
Censorship Resistant Peer-to-Peer Content Addressable Networks

A m o s F i a t* J a r e d S a i a t

Thomas Hobbes, Rene Descartes, t;~ancis Bacon,
Benedict Spinoza, John Milton, John Locke, Daniel
Defoe, David Hume, Jean-Jacques Rousseau, Blaise
Pascal, lmmanual Kant, Giovanni Co~anova, John
Stuart Mill, Emile Zola, Jean-Paul Sartre, Victor
Hugo, Honore de Balzac, A. Dumas pete, A. Dumas
ill, Gus~a~e Flaubert, Rabelais, Montaigne, La
Fontaine, Voltaire, Denis Diderot, Pierre Larousse,
Anatole France

Partial List o] authors in Index Librorum Pro-
hibitorum (Index o] Prohibited Books) from the
Roman O~ice of the In~luisition , 1559-1966.

A b s t r a c t

We present a censorship resistant peer-to-peer Content
Addressable Network for accessing n da ta items in a
network of n nodes. Each search for a da ta item in
the network takes O(logn) time and requires at most
O(log 2 n) messages. Our network is censorship resistant
in the sense that even after adversarial removal of an
arbitrarily large constant fraction of the nodes in the
network, all but an arbitrarily small fraction of the
remaining nodes can obtain all but an arbitrarily small
fraction of the original da ta items. The network can be
created in a fully distributed fashion. It requires only
O(log n) memory in each node. We also give a variant of
our scheme that has the property that it is highly spare
resistant: an adversary can take over complete control
of a constant fraction of the nodes in the network and
yet will still be unable to generate spare.

1 I n t r o d u c t i o n

Web content is under at tack by state and corporate
efforts to censor it, for political and commercial reasons
([7, 18, 16]).

Peer-to-peer networks are considered more robust
against censorship than standard web servers ([19]).
However, while it is true that many suggested peer-
to-peer architectures are fairly robust against random
faults, the censors can attack carefully chosen weak

-*-]~paxtment of Computer Science, Tel Avlv University, work
done while on Sabbatical at University of Washington, Seattle.
emaih fiat~math.tau.ac.il

f Department of Computer Science, University of Washington,
Seattle. ema~l: saia~}cs.washington.edu.

points in the system. For example, the Napster ([28])
file sharing system has been effectively dismembered by
legal attacks on the central server. Additionally, the
Gnutella ([27]) file sharing system, while specifically
designed to avoid the vulnerability of a central server,
is highly vulnerable to at tack by removing a very small
number of carefully chosen nodes ([24]).

A significant performance problem with Gnutella
is that it requires up to O(n) messages for a search
(search is performed via a general broadcast) , this has
effectively limited the size of Gnntella networks to about
1000 nodes ([6]).

A more principled approach than the centralized ap-
proach taken by Napster or the broadcast search mecha-
nism of Gnutella is the use of a content addressable net-
work ([23]). A content addressable network is defined
as a distributed, scalable, indexing scheme for peer-to-
peer networks. Plaxton, Rajaram and Richa ([22]) give
a scheme to implement a context addressable network
(prior to its definition) in a web cache environment. The
content addressable network scheme of ([22]), as mod-
ified in ([29]), has been used in implementations such
as Oceanstore ([11]). Subsequent content addressable
networks have been suggested in ([23, 26, 29]). These
papers seek to improve upon ([22]) in adding fault resis-
tance and load balancing mechanisms. However, while
these schemes are robust to a large number of random
faults, none of these schemes are robust against adver-
sarial faults.

1.1 R e s i s t a n c e t o A d v e r s a r i a l N o d e D e l e t i o n
We present a content addressable network with n nodes
used to store n distinct da ta items 1. As far as we know
this is the first such scheme of its kind. The scheme is
robust to adversarial deletion of up to 2 half of the nodes
in the network and has the following properties:

]For simplicity, we've assumed that the number of items and
the number of nodes is equal. However, for any n nodes and
m ~ n data items, our scheme will work~ where the search time
remains O(log n), the number of messages remulna O(log 2 n), and
the storage requirements are O(logn x re~n) per node.

2For simplicity, we give the proofs with this constant equal to
1/2. However we can easily modify the scheme to work for any
constant less than 1. This would change the constants involved
in storage, search time, and messages sent, by a constant factor.

95

1. With high probability, all but an arbitrarily small
fraction of the nodes can find all but an arbitrarily
small fraction of the da ta items.

2. Search takes (parallel) time O(log n).

3. Search requires O(log 2 n) messages in total.

4. Every node requires O(logn) storage.

As stated above, in the context of state or corporate
at tempts at censorship, it seems reasonable to consider
adversar/a/attacks rather than random deletion. Our
scheme is a content addressable network that is robust
against adversarial deletion.

We remark that such a network is clearly resilient
to having up to 1/2 of the nodes removed at random, (in
actuality, its random removal resiliency is much better).
We further remark that if nodes come up and down over
time, our network will continue to operate as required
so long as at least n/2 of the nodes are alive.

1.2 Spa re R e s i s t a n c e Another problem with peer-
to-peer networks has been that of spamming ([5, 6]).
Because the data items reside in the nodes of the
network, and pass through nodes while in transit, it
is possible for nodes to invent alternative data and pass
it on as though it was the sought after data item.

We now describe a spare resistant variant of our
content addressable network. To the best of our knowl-
edge this is the first such scheme of its kind. As before,
assume n nodes used to store n distinct data items.
The adversary may choose up to some constant c < 1/2
fraction of the nodes in the network. These nodes under
adversary control may be deleted, or they may collude
and transmit arbitrary false versions of the data item,
nonetheless:

1. With high probability, all but an arbitrarily small
fraction of the nodes will be able to obtain all but
an arbitrarily small fraction of the true data items.
To clarify this point, the search will not result in
multiple items, one of which is the correct item.
The search will result in one unequivocal true item.

