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Notes onTrees

Definition 7.16: A (free) tree is an undirected simple graph G = (V, E) that is connected and has no non-
null simple cycles. If vŒV has degree(v) = 1, then v is a leaf node; if degree(v) >1, then v is a branch
node.

Theorem: an undirected simple graph G = (V, E) is a tree if and only if:
(1) each pair of distinct vertices is connected by a single simple path, or
(2) G is connected and the removal of any edge creates a disconnected graph, or
(3) G has no simple cycles and adding any new edge creates a simple cycle, or
(4) G is connected, has e edges and v vertices, and e = v–1.

Proof of (1):
First suppose that condition (1) is true, and each pair of distinct vertices is connected by a single simple
path. Then obviously G is connected. To see that G has no non-null simple cycle, the proof is by
contradiction. Suppose there is such a cycle, say v1, v2, … , vn, v1 (n ≥ 2). Since this is a simple path,

no edges are repeated and therefore there are two paths between v1 and v2, namely v1, v2 and v1, vn,

vn–1, … , v2. This is a contradiction, and so there can be no non-null simple cycles, and G is a tree.

Conversely, suppose that G is a tree. but has some pair of vertices u and v connected by two (or more)
distinct simple paths — say u, x1, x2, … , xp, v and u, y1, y2, … , yq, v. These two paths may agree for

some of the initial steps, but will eventually differ since they are different paths. Hence x1 = y1, x2 = y2,

… , xm = ym, and xm+1 ≠ ym+1 for some m ≥ 0. Then the path p = xm, xm+1, … , xp, v, yq, yq–1, …,

ym+1, ym is a cycle (ym= xm). This may not be a simple cycle, but since xm+1 ≠ ym+1 it must contain a

simple cycle. If p is not a simple cycle let i and j be the largest values, m+1< i ≤ p and m+1< j ≤ q so
that xi = yj. Then xm, xm+1, … , xi, yj+1, yj+2, …, ym+1, ym is a simple subcycle of p and is non-null

since xm+1 ≠ ym+1. But G has no non-null simple cycles, so this is a contradiction. Hence it is

impossible for G to have a pair of nodes connected by two distinct simple paths.

Proof of (2):
First suppose that condition (2) is true, and removal of any edge disconnects G. We prove G has no simple
cycles by contradiction. Suppose G contains some simple cycle, say v1, v2, … , vn, v1 (n ≥ 2). But then

removal of edge (v1, v2) does not disconnect G since in any path that uses it, (v1, v2) can be replaced by

v1, vn, vn–1, … , v2 and a path still exists so G is still connected, a contradiction.

Conversely, suppose that G is a tree. For any edge (v1, v2), by condition (1), this is the only path between

v1 and v2. Therefore when this edge is removed, G becomes disconnected.

Proof of (4):
First suppose that condition (4) is true. We prove that G has no simple cycles by contradiction. So
suppose that G has a simple cycle, and either this cycle is elementary or it contains an elementary subcycle
-- let this elementary cycle be C(v.v) and have length p. An elementary cycle of length p contains p
vertices. Consider the other v–p vertices of G. Each of these vertices is reachable from v, and therefore there
must be at least one edge not appearing in C to each of them. This yields at least p + (v–p) = v edges, a
contradiction. Hence G cannot contain a simple cycle and is a tree.

Conversely, suppose that G is a tree. The proof that e = v-1 is by induction on the number of edges.
Basis case: e = 0 -- with no edges, we must have v = 1 for G to be connected.
Induction step:
Assume that e = v-1 for any tree with n or fewer edges (the inductive hypothesis), and let G be a tree with
e = n+1 edges -- we need to show G has e+1 = n+2 vertices. Pick any edge (x1, x2) of G and consider the

graph G' = (V, E–(x1, x2)) with that edge removed. Since G is a tree, by property (1) there is no path from
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x1 to x2 after this edge is removed. Therefore, G' is disconnected and there are two connected components,

call them G1 and G2, one containing x1 and the other containing x2. Each of these connected components

is a subgraph of G and so can have no simple cycles and is therefore a tree. Suppose that Gi has ei edges

and vi vertices, for i = 1,2. Then since G1 and G2 arose by the deletion of a single edge from G, it must

be that e–1 = e1+e2, and v = v1+v2. Now since G1 and G2 are both trees with n or fewer edges, by the

induction hypothesis, e1 = v1–1 and e2 = v2–1. Therefore e = e1+e2+1 = v1–1 + v2–1 + 1 = v1+v2–1 =

v–1 and the induction is extended, completing the induction proof.

Definition: A (non-oriented) rooted tree consists of a pair (G,r) where G = (V, E) is a tree and rŒV (the
root). The level of a node in a rooted tree is the length of the simple path from the root to the node. The
height of a tree is the maximum level of any of its vertices. If v is a branch node of a rooted tree, then all
those adjacent nodes whose level is 1 greater than that of v are called child nodes of v and v is called their
parent node; if two nodes have the same parent they are called siblings. If node v lies on the path from
the root to node u, then v is an ancestor of u and u is a descendant of v.

Grassman & Tremblay regard rooted trees as directed graphs. This differs from the definition given
immediately above, but it’s primarily a matter of interpretation. In a tree, there is a unique path from the
root to any other node -- Grassman & Tremblay regard all these paths to be oriented away from the root.
Commonly we understand path questions in rooted trees to emanate from the root so an explicit path
orientation can be omitted. Therefore the non-oriented definition of a rooted tree stated above is common
with many other authors.


