
Virtual memory

 Main Memory Disk

 L1 L2

Goals

1. Creates the illusion of an address space much

larger than the physical memory

2. Make provisions for protection

The main idea is that if a virtual address is not mapped into

the physical memory, then it has to be fetched from the disk.

The unit of transfer is a page (or a segment). Observe the

similarities (as well as differences) between virtual memory

and cache memory. Also, recall how slow is the disk (~ ms)

to the main memory (50 ns). So each miss (called a page

fault or a segment fault) has a large penalty.

 P M
I D

Virtual

address space

Physical

address space

DISK

Read Write
 head

Track

Sector {

Block

What is a page? What is a segment?

A page is a fixed size fragment (say 4KB or 8 KB) of code

or data. A segment is a logical component of the program

(like a subroutine) or data (like a table). The size is variable.

VM Types

Segmented, paged, segmented and paged.

Page size 4KB –64 KB

Hit time 50-100 CPU clock cycles

Miss penalty

 Access time

 Transfer time

10
6
 - 10

7
 clock cycles

0.8 x 10
6
–0.8 x 10

7
 clock cycles

0.2 x 10
6
–0.2 x 10

7
 clock cycles

Miss rate 0.00001% - 0.001%

Virtual address

Space size

4 GB -16 x 10
18

 byte

A quick look at different types of VM

 Segment sizes

 are not fixed

 Page sizes

 are fixed

 Segments can

 be paged

A segment

A page Page frame

or block

Address Translation

 Virtual address

 page

 table

 Physical address

Page Table (Direct Map Format)

Page

 No.

Presence

 bit

Block no./ Disk addr Other attributes

like protection

0 1 7 Read only

1 0 Sector 6, Track 18

2 1 45 Not cacheable

3 1 4

4 0 Sector 24,Track 32

Page Number Offset

Block Number Offset

Page Table (Associative Map Format)

Pg, Blk, P Block no./ Disk addr Other attributes

0, 7, 1 7 Read only

1, ?, 0 Sector 6, Track 18

2, 45, 1 45 Not cacheable

3, 4, 1 4

4, ?, 0 Sector 24, Track 32

Address translation overhead

Average Memory Access Time =

Hit time (no page fault) +

Miss rate (page fault rate) x Miss penalty

Examples of VM performance

Hit time = 50 ns.

Page fault rate = 0.001%

Miss penalty = 2 ms

Tav = 50 + 10-5 x 2 x 106 ns = 70 ns.

Improving the Performance of Virtual Memory

1. Hit time involves one extra table lookup. Hit time

can be reduced using a TLB

(TLB = Translation Lookaside Buffer).

2. Miss rate can be reduced by allocating enough

memory to hold the working set. Otherwise,

thrashing is a possibility.

3. Miss penalty can be reduced by using disk cache

Page Replacement policy

Determines which page needs to be discarded to

accommodate an incoming page. Common policies

are

! Least Recently Used (LRU)

! Least Frequently Used (LFU)

! Random

Writing into VM

Write-through is possible if a write buffer is used.

But write-back makes more sense. The page table

must keep track of dirty pages. There is no

overhead to discard a clean page, but to discard

dirty pages, they must be written back to the disk.

Working Set

Consider a page reference string

0, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, … 100,000 references

The size of the working set is 2 pages.

 Page thrashing

 Fault

 Rate

 Enough to Available M
 hold the

working set

Always allocate enough memory to hold the working

set of a program (Working Set Principle)

Disk cache

Modern computers allocate up a large fraction of the

main memory as file cache. Similar principles apply to

disk cache that drastically reduces the miss penalty.

Address Translation Using TLB

 +

 16-512 entries

 TLB

 M

 No match

TLB is a set-associative cache that holds a partial

page table. In case of a TLB hit, the block number is

obtained from the TLB (fast mode). Otherwise (i.e. for

TLB miss), the block number is obtained from the

direct map of the page table in the main memory, and

the TLB is updated.

Page Offset
Page table base

register

Block Offset

Set-associative
or fully

associative cache

Page table is the

direct map in the

main memory