2. Search takes (parallel) time 0(log n).

3. Search requires O(log 3 n) messages in total.

4. Every node requires O(log 2 n) storage.

The rest of our paper is structured as follows. We
review related work in Section 2. We give the algorithm
for creation of our robust content addressable network,
the search mechanism, and properties of the content ad-
dressable network in Section 3. The proof of our main

theorem, Theorem 3.1, is given in Section 4. In Section
5 we sketch the modifications required in the algorithms
and the proofs to obtain spam resistance, the main the-
orem with regard to spare resistant content addressable
networks is Theorem 5.1. We conclude and give direc-
tions for future work in Section 6. Acknowledgements
are in section 7.

2 Related Work
2.1 Peer-to-peer Networks (not Content Ad-
dressable) Peer-to-peer networks are a relatively re-
cent and quickly growing phenomena. The average
number of Gnutella users in any given day is no less than
10,000 and may range as high as 30,000 ([6]). Napster
software has been downloaded by 50 million users ([231).

Pandurangam, Raghavan, and Upfal ([20l) address
the problem of maintaining a connected network under
a probabilistic model of node arrival and departure.
They do not deal with the question of searching within
the network. They give a protocol which maintains
a network on n nodes with diameter O(logn). The
protocol requires constant memory per node and a
central hub with constant memory with which all nodes
can connect.

Experimental measurements of a connected compo-
nent of the real Gnutella network have been studied
([24]), and it has been found to still contain a large con-
nected component even with a 1/3 fraction of random
node deletions.

2.2 C o n t e n t A d d r e s s a b l e N e t w o r k s - - R a n d o m
F a u l t s There are several papers that address the prob-
lem of creating a content addressable network. As men-
tioned above, Plaxton, Rajaram and Richa ([22]) give
a context addressable network for web caching. Search
time and the total number of messages is {)(log n), and
storage requirements are O(logn) per node.

Tapestry ([29]) is an extension to the ([22]) mecha-
nism, designed to be robust against faults. It is used in
the Oceanstore ([11]) system. Experimental evidence is
supplied that Tapestry is robust against random faults.

lq~tnasamy et. M. ([23]) describe a system called
CAN which has the topology of a d-dimensional torus.
As a function of d, storage requirements axe O(d) per
node, whereas search time and the total number of
messages is O(dnl/d). There is experimental evidence
that CAN is robust to random faults.

Finally, Stoica et. a]. introduce yet another content
addressable network, Chord ([26]), which, like ([20]) and
([29]), requires O(log n) memory per node and O(log n)
search time. Chord is provably robust to a constant
fraction of random node failures.

96

2.3 Fau l t s on N e t w o r k s

2.3.1 R a n d o m Fau l t s There is a large body of work
on node and edge faults that occur independently at
random in a general network. H£stad, Leighton and
Newman ([9]) address the problem of routing when
there axe node and edge faults on the hypercube which
occur independently at random with some probability
p < 1. They give a O(log n) step routing algorithm that
ensures the delivery of messages with high probability
even when a constant fraction of the nodes and edges
have failed. They also show that a faulty hypercube
can emulate a fault-free hypercube with only constant
slowdown.

Karlin, Nelson and Tamaki ([10]) explore the fault
tolerance of the butterfly network against edge faults
that occur independently at random with probability p.
They show that there is a critical probability p* such
that if p is less than p*, the faulted butterfly almost
surely contains a lineax-sized component and that i fp is
greater them p*, the faulted butterfly does not conta~
a linear sized component.

Leighton, Maggs and Sitamaran ([12]) show that a
butterfly network whose nodes fail with some constant
probability p can emulate a fault-free network of the
same size with a slowdown of 2 °(l°g" n).

2.3.2 A d v e r s a r i a l Fau l t s It is well known that
many common network topologies are not resistant to
a linear number of adversarial faults. With a linear
number of faults, the hypercube can be fragmented
into components all of which have size no more than
O(n/ov~-~-n) ([9]). The best known lower bound on the
number of adversaxial faults a hypercube can tolerate
and still be able to emulate a fault free hypercube of
the same size is O(log n) ([9]).

Leighton, Maggs and Sitamaran ([12]) analyze the
fault tolerance of several bounded degree networks. One
of their results is that any n node butterfly network
containing n 1-~ (for any constant e > 0) faults can
emulate a fault free butterfly network of the same size
with only constant slowdown. The same result is given
for the shuffie-exchange network.

2.4 O t h e r R e l a t e d W o r k One a t tempt at censor-
ship resistant web publishing is the Publius system
([15]), while this system has many desirable proper-
ties, it is not a peer-to-peer network. Publius makes
use of many cryptographic elements and uses Shamir's
threshold secret sharing scheme ([25]) to split the shares
amongst many servers. When viewed as a peer-to-peer
network, with n nodes and n data items, to be resistant
to n/2 adversaxial node removals, Publius requires f/(n)

storage per node and ~/(n) search time per query.
Alon et al. ([1]) give a method which safely stores a

document in a decentralized storage setting where up to
half the storage devices may be faulty. The application
context of their work is a storage system consisting of a
set of servers and a set of clients where each client can
communicate with all the servers. Their scheme involves
distributing specially encoded pieces of the document to
all the servers in the network.

