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A b s t r a c t  

We present a censorship resistant peer-to-peer Content 
Addressable Network for accessing n da ta  items in a 
network of n nodes. Each search for a da ta  item in 
the network takes O(logn) time and requires at  most 
O(log 2 n) messages. Our network is censorship resistant 
in the sense that  even after adversarial removal of an 
arbitrarily large constant fraction of the nodes in the 
network, all but  an arbitrarily small fraction of the 
remaining nodes can obtain all but  an arbitrarily small 
fraction of the original da ta  items. The network can be 
created in a fully distributed fashion. It requires only 
O(log n) memory in each node. We also give a variant of 
our scheme that  has the property that  it is highly spare 
resistant: an adversary can take over complete control 
of a constant fraction of the nodes in the network and 
yet will still be  unable to generate spare. 

1 I n t r o d u c t i o n  

Web content is under at tack by state and corporate 
efforts to censor it, for political and commercial reasons 
([7, 18, 16]). 

Peer-to-peer networks are considered more robust 
against censorship than standard web servers ([19]). 
However, while it is true that  many suggested peer- 
to-peer architectures are fairly robust  against random 
faults, the censors can attack carefully chosen weak 
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points in the system. For example, the Napster ([28]) 
file sharing system has been effectively dismembered by 
legal attacks on the central server. Additionally, the 
Gnutella ([27]) file sharing system, while specifically 
designed to avoid the vulnerability of a central server, 
is highly vulnerable to at tack by removing a very small 
number of carefully chosen nodes ([24]). 

A significant performance problem with Gnutella 
is that it requires up to O(n) messages for a search 
(search is performed via a general broadcast) ,  this has 
effectively limited the size of Gnntella networks to about  
1000 nodes ([6]). 

A more principled approach than the centralized ap- 
proach taken by Napster or the broadcast search mecha- 
nism of Gnutella is the use of a content addressable net- 
work ([23]). A content addressable network is defined 
as a distributed, scalable, indexing scheme for peer-to- 
peer networks. Plaxton,  Rajaram and Richa ([22]) give 
a scheme to implement a context addressable network 
(prior to its definition) in a web cache environment. The 
content addressable network scheme of ([22]), as mod- 
ified in ([29]), has been used in implementations such 
as Oceanstore ([11]). Subsequent content addressable 
networks have been suggested in ([23, 26, 29]). These 
papers seek to improve upon ([22]) in adding fault resis- 
tance and load balancing mechanisms. However, while 
these schemes are robust  to a large number of random 
faults, none of these schemes are robust  against adver- 
sarial faults. 

1.1 R e s i s t a n c e  t o  A d v e r s a r i a l  N o d e  D e l e t i o n  
We present a content addressable network with n nodes 
used to store n distinct da ta  items 1. As far as we know 
this is the first such scheme of its kind. The scheme is 
robust to adversarial deletion of up to 2 half of the nodes 
in the network and has the following properties: 

]For simplicity, we've assumed that the number of items and 
the number of nodes is equal. However, for any n nodes and 
m ~ n data items, our scheme will work~ where the search time 
remains O(log n), the number of messages remulna O(log 2 n), and 
the storage requirements are O(logn x re~n) per node. 

2For simplicity, we give the proofs with this constant equal to 
1/2. However we can easily modify the scheme to work for any 
constant less than 1. This would change the constants involved 
in storage, search time, and messages sent, by a constant factor. 
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1. With high probability, all but  an arbitrarily small 
fraction of the nodes can find all but an arbitrarily 
small fraction of the da ta  items. 

2. Search takes (parallel) time O(log n). 

3. Search requires O(log 2 n) messages in total. 

4. Every node requires O(logn) storage. 

As stated above, in the context of state or corporate 
at tempts at censorship, it seems reasonable to consider 
adversar/a/attacks rather than random deletion. Our 
scheme is a content addressable network that is robust 
against adversarial deletion. 

We remark that such a network is clearly resilient 
to having up to 1/2 of the nodes removed at random, (in 
actuality, its random removal resiliency is much better). 
We further remark that if nodes come up and down over 
time, our network will continue to operate as required 
so long as at least n/2 of the nodes are alive. 

1.2 Spa re  R e s i s t a n c e  Another problem with peer- 
to-peer networks has been that of spamming ([5, 6]). 
Because the data  items reside in the nodes of the 
network, and pass through nodes while in transit, it 
is possible for nodes to invent alternative data and pass 
it on as though it was the sought after data item. 

We now describe a spare resistant variant of our 
content addressable network. To the best of our knowl- 
edge this is the first such scheme of its kind. As before, 
assume n nodes used to store n distinct data  items. 
The adversary may choose up to some constant c < 1/2 
fraction of the nodes in the network. These nodes under 
adversary control may be deleted, or they may collude 
and transmit arbitrary false versions of the data  item, 
nonetheless: 

1. With high probability, all but  an arbitrarily small 
fraction of the nodes will be able to obtain all but 
an arbitrarily small fraction of the true data items. 
To clarify this point, the search will not result in 
multiple items, one of which is the correct item. 
The search will result in one unequivocal true item. 

