcome beginning is the study of Flournoy(1993) who gives a nice example of the entire design process, including expert elicitation.Bayesian design also requires a speci�cation of a utility function. It is clearly helpful,in the design process, to carefully consider the reason the experiment is being done and toconsider what utility should be used. Although Shannon information and squared error havebeen widely used in the statistical literature, it would also be interesting to see alternativesconstructed and explored in future research.As most Bayesian methods for design require numerical optimization and integrationthere is a need for software to �nd such designs, both exact and continuous. Withoutavailable and user friendly software these methods will not be used in real problems. Thesoftware of Clyde (1993b) has the potential to make Bayesian designs accessible to thescientist.AcknowledgementsWe are grateful to Rob Kass, the referees and Larry Wasserman for carefully reading themanuscript and for providing many helpful suggestions.
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