Aumann and Bender ([3]) consider tolerance of
pointer-based data structures to worse case memory
failures. They present fault tolerant variants of stacks,
lists and trees. They give a fault tolerant tree with the
property that if r adversaxial faults occur, no more than
O(r) of the data in the tree is lost. This fault tolerant
tree is based on the use of expander graphs.

Quorum systems ([8, 13, 14]) axe an efficient, robust
way to read and write to a variable which is shared
among n servers. Many of these systems are resistant up
to some number b < r,]4 of Byzantine faults. The key
idea in such systems is to create subsets of the servers
called quorums in such a way that any two quorums
contain at least 2b + 1 servers in common. A client
tha t wants to write to the shared variable will broadcast
the new value to all servers in some quorum. A client
tha t wants to read the variable will get values from all
members in some quorum and will keep only that value
which has the most recent time stamp and is returned
by at least b + 1 servers. For quorum systems that axe
resistant to O(n) faults the load on the servers can be
high. In particular, O(n) servers will be involved in a
constant fraction of the queries.

Recently Malkhi et. a/. [14] have introduced a
probabilistic quorum system. This new system relaxes
the constraint that there must be 2b + 1 servers shared
between any two quoroms and remains resistant to
Byzantine faults only with high probability. The load
on servers in the probabilistic system is less than the
load in the deterministic system. Nonetheless, for a
probabilistic quorum system which is resistant to O(n)
faults, there still will be at least one server involved in
a constant fraction of the queries.

3 T h e C o n t e n t A d d r e s s a b l e N e t w o r k

We now state our mechanism for providing indexing of
n da ta items by n nodes in a network tha t is robust
to removal of any n /2 of the nodes. We make use of a
butterfly network of depth log n - log log,z, we call the
nodes of the butterfly network 8upernodes (see Figure
1). Every supernode is associated with a set of nodes.
We call a supernode at the topmost level of the butterfly
a top supernode, one at the bot tommost level of the
network a bottom supernode and one at neither the

97

(!
Figure 1: The butterfly network of supernodes.

Figure 2: The expander graphs between supernodes.

topmost or bottommost level a middle supernode.
To construct the network we do the following:

• We choose an error parameter e > 0, and as a
function of e we determine constants C, B, T, D,
a and ft. (See Theorem 3.1).

• Every node chooses at random C top supernodes, C
bot tom supernodes and C log n middle supernodes
to which it will belong.

• Between two sets of nodes associated with two
supernodes connected in the butterfly network, we
choose a random constant degree expander graph
of degree D (see Figure 2). (We do this only if
both sets of nodes are of size at least a C Inn and
no more than j3Clnn.)

• We also map the n data items to the n / l o g n
bot tom supernodes in the butterfly. Every one of
the n data items is hashed to B random bottom
supernodes. (Typically, we would not hash the
entire data item but only it's title, e.g., "Singing
in the Rain"). 3

• The data item is stored in all the component nodes
of all the (bottom) supernodes to which it has been

~We use the random oracle model ([4]) for this hash function,
it would have sufficed to have a weaker assumpt ion such a~ tha t
the hash function is expansive.

hashed (if any bot tom supernode has more than
/3B In n data items hashed to it, it drops out of the
network.)

• In addition, every one of the nodes chooses T
top supernodes of the butterfly and points to all
component nodes of these supernodes.

To perform a search for a data item, starting from
node v, we do the following:

1. Take the hash of the data item and interpret it as a
sequence of indices Q , i 2 , . . . , iB, 0 < i t < n / l o g n .

2. Let t l , t 2 , . . . , tT be the top supernodes to which v
points.

3. l:tepeat in parallel for all values of k between 1 and
T:

(a) L e t £ = l .
(b) Repeat until successful or until ~ > B:

i. Follow the path from tk to the supernode
at the bot tom level whose index is it:

• Transmit the query to all of the nodes
in t , . Let W be the set of all such
nodes.

• Repeat until a bot tom supernode is
reached:

- The nodes in W transmit the query
to all of their neighbors along the
(unique) butterfly path to it, Let W
be this new set of nodes.

• When the bot tom supernode is
reached, fetch the content from what-
ever node has been reached.

• The content, if found, is transmitted
back along the same path as the query
was transmitted downwards.

ii. Increment L

3 . 1 P r o p e r t i e s o f t h e C o n t e n t A d d r e s s a b l e N e t -
w o r k Following is the main theorem which we will prove
in Section 4.

THEOREM 3.1. For all e > O, there e~ist constants
kl(e), k2(e), k3(e) which depend only on e such that

* Every node requires k l (e) logn memory .

* Search .for a data i t em takes no more than
ks (~) log n t ime.

• Search]or a data i t em requires no more than
k3(e) log 2 n messages.

• All but en nodes can reach all but ~n data i tems.

98

3.2 S o m e C o m m e n t s

1. D i s t r i b u t e d c r e a t i o n o f t h e c o n t e n t addres s -
ab l e n e t w o r k

We note that our Content Addressable Memory can
be created in a fully distributed fashion with n
broadcasts or transmission of ~2 messages in to-
tal and assuming O(log n) memory per node. We
briefly sketch the protocol that a particular node
will follow to do this. The node first randomly
chooses the supernodes to which it belongs. Let S
be the set of supernodes which neighbors supern-
odes to which the node belongs. For each s E S,
the node chooses a set N, of D random numbers
between 1 and/~C in n. The node then broadcasts a
message to all other nodes which contains the iden-
tifiers of the supernodes to which the node belongs.

Next, the node will receive messages from all other
nodes giving the supernodes to which they belong.
For every s E S, the node will link to the i-th node
that belongs to s from which it receives a message
if and only ff ~ E N, .