2. Search takes (parallel) time 0(log n). 

3. Search requires O(log 3 n) messages in total. 

4. Every node requires O(log 2 n) storage. 

The rest of our paper is structured as follows. We 
review related work in Section 2. We give the algorithm 
for creation of our robust content addressable network, 
the search mechanism, and properties of the content ad- 
dressable network in Section 3. The proof of our main 

theorem, Theorem 3.1, is given in Section 4. In Section 
5 we sketch the modifications required in the algorithms 
and the proofs to obtain spam resistance, the main the- 
orem with regard to spare resistant content addressable 
networks is Theorem 5.1. We conclude and give direc- 
tions for future work in Section 6. Acknowledgements 
are in section 7. 

2 Related  Work 
2.1 Peer-to-peer  Networks (not Content  Ad- 
dressable) Peer-to-peer networks are a relatively re- 
cent and quickly growing phenomena. The average 
number of Gnutella users in any given day is no less than 
10,000 and may range as high as 30,000 ([6]). Napster 
software has been downloaded by 50 million users ([231). 

Pandurangam, Raghavan, and Upfal ([20l) address 
the problem of maintaining a connected network under 
a probabilistic model of node arrival and departure. 
They do not deal with the question of searching within 
the network. They give a protocol which maintains 
a network on n nodes with diameter O(logn).  The 
protocol requires constant memory per node and a 
central hub with constant memory with which all nodes 
can connect. 

Experimental measurements of a connected compo- 
nent of the real Gnutella network have been studied 
([24]), and it has been found to still contain a large con- 
nected component even with a 1/3 fraction of random 
node deletions. 

2.2 C o n t e n t  A d d r e s s a b l e  N e t w o r k s  - -  R a n d o m  
F a u l t s  There are several papers that address the prob- 
lem of creating a content addressable network. As men- 
tioned above, Plaxton, Rajaram and Richa ([22]) give 
a context addressable network for web caching. Search 
time and the total number of messages is {)(log n), and 
storage requirements are O(logn) per node. 

Tapestry ([29]) is an extension to the ([22]) mecha- 
nism, designed to be robust against faults. It is used in 
the Oceanstore ([11]) system. Experimental evidence is 
supplied that Tapestry is robust against random faults. 

lq~tnasamy et. M. ([23]) describe a system called 
CAN which has the topology of a d-dimensional torus. 
As a function of d, storage requirements axe O(d) per 
node, whereas search time and the total number of 
messages is O(dnl/d). There is experimental evidence 
that CAN is robust to random faults. 

Finally, Stoica et. a]. introduce yet another content 
addressable network, Chord ([26]), which, like ([20]) and 
([29]), requires O(log n) memory per node and O(log n) 
search time. Chord is provably robust to a constant 
fraction of random node failures. 
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2.3 Fau l t s  on  N e t w o r k s  

2.3.1 R a n d o m  Fau l t s  There is a large body of work 
on node and edge faults that occur independently at 
random in a general network. H£stad, Leighton and 
Newman ([9]) address the problem of routing when 
there axe node and edge faults on the hypercube which 
occur independently at random with some probability 
p < 1. They give a O(log n) step routing algorithm that  
ensures the delivery of messages with high probability 
even when a constant fraction of the nodes and edges 
have failed. They also show that  a faulty hypercube 
can emulate a fault-free hypercube with only constant 
slowdown. 

Karlin, Nelson and Tamaki ([10]) explore the fault 
tolerance of the butterfly network against edge faults 
that  occur independently at random with probability p. 
They show that  there is a critical probability p* such 
that  if p is less than p*, the faulted butterfly almost 
surely contains a lineax-sized component and that  i fp  is 
greater them p*, the faulted butterfly does not conta~  
a linear sized component. 

Leighton, Maggs and Sitamaran ([12]) show that  a 
butterfly network whose nodes fail with some constant 
probability p can emulate a fault-free network of the 
same size with a slowdown of 2 °(l°g" n). 

2.3.2 A d v e r s a r i a l  Fau l t s  It is well known that  
many common network topologies are not resistant to 
a linear number of adversarial faults. With a linear 
number of faults, the hypercube can be fragmented 
into components all of which have size no more than 
O(n/ov~-~-n) ([9]). The best known lower bound on the 
number of adversaxial faults a hypercube can tolerate 
and still be able to emulate a fault free hypercube of 
the same size is O(log n) ([9]). 

Leighton, Maggs and Sitamaran ([12]) analyze the 
fault tolerance of several bounded degree networks. One 
of their results is that  any n node butterfly network 
containing n 1-~ (for any constant e > 0) faults can 
emulate a fault free butterfly network of the same size 
with only constant slowdown. The same result is given 
for the shuffie-exchange network. 

2.4 O t h e r  R e l a t e d  W o r k  One a t tempt  at censor- 
ship resistant web publishing is the Publius system 
([15]), while this system has many desirable proper- 
ties, it is not a peer-to-peer network. Publius makes 
use of many cryptographic elements and uses Shamir's 
threshold secret sharing scheme ([25]) to split the shares 
amongst many servers. When viewed as a peer-to-peer 
network, with n nodes and n data  items, to be resistant 
to n/2 adversaxial node removals, Publius requires f/(n) 

storage per node and ~/(n) search time per query. 
Alon et al. ([1]) give a method which safely stores a 

document in a decentralized storage setting where up to 
half the storage devices may be faulty. The application 
context of their work is a storage system consisting of a 
set of servers and a set of clients where each client can 
communicate with all the servers. Their scheme involves 
distributing specially encoded pieces of the document to 
all the servers in the network. 

