
MIPS registers

register assembly name Comment

r0

r1

r2-r3

r4-r7

r8-r15

r16-r23

r24-r25

r26-r27

r28

r29

r30

r31

$zero

$at

$v0-$v1

$a0-$a3

$t0-$t7

$s0-$s7

$t8-$t9

$k0-$k1

$gp

$sp

$fp

$ra

Always 0

Reserved for assembler

Stores results

Stores arguments

Temporaries, not saved

Contents saved for use later

More temporaries, not saved

Reserved by operating system

Global pointer

Stack pointer

Frame pointer

Return address

Using AND for bit manipulation

To check if a register $s0 contains an odd number,

AND it with a mask that contains all 0’s except a 1

in the LSB position, and check if the result is zero

(we will discuss decision making later)

andi $t2, $s0, 1

This uses I-type format (why?):

 6 5 5 16

Now we have to test if $t2 = 1 or 0

 8 16 10 1

andi
s0 t2

 Making decisions

if (i == j) f = g + h; else f = g – h

Use bne = branch-nor-equal, beq = branch-equal, and j = jump

Assume that f, g, h, are mapped into $s0, $s1, $s2

i, j are mapped into $s3, $s4

bne $s3, $s4, Else # goto Else when i=j

add $s0, $s1, $s2 # f = g + h

j Exit # goto Exit

Else: sub $s0, $s1, $s2 # f = g – h

Exit:

Review the logical operations

Shift left logical sll

Shift right logical srl

Bit-by-bit AND and, andi (and immediate)

sll $t2, $s0, 4 # register $t2 := register $s0 << 4

s0 = 0000 0000 0000 0000 0000 0000 0000 1001

t2 = 0000 0000 0000 0000 0000 0000 1001 0000

(s0 = r16, t2 = r10)

What are the uses of shift instructions?

Multiply or divide by some power of 2.

Implement general multiplication using addition and shift

Op = 0 rs = 0 rt = 16 rd = 10 shamt = 4 function = 0

The program counter and control flow

Every machine has a program counter (called PC) that

points to the next instruction to be executed.

 1028

 1032

 1036 PC

 CPU

MEMORY

Ordinarily, PC is incremented by 4 after each instruction

is executed. A branch instruction alters the flow of

control by modifying the PC.

Instruction 1

Instruction 2

Instruction 3

Instruction 4

data

data

1028

Compiling a while loop

while (A[i] == k) i = i + j;

Initially $s3, $s4, $s5 contains i, j, k respectively.

Let $s6 store the base of the array A. Each element of A

is a 32-bit word.

Loop: add $t1, $s3, $s3 # $t1 = 2*i

 add $t1, $t1, $t1 # $t1 = 4*i

add $t1, $t1, $s6 # $t1 contains address of A[i]

lw $t0, 0($t1) # $t0 contains $A[i]

add $s3, $s3, $s4 # i = i + j

bne $t0, $s5, Exit # goto Exit if A[i] ! k

j Loop # goto Loop

Exit: <next instruction>

 Note the use of pointers.

Exercise

Add the elements of an array A[0..63]. Assume that the

first element of the array is stored from address 200.

Store the sum in address 800.

System Call

The program takes the help of the operating system

to do some input or output operation. Example

li $v0, 5 # System call code for Read Integer

syscall # Read the integer into $v0

Read Appendix A of the textbook for

a list of these system calls used by

the SPIM simulator.