If for some supernode to which the node belongs,
the node receives less than ~ C Inn or greater than
~ C In n messages from other nodes in that supern-
ode, the node removes all out-going connections as-
sociated with that supernode. Similarly, if for some
supernode in S, the node receives less than ~ C In n
or greater than ~ C in n messages from other nodes
in that supernode, the node removes all out-going
connections to that neighboring supernode. Con-
nections to the top supernodes and storage of data
items can be handled in a similar manner.

2. I n s e r t i o n o f a N e w D a t a I t e m

One can insert a new data item simply by perform-
ing a search, and sending the da ta item along with
the search. The data item will be stored at the
nodes of the bot tommost supernodes in the search.
We remark that such an insertion may fail with
some small constant probability.

3. I n s e r t i o n o f a N e w N o d e

Our network does not have an explicit mechanism
for node insertion. It does seem that one could
insert the node by having the node choose at ran-
dom appropriate supernodes and then forging the
required random connections with the nodes that
belong to neighboring supernodes. The technical
difficulty with proving results about this insertion
process is that not all live nodes in these neigh-
boring supernodes may be reachable and thus the
probability distributions become skewed.

We note though that a new node can simply copy
the links to top supernodes of some other node
already in the network and will thus very likely be
able to access almost all of the data items. This
insertion takes O(logn) time. Of course the new
node will not increase the resiliency of the network
if it inserts itself in this way. We assume that
a full reorganization of the network is scheduled
whenever sufficiently many new nodes have been
added in this way.

. L o a d B a l a n c i n g P r o p e r t i e s

Because the da ta items are searched for along a
path from a random top supernode to the bot tom
supernodes containing the item, and because these
bot tom supernodes are chosen at random, the load
will be well balanced as long as the number of
requests for different da ta items is itself balanced.
This follows because a uniform distribution on
the search for da ta items translates to a uniform
distribution on top to bot tom paths through the
butterfly.

4 P r o o f s

4.1 P r o o f O v e r v i e w
Technically, the proof makes extensive use of ran-

dom constructions and the Probabilistic Method [2].
We first show that with high probability, all but an

arbitrarily small constant times n/logn of the supern-
odes are good, where good means that (a) they have
O(log n) nodes associated with them, and, (b) they have
~(log n) live nodes after adversarial deletion. This im-
plies that all but a small constant fraction of the paths
through the butterfly contain only good supernodes.

Search is preformed by broadcasting the search to
all the nodes in (a constant number of) top supernodes,
followed by a sequence of broadcasts between every
successive pair of supernodes along the paths between
one of these top supernodes and a constant number
of bot tom supernodes. Fix one such path. The
broadcast between two successive supernodes along the
path makes use of the expander graph connecting these
two supernodes. When we broadcast from the live nodes
in a supernode to the following supernode, the nodes
that we reach may be both live and dead(see Figure 3).

Assume that we broadcast along a path, all of
whose supernodes are good. One problem is that we
are not guaranteed to reach all the live nodes in the
next supernode along the path. Instead, we reduce
our requirements to ensure that at every stage, we
reach at least 61og~ live nodes, for some constant 6.
The crucial observation is that if we broadcast from
61ogn live nodes in one supernode, we are guaranteed

99

Supernode 8upernode Supernode

Figure 3: Traversal of a path through the butterfly.

to reach at least 61ogn live nodes in the subsequent
supernode, with high probability. This follows by
using the expansion properties of the bipartite expander
connection between two successive supernodes.

Recall that the nodes are connected to a constant
number of random top supernodes, and that the data
items axe stored in a constant number of random bottom
supernodes. The fact that we can broadcast along all
but an arbitrarily small fraction of the paths in the
butterfly implies that most of the nodes can reach most
of the content.

In several statements of the lemmata and theorems
in this section, we require that n, the number of nodes in
the network, be sufficiently large to get our result. We
note that, technically, this requirement is not necessary
since if it falls then n is a constant and our claims
trivially hold.

4.2 Def in i t ions

DEFINITION 4.1. A top or middle supernode is said to
be (c~,t~)-good if it has at most f l logn nodes mapped to
it and at least a log n nodes vJhich are not under control
of the adversary.

DEFINITION 4.2. A bosom supernode is said to be
(a,~)-good if it has at mos t /~ logn nodes mapped to
it and at least a l o g n nodes which are not under control
of the adversary and if there are no more than ~ B In n
data items that map to the node.

DEFINITION 4.3. An (a, j3)-good path is a path through
the butterfly network from a top supernode to a bottom
super'node all of whose supernodes are (a,~)-good su-
pernodes.

DEFINITION 4.4. A top supernode is called (7 ,a , fl)-
expansive if there exist Vn / logs (a, fl)-good paths that
start at this supernode.

4.3 Technica l L e m m a t a Following are three tech-
nical lemmata about bipartite expanders that we will
use in our proofs. The proof of the first lemma is well
known [21] (see also [17]) and the proof of the next two
lemmata are slight variants on the proof of the first. Due
to space constraints, the proofs of all three lemmata axe
omitted from this extended abstract.

LEMMA 4.1. Let i, r, l', r', d and n be any positive values

where l' <_ l and r' <_ r and

d > ~ l ' ln f f + r ' l n ~7 + 2 I n n .

Let G be a random bipartite multigraph with left side L
and right side R where ILl = I and [Rt = r and each
node in L has edges to d random neighbors in R. Then
with probability at least 1 - 1In 2, any subset o i L of size
l' shares an edge with any subset of R o/ size r' .

LEM~A 4.2. Let l , r ,Y , r ' , d ,A and n be any positive
values where l' < i, r' < r , 0 < ~ < 1 and

d > r , l , (~ - - A) 2 l ' ln + r ' l n + 2 1 n n .