Aumann and Bender ([3]) consider tolerance of 
pointer-based data  structures to worse case memory 
failures. They present fault tolerant variants of stacks, 
lists and trees. They give a fault tolerant tree with the 
property that  if r adversaxial faults occur, no more than 
O(r) of the data  in the tree is lost. This fault tolerant 
tree is based on the use of expander graphs. 

Quorum systems ([8, 13, 14]) axe an efficient, robust 
way to read and write to a variable which is shared 
among n servers. Many of these systems are resistant up 
to some number b < r,]4 of Byzantine faults. The key 
idea in such systems is to create subsets of the servers 
called quorums in such a way that  any two quorums 
contain at  least 2b + 1 servers in common. A client 
tha t  wants to write to the shared variable will broadcast 
the new value to all servers in some quorum. A client 
tha t  wants to read the variable will get values from all 
members in some quorum and will keep only that  value 
which has the most recent time stamp and is returned 
by at least b + 1 servers. For quorum systems that  axe 
resistant to O(n) faults the load on the servers can be 
high. In particular, O(n) servers will be involved in a 
constant fraction of the queries. 

Recently Malkhi et. a/. [14] have introduced a 
probabilistic quorum system. This new system relaxes 
the constraint that  there must be 2b + 1 servers shared 
between any two quoroms and remains resistant to 
Byzantine faults only with high probability. The load 
on servers in the probabilistic system is less than the 
load in the deterministic system. Nonetheless, for a 
probabilistic quorum system which is resistant to O(n) 
faults, there still will be at least one server involved in 
a constant fraction of the queries. 

3 T h e  C o n t e n t  A d d r e s s a b l e  N e t w o r k  

We now state our mechanism for providing indexing of 
n da ta  items by n nodes in a network tha t  is robust 
to removal of any n /2  of the nodes. We make use of a 
butterfly network of depth log n - log log,z, we call the 
nodes of the butterfly network 8upernodes (see Figure 
1). Every supernode is associated with a set of nodes. 
We call a supernode at the topmost level of the butterfly 
a top supernode, one at the bot tommost  level of the 
network a bottom supernode and one at  neither the 
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Figure 1: The butterfly network of supernodes. 

Figure 2: The expander graphs between supernodes. 

topmost or bottommost level a middle supernode. 
To construct the network we do the following: 

• We choose an error parameter e > 0, and as a 
function of e we determine constants C, B, T, D, 
a and ft. (See Theorem 3.1). 

• Every node chooses at random C top supernodes, C 
bot tom supernodes and C log n middle supernodes 
to which it will belong. 

• Between two sets of nodes associated with two 
supernodes connected in the butterfly network, we 
choose a random constant degree expander graph 
of degree D (see Figure 2). (We do this only if 
both sets of nodes are of size at least a C  Inn and 
no more than j3Clnn.) 

• We also map the n data items to the n / l o g n  
bot tom supernodes in the butterfly. Every one of 
the n data  items is hashed to B random bottom 
supernodes. (Typically, we would not hash the 
entire data  item but only it's title, e.g., "Singing 
in the Rain"). 3 

• The data  item is stored in all the component nodes 
of all the (bottom) supernodes to which it has been 

~We use the random oracle model ([4]) for this hash function, 
it would have sufficed to  have a weaker assumpt ion  such a~ tha t  
the hash function is expansive. 

hashed (if any bot tom supernode has more than 
/3B In n data  items hashed to it, it drops out of the 
network.) 

• In addition, every one of the nodes chooses T 
top supernodes of the butterfly and points to all 
component nodes of these supernodes. 

To perform a search for a data  item, starting from 
node v, we do the following: 

1. Take the hash of the data  item and interpret it as a 
sequence of indices Q , i 2 , . . . ,  iB,  0 < i t  < n / l o g n .  

2. Let t l , t 2 , . . .  , tT be the top supernodes to which v 
points. 

3. l:tepeat in parallel for all values of k between 1 and 
T: 

(a) L e t £ = l .  
(b) Repeat until successful or until ~ > B: 

i. Follow the path from tk to the supernode 
at the bot tom level whose index is it: 

• Transmit the query to all of the nodes 
in t , .  Let W be the set of all such 
nodes. 

• Repeat until a bot tom supernode is 
reached: 

- The nodes in W transmit the query 
to all of their neighbors along the 
(unique) butterfly path to it, Let W 
be this new set of nodes. 

• When the bot tom supernode is 
reached, fetch the content from what- 
ever node has been reached. 

• The content, if found, is transmitted 
back along the same path as the query 
was transmitted downwards. 

ii. Increment L 

3 . 1  P r o p e r t i e s  o f  t h e  C o n t e n t  A d d r e s s a b l e  N e t -  
w o r k  Following is the main theorem which we will prove 
in Section 4. 