Let G be a random bipartite multigraph with left side L
and right side R where ILl = i and IRI = r and each
node in L has edges to d random neighbors in R. Then
with probability at least 1 - I / n ~, for any set L' C L
where]L'] = Y, there is no set R' C R, where IRq = r'
such that all nodes in R ' share less than M'd/r edges
with L'.

LEMMA 4.3. Let l, r, r ~, d, f f and n be any positive val-
ues where Y <_ l,/3' > 1 and

4r (r, ln (~e) + 21nu) . d _

Let G be a random bipartite multigraph with left side L
and right side R where ILl = I and IRI = r and each
node in L has edges to d random neighbors in R. Then
with probability at least 1 - 1In 2, there is no set R' C R,
where IR'I = r' such that all nodes in R' have degree
greater than f f ld/r.

4.4 (a , ~) - g o o d S u p e r n o d e s
LEMlvlA 4.4. Let a , 6 ' , n be values where a < 1/2 and
6' > 0 and let k(6', a) be a value that depends only on
~,6' and assume n is sufficiently large. Let each node
participate in k (6 ' , a) Inn random middle supernodes.
Then removing any set of n / 2 nodes still leaves all but
6'n/ In n middle supernodes with at least ak(6', ~) In n
live nodes.

Proof. For simplicity, we will assume there axe n middle
supernodes (we can throw out any excess supernodes).

L e t l - n , i ' = n / 2 , r = n , r ' = 6 ' n / I n n , A = 2~
and d = k(6', a) In n in Lemma 4.2. We want probability
less than 1In 2 of being able to remove n[2 nodes
and having a set of 6 'n / In n supernodes all with less
than ak(6', ~) Inn live nodes. This happens provided
that the number of connections from each supernode is
bounded as in Lemma 4.2 which happens when:

21n(2e)
k(6 ' ,a) > 6,(i---~-t~o~)2 +o(1) .

100

LEMMA 4.5. Let ~3,61,n,k be values such that fl > 1,
61 > 0 and assume n is su~ciently large. Let each node
participate in k Inn of the middle supernodes, chosen
uniformly at random. Then all but ~ 'n / Inn middle
supernodes have less than ~3kln n participating nodes
~ith probability at least 1 - 1/n 2.

Proof. For simplicity, we will assume there are n middle
supernodes (we can throw out any excess supernodes
and the lemma will still hold). Let I = n, r = n,
r I = 6 tn / lnn , d - k i n n and fll = fl in Lemma 4.3.
Then the statement in this lemma holds provided that:

4 (l n n 2)
k > (fl-1) inn" In + "

The right hand side of this equation goes to 0 as n
goes to infinity.
LEMMA 4.6. Let 0,5~,n be values such that a < 1/2,
6' > 0 and let k(5' ,a) be a valu'e that depends only on 6'
and a and assume n is suj~iciently large. Let each node
participate in k(6 t, a) top (bottom) supernodes. Then m-
mo~ing any set of n /2 nodes still leaves all but 6tn/ Inn
top (boSom) supernodes with at least 0k(5', a) in n live
nodes.
Proof. Let l ---- n, ! t = n/2 , r = n~ In n, r' = 5 'n / In n,
A = 20 and d = k(5 ! ,0) in Lemma 4.2. We want
probability less than 1/n 2 of being able to remove n/2
nodes and having a set of 6 tn / Inn supernodes all with
less than ok(6 I, a) In n live nodes. We get this provided
that the number of connections from each supernode is
bounded as in Lemma 4.2:

2 ln(2e)
k((5', a) ---- 6'(1 -- 20) 2 + o(1).

LEMMA 4.7. Let B,61,n ,k be values such that fl > 1,
61 > 0 and n is su]~cicntly large. Let each node partic-
ipate in k of the top (bottom) supernodes (chosen uni-
formly at random). Then all but 5In/In n top (bottom)
supernodes consist of less than .Bkln n nodes with prob-
ability at least I - i / n 2.
Proof. Let I = n, r = n / l n n , r' = 5 'n / lnn , d = k
and f f = fl in Lemma 4.3. Then the statement in this
lemma holds provided that:

b _> In n(/~ - 1) 2 " In ~7 + -~-n-n / "

The right hand side of this equation goes to 0 as n
goes to infinity.
COROLLARY 4.1. Let ~,6~,n, k be values such that ~ >
1, 5 ~ > 0 and n is sufficiently large. Let each data
item be stored in k of the bottom supernodes (chosen
uniformly at random). Then all but 5'n/ In n bottom
supernodes have less than ~kln n data items stored on
them with probability at least 1 - 1In 2.

Proof. Let the da ta items be the left side of a bipartite
graph and the bot tom supernodes be the right side. The
proof is then the same as Lemma 4.7.

COROLLARY 4.2. Let 51 > 0, o < 1/2, fl > 1.
Let k(5 t, a), be a value depending only on 61 and as-
sume n is su~ciently large. Let each node appear in
k(6 I, 0) top supernodes, k(6 l, 0) bosom supernodes and
k(~', a) In n middle supernodr~. Then all but 5'n of the
supernodes are (ok(6 t, a) , ~k($', a))-good with probabil-
ity 1 - O(1/n2).
Proof. Use

kCy, o) = 1_o. 21n(2e)
3 61(1 -- 2a) 2

in Lemma 4.6. Then we know that no more
than 351n/(10inn) top supernodes and no more
than 3aln/(101nn) bo t tom supernodes have less than
al~(61,a)hn live nodes. Next plugging k(Sr,a) into
Lemma 4.4 gives that no more than 351n/(101nn) mid-
dle supernodes have less than ak(5 ~, a)In n live nodes.

Next using k(6 !, a) in Lemma 4.7 and Lemma 4.5
gives that no more than 5~n/(20 In n) of the supernodes
can have more than ilk(6 I, a) In n nodes in them. Fi-
nally, using k(5 t, a) in Lemma 4.1 gives that no more
than 5tn/(2Oinn) of the bot tom supernodes can have
more than ilk(51, a)In n da ta items stored at them. If
we put these results together, we get that no more than
5n/ In n supernodes are not (ok(5', a), ~k(5', a))-good
with probability 1 - O(1 /n 2)

4 . 5 (7 , a , ~) - e x p a n ~ i v e S u p e r n o d e s
THEOREM 4.1. Let ~ > 0, a < 1/2, 0 < 7 < 1,/~ > 1.
Let k(5 ,a ,7) be a value depending only on 6 , 0 , 7 and
assume n is suJ~iciently large. Let each node partic-
ipate in k(5, 0, 7) top supernodes, k(5, a , 7) bottom su-
pernodes and k(6, a, 7) In n middle supernodes. Then all
but 5 n / i n n top supernodes are (7 , ak (6 , a) , f l k (5 , a)) -
ez'par~ive with probability 1 - O(1/n2).
Proof. Assume that for some particular k (6 ,0 ,7)
that more than 6 n / i n n top supernodes are not
(7, ok(5, a , 7),/~k(~, a , 7)-expansive. Then each of these
bad top supernodes has (1 - 7n) / In n paths that are
not (ok(6, a , 7),/~k(5, a , -),))-good. So the total number
of paths that are not (a k (5 , a , 7) , ~ k (6 , a , 7)) - g o o d is
more than

6(1 - 7) n 2

In s n

We will show there is a k (5 , a ,7) such that this event
will not occur with high probability. Let 51 = 6(1 - 7)
and let

10 21n(2e)
a , 7) = 5 0 - 7) (1 - 20) 2 .

101

Then we know by Lemma 4.2 that with high proba-
bility, there are no more than 5(1 - 7) n / l n n supern-
odes that are not (ak(5, a, 7),/~k(/~, a , 7))good. We
also know that each of these supernodes which axe not
good cause at most n / I n n paths in the butterfly to be
not (ak(~, a, 7), ~k($, a, 7))-good. Hence the number of
paths that are not (ak(d~, a, 7), flk(6, a, 7))-good is no
more than 5(1 - 7)n2/(ln 9 n) which is what we wanted
to show.

4.6 (a,/~)-good Paths to D a t a i t e m s We will
use the following lemma to show that almost all the
nodes axe connected to some appropriately expansive
top supersede.

LEMMA 4.8. Let ~ > O, • > 0 and n be su1~ciently
large. Then exists a constant k(~, e) depending only on
• and 6 such that if each node connects to k(6, e) random
top supersedes then with high probability, any subset of
the top supernodes of size (1 - 6) n / I n n can be reached
by at least (1 - e)n nodes.
Proof. We imagine the n nodes as the left side of a
bipartite graph and the n / I n n top supersedes as the
right side and an edge between a node and a top
supernode in this graph if and only if the node and
supernode are connected.

For the statement in the lemma to be false, there
must be some set of en nodes on the left side of the graph
and some set of (1 -$)n] In n top supernodes on the right
side of the graph that share no edge. We can find k(6, e)
large enough that this event occurs with probability no
more than 1/n 9 by plugging in I = n, 1' = en, r = n / I n n
and r ' = (1 - 6)(n / Inn) into Lemma 4.1. The bound
found is:

In (-;) + o(1).
k(~,e) >_ 1 - - 6

We will use the following lemma to show that if
we can reach 7 bottom supernodes that have some live
nodes in them that we can reach most of the data items.

LEMMA 4.9. Let 7, n, e be any positive values such that
• > O, 7 > O. There exists a k(e,7) which depends
only on e, 7 such that if each bottom supernode holds
k(e, 7) I n n random data items, then any subset of bot-
tom supernodes of size 7 n / l n n holds (1 - e)n unique
data items.

Proof. We imagine the n data items as the left side of
a bipartite graph and the n / I n n bottom supernodes as
the right side and an edge between a data item and
a bottom supernode in this graph if and only if the
supersede contains the data item. The bad event is
that there is some set o f T n / I n n supernodes on the right
that share no edge with some set of en data items on the
right. We can find k(e, 7) large enough that this event

occurs with probability no more than I/n 2 by plugging
in I = n, I l = en into r = n/inn, r' = Try/Inn into
Lemma 4.1. We get

k(~,7) >- 1 . In e +o(1)
7 e

4.7 Connections between (a,/~)-good supers-
odes

LEMMA 4.10. Let c~,fl, a ' , n be any positive values
where a' < ~, a > 0 and let C be the number of su-
pernodes to which each node connects. Let X and Y be
two supersedes that are both (aC,~C)-good. Let each
node in X have edges to k(a, fl, a') random nodes in Y
where k(a, 1~, a') is a value depending only on a, ~ and
~'. Then with probability at least 1 - 1/n 2, any set of
a 'C In n nodes in X has at least a' C In n live neighbors
in Y
Proof. Consider the event where there is some set of
a ' C l n n nodes in X which do not have a ' C l n n live
neighbors in Y. There are a C l n n live nodes in Y
so for this event to happen, there must be some set
of (a - ~')Clnn live nodes in Y that share no edge
with some set of ~'dlnn nodes in X. We note that the
probability that there are two such sets which share no
edge is largest when X and Y have the most possible
nodes. Hence we will find a k(a,/~,a') large enough to
make this bad event occur with probability less than
1In 2 if in Lemma 4.1 we set I = t~Clnn, r = f lClnn ,
!' = a 'C In n and r' = (a - a ')C In n. When we do this,
we get that k(a, ~, a ~) must be greater than or equal to:

,

4.8 P u t t i n g i t Al l T o g e t h e r We axe now ready to
give the proof of Theorem 3.1.

Proof. Let $,a,7,a~,/~ be any values such that 0 < ~f <
1, 0 < a < 1/2, 0 < a ' < a , / ~ > 1 and 0 < 7 < 1. Let

= I0 2 In(2¢)
T " 60-.r)Cn-2a) • ;

T = ,n(~).
1-6

B = lln{~-

D = a' In a'

Let each node connect to C top, C bottom and
C middle supernodes. Then by Theorem 4.1, at least
(I -5)n/In n top supersedes axe (7, aC,/~C)-expansive.
Let each node connect to T top supernodes. Then by
Lemma 4.8, at least (I -•)n nodes can connect to
some (7, aC,/~C)-expansive top supernode. Let each

102

da ta item map to B bot tom supernodes. Then by
Lemma 4.9, at least (1 - e)n nodes have (aC,/~C)-good
paths to at least (1 - e)n data items.

Finally, let each node in a middle supernode have D
random connections to nodes in neighboring supernodes
in the butterfly network. Then by Lemma 4.10, at
least (1 - e)n nodes can broadcast to enough bot tom
supernodes so that they can reach at least (1 - e)n da ta
items.

Each node requires T links to connect to the top
supernodes; 2D links for each of the C top supernodes
it plays a role in; 2D links for each of the C In n middle
supernodes it plays a role in and BE in n storage for
each of the C bot tom supernodes it plays a role in. The
total amount of memory required is thus

T + 2DC + Cln n(2D + B/3),

which is less than kl (e) logn for some kl(e) dependent
only on e.

Our search algorithm will find paths to at most 13
bottom supernodes for a given data item and each of
these paths has less than loan hops in it so the search
time is no more than

k2(e) logn = B l o g n .

Each supernode contains no more tha t /~ ln n nodes
and in each search, exactly T top supernodes send no
more than B messages so the total number of messages
transmitted during a search is no more than

k3(e) log 2 n = (T B ~ C) log 2 n.

5 M o d i f i c a t i o n s for S p a r e R e s i s t a n t C o n t e n t •
A d d r e s s a b l e N e t w o r k

We only sketch the changes in the network and the
proofs to allow a spam resistant content addressable net-
work. The arguments are based on slight modifications
to the proofs of section 4.

The first modification is that rather than have a
constant degree expander between two supernodes con-
nected in the butterfly, we will have a full bipartite
graph between the nodes of these two supeznodes. Since
we've insisted that the total number of adversary con-
trolled nodes be strictly less than n/2, we can guarantee
that a 1 - e fraction of the paths in the butterfly have
all supernodes with a majority of good (non-adversary
controlled) nodes. In particular, by substituting ap-
propriate values in Lemma 4.2 and Lemma 4.3 we can 3.
guarantee that all but e n / l o g n of the supernodes have
a majori ty of good nodes. This then implies that no
more than an e fraction of the paths pass through such
"adversary-majority" supernodes. As before, this ira-

plies that most of the nodes can access most of the con-
tent through paths that don't contain any "adversary-
majority" supernodes.

Search is performed as with the original construc-
tion, and after the bot tommost supernodes are reached,
the da ta content flows back along the same links as the
search went down. We modify the protocol so that along
this return flow, every node passes up a data value only
if a majority of the values it received from the nodes
below it are the same. This means that if there are
no "adversary-majority" supernodes on the path, then
all good nodes will take a majority value from a set in
which good nodes are a majority. Thus, along such a
path, only the correct data value will be passed upwards
by good nodes. At the top, the node that issued the
search takes the majori ty value amongst the (O(log n))
values it receives as the final search result.

To summarize, the main theorem for spare resistant
content addressable networks is as follows:
THEOREM 5.1. For any constant c < I/2 such that the
adversary controls no more than en nodes, and for all
e > O, there exist constants kl(e), ~ (e) , k3(e) which
depend only on e such that

• Every node requires kl(e) logZn memory.

Search for a data item takes no more than
k3(e) logn time. (This is under the assumption that
n e ~ o r k latency overwhelms processing time for one
message, otherwise the time is 0(log 2 u) .)

Search for a data item requires no more than
ks(e) log ~ n messages.

All but en nodes can search successfully for all but
en of the true data items.

6 Discussion and Open Problems

We conclude with some open issues:

1. For the deletion resistant content addressable net-
work: Is there a mechanism for dynamically main-
taining our network when large numbers of nodes
are deleted or added to the network? Is it possible
to reduce the number of messages that are sent in a
search for a da ta item from O(log 2 n) to O(logn)?

2. Can one improve on the construction for the spam
resistant content addressable network?

Can one deal efficiently with more general Byzan-
tine faults? For example, the adversary could use
nodes under his control to flood the network with
irrelevant searches, this is not dealt with by either
of our solutions.

103

4. We conjecture that our network has the property
tha t it is poly-log competit ive with any fixed de-
gree network. Le., we conjecture tha t given any
fixed degree network topology, where n items are
distr ibuted amongst n nodes, and any set of access
requests tha t can be dealt with fixed sized buffers,
then our network will also deal with the same set
of requests by introducing no more than a polylog
slowdown.

7 A c k n o w l e d g m e n t s

We gratefully thank Anna Karlin, Prabhakar tL~ghavan,
Stefan Saroiu, and Steven Gribble for their great help
with this paper.