THEOREM 3.1. For  all e > O, there e~ist constants 
kl(e), k2(e), k3(e) which depend only on e such that 

* Every  node requires k l ( e )  logn memory .  

* Search .for a data i t em takes no more than 
ks (~) log n t ime.  

• Search ]or a data i t em requires no more than 
k3(e) log 2 n messages.  

• All  but en nodes can reach all but ~n data i tems.  
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3.2 S o m e  C o m m e n t s  

1. D i s t r i b u t e d  c r e a t i o n  o f  t h e  c o n t e n t  addres s -  
ab l e  n e t w o r k  

We note that  our Content Addressable Memory can 
be created in a fully distributed fashion with n 
broadcasts or transmission of ~2 messages in to- 
tal and assuming O(log n) memory per node. We 
briefly sketch the protocol that  a particular node 
will follow to do this. The node first randomly 
chooses the supernodes to which it belongs. Let S 
be the set of supernodes which neighbors supern- 
odes to which the node belongs. For each s E S, 
the node chooses a set N,  of D random numbers 
between 1 and/~C in n. The node then broadcasts a 
message to all other nodes which contains the iden- 
tifiers of the supernodes to which the node belongs. 

Next, the node will receive messages from all other 
nodes giving the supernodes to which they belong. 
For every s E S, the node will link to the i-th node 
that belongs to s from which it receives a message 
if and only ff ~ E N, .  

If for some supernode to which the node belongs, 
the node receives less than ~ C  Inn or greater than 
~ C  In n messages from other nodes in that  supern- 
ode, the node removes all out-going connections as- 
sociated with that  supernode. Similarly, if for some 
supernode in S, the node receives less than ~ C  In n 
or greater than ~ C  in n messages from other nodes 
in that  supernode, the node removes all out-going 
connections to that  neighboring supernode. Con- 
nections to the top supernodes and storage of data  
items can be handled in a similar manner. 

2. I n s e r t i o n  o f  a N e w  D a t a  I t e m  

One can insert a new data  item simply by perform- 
ing a search, and sending the da ta  item along with 
the search. The data  item will be stored at the 
nodes of the bot tommost  supernodes in the search. 
We remark that  such an insertion may fail with 
some small constant probability. 

3. I n s e r t i o n  o f  a N e w  N o d e  

Our network does not have an explicit mechanism 
for node insertion. It does seem that  one could 
insert the node by having the node choose at  ran- 
dom appropriate supernodes and then forging the 
required random connections with the nodes that  
belong to neighboring supernodes. The technical 
difficulty with proving results about  this insertion 
process is that not all live nodes in these neigh- 
boring supernodes may be reachable and thus the 
probability distributions become skewed. 

We note though that a new node can simply copy 
the links to top supernodes of some other node 
already in the network and will thus very likely be 
able to access almost all of the data  items. This 
insertion takes O(logn) time. Of course the new 
node will not increase the resiliency of the network 
if it inserts itself in this way. We assume that 
a full reorganization of the network is scheduled 
whenever sufficiently many new nodes have been 
added in this way. 

. L o a d  B a l a n c i n g  P r o p e r t i e s  

Because the da ta  items are searched for along a 
path from a random top supernode to the bot tom 
supernodes containing the item, and because these 
bot tom supernodes are chosen at random, the load 
will be well balanced as long as the number of 
requests for different da ta  items is itself balanced. 
This follows because a uniform distribution on 
the search for da ta  items translates to a uniform 
distribution on top to bot tom paths through the 
butterfly. 

4 P r o o f s  

4.1 P r o o f  O v e r v i e w  
Technically, the proof makes extensive use of ran- 

dom constructions and the Probabilistic Method [2]. 
We first show that  with high probability, all but  an 

arbitrarily small constant times n/logn of the supern- 
odes are good, where good means that  (a) they have 
O(log n) nodes associated with them, and, (b) they have 
~(log n) live nodes after adversarial deletion. This im- 
plies that  all but  a small constant fraction of the paths 
through the butterfly contain only good supernodes. 

Search is preformed by broadcasting the search to 
all the nodes in (a constant number of) top supernodes, 
followed by a sequence of broadcasts between every 
successive pair of  supernodes along the paths between 
one of these top supernodes and a constant number 
of bot tom supernodes. Fix one such path. The 
broadcast between two successive supernodes along the 
path makes use of the expander graph connecting these 
two supernodes. When we broadcast from the live nodes 
in a supernode to the following supernode, the nodes 
that  we reach may be both live and dead(see Figure 3). 

Assume that we broadcast along a path, all of 
whose supernodes are good. One problem is that  we 
are not guaranteed to reach all the live nodes in the 
next supernode along the path. Instead, we reduce 
our requirements to ensure that  at  every stage, we 
reach at least 61og~ live nodes, for some constant 6. 
The crucial observation is that  if we broadcast from 
61ogn live nodes in one supernode, we are guaranteed 
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Supernode 8upernode Supernode 

Figure 3: Traversal of a path through the butterfly. 

to reach at least 61ogn live nodes in the subsequent 
supernode, with high probability. This follows by 
using the expansion properties of the bipartite expander 
connection between two successive supernodes. 

Recall that the nodes are connected to a constant 
number of random top supernodes, and that the data  
items axe stored in a constant number of random bottom 
supernodes. The fact that we can broadcast along all 
but an arbitrarily small fraction of the paths in the 
butterfly implies that  most of the nodes can reach most 
of the content. 

In several statements of the lemmata and theorems 
in this section, we require that n, the number of nodes in 
the network, be sufficiently large to get our result. We 
note that, technically, this requirement is not necessary 
since if it falls then n is a constant and our claims 
trivially hold. 

4.2 Def in i t ions  

DEFINITION 4.1. A top or middle supernode is said to 
be (c~,t~)-good if it has at most f l logn nodes mapped to 
it and at least a log n nodes vJhich are not under control 
of the adversary. 

DEFINITION 4.2. A bosom supernode is said to be 
(a,~)-good if it has at mos t /~ logn  nodes mapped to 
it and at least a l o g n  nodes which are not under control 
of the adversary and if there are no more than ~ B  In n 
data items that map to the node. 

DEFINITION 4.3. An (a, j3)-good path is a path through 
the butterfly network from a top supernode to a bottom 
super'node all of whose supernodes are (a,~)-good su- 
pernodes. 

DEFINITION 4.4. A top supernode is called (7 ,a ,  fl)- 
expansive if there exist Vn /  logs  (a, fl)-good paths that 
start at this supernode. 

4.3 Technica l  L e m m a t a  Following are three tech- 
nical lemmata about  bipartite expanders that we will 
use in our proofs. The proof of the first lemma is well 
known [21] (see also [17]) and the proof of the next two 
lemmata are slight variants on the proof of the first. Due 
to space constraints, the proofs of all three lemmata axe 
omitted from this extended abstract. 

LEMMA 4.1. Let i, r, l', r', d and n be any positive values 

where l' <_ l and r' <_ r and 

d >  ~ l ' ln f f  + r ' l n  ~7 + 2 I n n  . 

Let G be a random bipartite multigraph with left side L 
and right side R where ILl = I and [Rt = r and each 
node in L has edges to d random neighbors in R. Then 
with probability at least 1 - 1In 2, any subset o i L  of size 
l' shares an edge with any subset of R o/ size r' . 

LEM~A 4.2. Let l , r ,Y , r ' , d ,A  and n be any positive 
values where l' < i, r'  < r ,  0 < ~ < 1 and 

d > r , l , ( ~ - - A )  2 l ' ln + r ' l n  + 2 1 n n  . 

Let G be a random bipartite multigraph with left side L 
and right side R where ILl = i and IRI = r and each 
node in L has edges to d random neighbors in R. Then 
with probability at least 1 - I / n  ~, for any set L'  C L 
where ]L'] = Y, there is no set R'  C R, where IRq = r' 
such that all nodes in R '  share less than M'd/r  edges 
with L'.  

LEMMA 4.3. Let l, r, r ~, d, f f  and n be any positive val- 
ues where Y <_ l,/3' > 1 and 

4r (r, ln (~e )  + 21nu) . d _ 

Let G be a random bipartite multigraph with left side L 
and right side R where ILl = I and IRI = r and each 
node in L has edges to d random neighbors in R.  Then 
with probability at least 1 - 1In 2, there is no set R'  C R, 
where IR'I = r' such that all nodes in R'  have degree 
greater than f f  ld/r.  

4.4 ( a , ~ ) - g o o d  S u p e r n o d e s  
LEMlvlA 4.4. Let a , 6 ' , n  be values where a < 1/2 and 
6' > 0 and let k(6', a)  be a value that depends only on 
~,6' and assume n is sufficiently large. Let each node 
participate in k (6 ' , a ) Inn  random middle supernodes. 
Then removing any set of n / 2  nodes still leaves all but 
6'n/  In n middle supernodes with at least ak(6',  ~) In n 
live nodes. 

Proof. For simplicity, we will assume there axe n middle 
supernodes (we can throw out any excess supernodes). 

L e t l - n , i ' = n / 2 ,  r = n , r '  = 6 ' n / I n n ,  A =  2~ 
and d = k(6', a) In n in Lemma 4.2. We want probability 
less than 1In 2 of being able to remove n[2 nodes 
and having a set of 6 'n / In  n supernodes all with less 
than ak(6',  ~ ) Inn  live nodes. This happens provided 
that the number of connections from each supernode is 
bounded as in Lemma 4.2 which happens when: 

21n(2e) 
k(6 ' ,a)  > 6,(i---~-t~o~)2 +o(1) .  
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LEMMA 4.5. Let ~3,61,n,k be values such that fl > 1, 
61 > 0 and assume n is su~ciently large. Let each node 
participate in k Inn of the middle supernodes, chosen 
uniformly at random. Then all but ~ 'n / Inn  middle 
supernodes have less than ~3kln n participating nodes 
~ith probability at least 1 - 1/n 2. 