References

[1] Noga Alon, Halm I~plan, Michael Krivelevich, Dahlia
Malkhi, and Julien Stern. Scalable secure storage when
half the system is faulty. In Proceedings of the ~Tth
International Colloquium on Automata, Languages and
Programming, 2000.

[2] Noga Alon and Joel Spencer. The Probabihstic Method,
~nd Edition. John Wiley & Sons, 2000.

[3] Yonatan Aumann and Michael Bender. Fault tolerant
data structures. In IEEE Symposium on Foundations
of Computer Science, 1996.

[4] M. Bellare and P. Rogaway. Random oracles are prac-
tical: a paradigm for designing efficient protocols. In
The First ACM Conference on Computer and Commu-
nications Security, pages 62-73, 1993.

[5] John Borland. Gnutella girds against spare
attacks. CNET News.corn, August 2000.
http: / /news.cn et.com /news /O- l OO5- 200- 2489605.html.

[6] Clip2. Gnntella: To the bandwidth barrier and be-
yond. http://dss.clip 2.corn/guutella.html.

[7] Electronic Freedom Foundation. Eft - - censor-
ship - - internet censorship legislation & regula-
tion (cda, e t c .) - archive, http://www.eff.org/-
pub/Censorship/internet _censorship_bills.

[8] D.K. Gifford. Weighted voting for replicated data. In
Proc. of the Seventh ACM Symposium on Operating
Systems Principles, pages 150-159, 1979.

[9] J. Hastad, T. Leighton, and M. Newman. Fast compu-
tation using laulty hypercubes. In Proceedings of the
21st Annual ACM Symposium on Theory of Comput-
ing, 1989.

[10] Anna It. Karlin, Greg Nelson, and Hisao Tamaki. On
the fault tolerance of the butterfly. In ACMSymposium
on Theory of Computing, 1994.

[11] John Kubiatowicz, David Bindel, Yan Chen, Steven
Czerwinski, Patrick Eaton, Dennis Geels, Ramakrishna
Gummadi, Seas Rhea, Hakim Weatherspoon, Westley
Weimer, Chris Wells, and Ben Zhao. Oceanstore: An
architecture for giobal-scale persistent storage.]n Ap-
pears in Proceedings of the Ninth international Confer-
ence on Architectural Support]or Programming Lan-

guages and Operating Systems (ASPLOS ~000), 2000.
[12] Thomson Leighton, Bruce Maggs, and Ramesh Sitama-

ran. On the fault tolerance of some popular bounded-
degree networks. SIAM Journal on Computing, 1998.

[13] Da.hlla Malkhi, Michael Reiter, and Avish~i Wool. The
load and availability of byzantine quorum systems.
SIAM Journal of Computing, 29(6):1889-1906, 2000.

[14] Dahlia Malkhi, Michael Reiter, Avishai Wool, and
Rebecca N. Wright. Probabilistie byzantine quorum
systems. In Symposium on Principles of Distributed
Computing, 1998.

[15] Ariel D. Rubin Marc Waldman and Lorrie Faith Cra-
nor. Publius: A robust, taxaper-evident, censorship-
resistant, web publishing system. In Proc. 9th USENIX
Security Symposium, pages 59-72, August 2000.

[16] Robert Maxquand. China's web users kept on
thek toes. http://www.csmonitor.com/durable/-
2000/12/07/fpTsl-csm.shtml.

[17] l~jeev Motwani and Prabhakar Raghavan. Random-
ized Algorithms. Cambridge University Press, 1995.

[18] Index on Censorship. Index on censorship homepage.
http://www.indexoncensorship.org.

[19] Andy Oram, editor. Peer-to-Peer: Harnessing the
Power of Disruptive Technologies. O'Reilly & Asso-
ciates, July 2001.

I20] Gopal Pandurangan, PrabhaXar P~ghavan, and Eli
Upfal. Building low-diameter p2p networks. In STOC
~001, Crete, Greece, 2001.

(21] Iv[. Pinsker. On the eomple~dty of a concentrator. In
7th International Teletra~c Conference, 1973.

[22] C. Plaxton, 1%. Rajaram, and A.W. Richa. Accessing
nearby copies of replicated objects in a distributed
environment. In Proceedings of the Ninth Annual A CM
Symposium on Parallel Algorithms and Architectures
(SPAA), 1997.

[23] Sylvia Ratnasaany, Paul Francis, Mark Handley,
Richaxd Karp, and Scott Shenker. A Scalable Content-
Addressable Network. In Proceedings of the A CM SIG-
COMM ~001 Technical Conference, San Diego, CA,
USA, August 2001.

[24] Stefan Saroiu, P. Krishna Gummadi, and Steres D.
Gribble. A Measurement Study of Peer-to-Peer File
Sharing Systems. In Proceedings of Multimedia Com-
puting and NetnJorking, 2002.

[25] Adi Shamir. How to share a secret. Communications
of the ACM, ~2,pp. 61~-613, 1979.

[26] Ion Stoica, Robert Morris, David Karger, Frans
Kaashoek, and Hart BalaXrishnan. Chord: A Scalable
Peer-to-peer Lookup Service for Intemet Applications.
In Proceedings of the A CM SIGCOMM 2001 Technical
Conference, San Diego, CA, USA, August 2001.

[27] Gnutella website, http://gnutella.wego.com/.
[28] Napster wehsite, http://www.napster.com/.
[29] B.Y. Zhao, K.D. Kubiatowicz, and A.D. Joseph.

Tapestry: An Infrastructure for Fault-Resilient Wide-
Area Location and Routing. Technical Report
UCB//CSD-01-1141, University of California at Berke-
ley Technical Report, April 2001.