Proof. For simplicity, we will assume there are n middle 
supernodes (we can throw out any excess supernodes 
and the lemma will still hold). Let I = n, r = n, 
r I = 6 tn / lnn ,  d - k i n n  and fll = fl in Lemma 4.3. 
Then the statement in this lemma holds provided that: 

4 ( l n n  2 ) 
k >  (fl-1) inn" In + " 

The right hand side of this equation goes to 0 as n 
goes to infinity. 
LEMMA 4.6. Let 0,5~,n be values such that a < 1/2, 
6' > 0 and let k(5' ,a)  be a valu'e that depends only on 6' 
and a and assume n is suj~iciently large. Let each node 
participate in k(6 t, a) top (bottom) supernodes. Then m- 
mo~ing any set of n /2  nodes still leaves all but 6tn/ Inn 
top (boSom) supernodes with at least 0k(5', a) in n live 
nodes. 
Proof. Let l ---- n, ! t = n/2 ,  r = n~ In n, r' = 5 'n / In  n, 
A = 20 and d = k(5 ! ,0)  in Lemma 4.2. We want 
probability less than 1/n  2 of being able to remove n/2  
nodes and having a set of 6 tn / Inn  supernodes all with 
less than ok(6 I, a)  In n live nodes. We get this provided 
that the number of connections from each supernode is 
bounded as in Lemma 4.2: 

2 ln(2e) 
k((5', a )  ---- 6'(1 -- 20) 2 + o(1). 

LEMMA 4.7. Let B,61,n ,k  be values such that fl > 1, 
61 > 0 and n is su]~cicntly large. Let each node partic- 
ipate in k of the top (bottom) supernodes (chosen uni- 
formly at random). Then all but 5In/In n top (bottom) 
supernodes consist of less than .Bkln n nodes with prob- 
ability at least I -  i / n  2. 
Proof. Let I = n, r = n / l n n ,  r' = 5 'n / lnn ,  d = k 
and f f  = fl in Lemma 4.3. Then the statement in this 
lemma holds provided that:  

b _> In n(/~ - 1) 2 " In ~7 + -~-n-n / " 

The right hand side of this equation goes to 0 as n 
goes to infinity. 
COROLLARY 4.1. Let ~,6~,n, k be values such that ~ > 
1, 5 ~ > 0 and n is sufficiently large. Let each data 
item be stored in k of the bottom supernodes (chosen 
uniformly at random). Then all but 5'n/ In n bottom 
supernodes have less than ~kln  n data items stored on 
them with probability at least 1 - 1In 2. 

Proof. Let the da ta  items be the left side of a bipartite 
graph and the bot tom supernodes be the right side. The 
proof is then the same as Lemma 4.7. 

COROLLARY 4.2. Let 51 > 0, o < 1/2, fl > 1. 
Let k(5 t, a), be a value depending only on 61 and as- 
sume n is su~ciently large. Let each node appear in 
k(6 I, 0) top supernodes, k(6 l, 0) bosom supernodes and 
k(~', a) In n middle supernodr~. Then all but 5'n of the 
supernodes are (ok(6 t, a) ,  ~k($', a))-good with probabil- 
ity 1 - O(1/n2). 
Proof. Use 

kCy, o) = 1_o. 21n(2e) 
3 61(1 --  2a) 2 

in Lemma 4.6. Then we know that no more 
than 351n/(10inn) top supernodes and no more 
than 3aln/(101nn) bo t tom supernodes have less than 
al~(61,a)hn live nodes. Next plugging k(Sr,a) into 
Lemma 4.4 gives that  no more than 351n/(101nn) mid- 
dle supernodes have less than ak(5 ~, a)In n live nodes. 

Next using k(6 !, a)  in Lemma 4.7 and Lemma 4.5 
gives that  no more than 5~n/(20 In n) of the supernodes 
can have more than ilk(6 I, a ) In  n nodes in them. Fi- 
nally, using k(5 t, a)  in Lemma 4.1 gives that  no more 
than 5tn/(2Oinn) of the bot tom supernodes can have 
more than ilk(51, a)In n da ta  items stored at them. If 
we put  these results together, we get that  no more than 
5n/ In  n supernodes are not (ok(5',  a), ~k(5', a))-good 
with probability 1 - O(1 /n  2) 

4 . 5  (7 ,  a ,  ~ ) - e x p a n ~ i v e  S u p e r n o d e s  
THEOREM 4.1. Let ~ > 0, a < 1/2, 0 < 7 < 1,/~ > 1. 
Let k(5 ,a ,7 )  be a value depending only on 6 , 0 , 7  and 
assume n is suJ~iciently large. Let each node partic- 
ipate in k(5, 0, 7) top supernodes, k(5, a ,  7) bottom su- 
pernodes and k( 6, a, 7) In n middle supernodes. Then all 
but 5 n / i n n  top supernodes are (7 , ak (6 , a ) , f l k (5 , a ) ) -  
ez'par~ive with probability 1 - O(1/n2).  
Proof. Assume that  for some particular k (6 ,0 ,7 )  
that  more than 6 n / i n n  top supernodes are not 
(7, ok(5, a ,  7),/~k(~, a ,  7)-expansive. Then each of these 
bad top supernodes has (1 - 7n) / In  n paths that  are 
not (ok(6, a ,  7),/~k(5, a ,  -),))-good. So the total number 
of paths that are not ( a k ( 5 , a , 7 ) , ~ k ( 6 , a , 7 ) ) - g o o d  is 
more than 

6(1 - 7 ) n  2 

In s n 

We will show there is a k (5 , a ,7 )  such that  this event 
will not occur with high probability. Let 51 = 6(1 - 7) 
and let 

10 21n(2e) 
a , 7 )  = 5 0  - 7 ) ( 1  - 20 )  2 .  
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Then we know by Lemma 4.2 that  with high proba- 
bility, there are no more than 5(1 - 7 ) n / l n n  supern- 
odes that  are not (ak(5, a,  7),/~k(/~, a ,  7))good. We 
also know that  each of these supernodes which axe not 
good cause at most n / I n  n paths in the butterfly to be 
not (ak(~, a, 7), ~k($, a, 7))-good. Hence the number of 
paths that  are not (ak(d~, a, 7), flk(6, a, 7))-good is no 
more than 5(1 - 7)n2/(ln 9 n) which is what we wanted 
to show. 

4.6 (a,/~)-good Paths to  D a t a  i t e m s  We will 
use the following lemma to show that  almost all the 
nodes axe connected to some appropriately expansive 
top supersede. 

LEMMA 4.8. Let ~ > O, • > 0 and n be su1~ciently 
large. Then exists a constant k(~, e) depending only on 
• and 6 such that if each node connects to k(6, e) random 
top supersedes then with high probability, any subset of 
the top supernodes of size (1 - 6 ) n / I n  n can be reached 
by at least (1 - e)n nodes. 
Proof. We imagine the n nodes as the left side of a 
bipartite graph and the n / I n n  top supersedes as the 
right side and an edge between a node and a top 
supernode in this graph if and only if the node and 
supernode are connected. 

For the statement in the lemma to be false, there 
must be some set of en nodes on the left side of the graph 
and some set of (1 -$ )n ]  In n top supernodes on the right 
side of the graph that  share no edge. We can find k(6, e) 
large enough that  this event occurs with probability no 
more than 1/n 9 by plugging in I = n, 1' = en, r = n / I n  n 
and r '  = (1 - 6)(n / Inn)  into Lemma 4.1. The bound 
found is: 

In (-;) + o(1). 
k(~,e) >_ 1 - - 6  

We will use the following lemma to show that  if 
we can reach 7 bottom supernodes that  have some live 
nodes in them that  we can reach most of the data items. 

LEMMA 4.9. Let 7, n, e be any positive values such that 
• > O, 7 > O. There exists a k(e,7) which depends 
only on e, 7 such that if each bottom supernode holds 
k(e, 7 ) I n n  random data items, then any subset of bot- 
tom supernodes of size 7 n / l n n  holds ( 1 -  e)n unique 
data items. 

Proof. We imagine the n data  items as the left side of 
a bipartite graph and the n / I n  n bottom supernodes as 
the right side and an edge between a data  item and 
a bottom supernode in this graph if and only if the 
supersede contains the data  item. The bad event is 
that  there is some set o f T n / I n n  supernodes on the right 
that share no edge with some set of en data items on the 
right. We can find k(e, 7) large enough that  this event 

occurs with probability no more than I/n 2 by plugging 
in I = n, I l = en into r = n/inn, r' = Try/Inn into 
Lemma 4.1. We get 

k(~,7) >- 1 .  In e +o(1) 
7 e 

4.7 Connections between (a,/~)-good supers- 
odes 

LEMMA 4.10. Let c~,fl, a ' , n  be any positive values 
where a' < ~, a > 0 and let C be the number of su- 
pernodes to which each node connects. Let X and Y be 
two supersedes that are both (aC,~C)-good. Let each 
node in X have edges to k(a, fl, a') random nodes in Y 
where k(a, 1~, a') is a value depending only on a, ~ and 
~'. Then with probability at least 1 - 1/n 2, any set of 
a 'C In n nodes in X has at least a' C In n live neighbors 
in Y 
Proof. Consider the event where there is some set of 
a ' C l n n  nodes in X which do not have a ' C l n n  live 
neighbors in Y. There are a C l n n  live nodes in Y 
so for this event to happen, there must be some set 
of (a - ~')Clnn live nodes in Y that share no edge 
with some set of ~'dlnn nodes in X. We note that the 
probability that there are two such sets which share no 
edge is largest when X and Y have the most possible 
nodes. Hence we will find a k(a,/~,a')  large enough to 
make this bad event occur with probability less than 
1In 2 if in Lemma 4.1 we set I = t~Clnn, r = f lClnn ,  
!' = a 'C In n and r' = (a - a ' )C In n. When we do this, 
we get that  k(a, ~, a ~) must be greater than or equal to: 

, 

4.8 P u t t i n g  i t  Al l  T o g e t h e r  We axe now ready to 
give the proof of Theorem 3.1. 

Proof. Let $,a,7,a~,/~ be any values such that  0 < ~f < 
1, 0 < a  < 1/2, 0 < a '  < a , / ~ >  1 and 0 < 7 <  1. Let 

= I0  2 In(2¢) 
T " 60-.r)Cn-2a) • ; 

T = ,n(~). 
1-6 

B =  lln{~- 

D = a' In a' 

Let each node connect to C top, C bottom and 
C middle supernodes. Then by Theorem 4.1, at least 
(I -5)n/In n top supersedes axe (7, aC,/~C)-expansive. 
Let each node connect to T top supernodes. Then by 
Lemma 4.8, at least (I -•)n nodes can connect to 
some (7, aC,/~C)-expansive top supernode. Let each 
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da ta  item map to B bot tom supernodes. Then by 
Lemma 4.9, at least (1 - e)n nodes have (aC,/~C)-good 
paths to at least (1 - e)n data  items. 

Finally, let each node in a middle supernode have D 
random connections to nodes in neighboring supernodes 
in the butterfly network. Then by Lemma 4.10, at  
least (1 - e)n nodes can broadcast  to enough bot tom 
supernodes so that they can reach at least (1 - e)n da ta  
items. 

Each node requires T links to connect to the top 
supernodes; 2D links for each of the C top supernodes 
it plays a role in; 2D links for each of the C In n middle 
supernodes it plays a role in and BE in n storage for 
each of the C bot tom supernodes it plays a role in. The 
total amount of memory required is thus 

T + 2DC + Cln  n(2D + B/3), 

which is less than kl (e) logn for some kl(e) dependent 
only on e. 

Our search algorithm will find paths to at most 13 
bottom supernodes for a given data item and each of 
these paths has less than loan hops in it so the search 
time is no more than 

k2(e) logn = B l o g n .  

Each supernode contains no more tha t /~ ln  n nodes 
and in each search, exactly T top supernodes send no 
more than B messages so the total number of messages 
transmitted during a search is no more than 

k3(e) log 2 n = ( T B ~ C )  log 2 n. 

5 M o d i f i c a t i o n s  for  S p a r e  R e s i s t a n t  C o n t e n t  • 
A d d r e s s a b l e  N e t w o r k  

We only sketch the changes in the network and the 
proofs to allow a spam resistant content addressable net- 
work. The arguments are based on slight modifications 
to the proofs of section 4. 

The first modification is that  rather than have a 
constant degree expander between two supernodes con- 
nected in the butterfly, we will have a full bipartite 
graph between the nodes of these two supeznodes. Since 
we've insisted that the total number of adversary con- 
trolled nodes be strictly less than n/2,  we can guarantee 
that  a 1 - e fraction of the paths in the butterfly have 
all supernodes with a majority of good (non-adversary 
controlled) nodes. In particular, by substituting ap- 
propriate values in Lemma 4.2 and Lemma 4.3 we can 3. 
guarantee that all but e n / l o g n  of the supernodes have 
a majori ty of good nodes. This then implies that no 
more than an e fraction of the paths pass through such 
"adversary-majority" supernodes. As before, this ira- 

plies that most of the nodes can access most of the con- 
tent through paths that  don't  contain any "adversary- 
majority" supernodes. 

Search is performed as with the original construc- 
tion, and after the bot tommost  supernodes are reached, 
the da ta  content flows back along the same links as the 
search went down. We modify the protocol so that  along 
this return flow, every node passes up a data  value only 
if a majority of the values it received from the nodes 
below it are the same. This means that  if there are 
no "adversary-majority" supernodes on the path, then 
all good nodes will take a majority value from a set in 
which good nodes are a majority. Thus, along such a 
path, only the correct data  value will be passed upwards 
by good nodes. At the top, the node that issued the 
search takes the majori ty value amongst the (O(log n)) 
values it receives as the final search result. 

To summarize, the main theorem for spare resistant 
content addressable networks is as follows: 
THEOREM 5.1. For any constant c < I/2 such that the 
adversary controls no more than en nodes, and for all 
e > O, there exist constants kl(e),  ~ ( e ) ,  k3(e ) which 
depend only on e such that 

• Every node requires kl(e) logZn memory. 

Search for a data item takes no more than 
k3(e) logn  time. (This is under the assumption that 
n e ~ o r k  latency overwhelms processing time for one 
message, otherwise the time is 0( log  2 u) . )  

Search for a data item requires no more than 
ks(e) log ~ n messages. 

All but en nodes can search successfully for all but 
en of the true data items. 

6 Discussion and Open Problems 

We conclude with some open issues: 

1. For the deletion resistant content addressable net- 
work: Is there a mechanism for dynamically main- 
taining our network when large numbers of nodes 
are deleted or added to the network? Is it possible 
to reduce the number of messages that are sent in a 
search for a da ta  item from O(log 2 n) to O( logn)?  

2. Can one improve on the construction for the spam 
resistant content addressable network? 

Can one deal efficiently with more general Byzan- 
tine faults? For example, the adversary could use 
nodes under his control to flood the network with 
irrelevant searches, this is not dealt with by either 
of our solutions. 
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4. We conjecture that  our network has the property 
tha t  it is poly-log competit ive with any fixed de- 
gree network. Le., we conjecture tha t  given any 
fixed degree network topology, where n items are 
distr ibuted amongst n nodes, and any set of access 
requests tha t  can be dealt  with fixed sized buffers, 
then  our network will also deal with the same set 
of requests by introducing no more than  a polylog 
slowdown. 
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