
insight (SIGPLAN Notices), V. 39, N. 4 (Dec 2007)

61

Prolog as the First Programming Language
Arthur Fleck, Professor Emeritus

Computer Science Department
University of Iowa

Iowa City, Iowa 52242
fleck@cs.uiowa.edu

Abstract
The adoption of logic programming in an introductory course on computer programming offers several rewards. The higher
conceptual level of this programming paradigm guides students to an early appreciation for abstraction. The descriptive
character of programs makes them more understandable than conventional programs, and the relational basis makes them
more versatile. This incremental and highly interactive style of programming leads to early student success and motivates
active participation by students.

Keywords
Prolog, logic programming, first programming language

1. INTRODUCTION
This paper advocates the use of logic programming,
specifically Prolog, for the language in a first computer
programming course. The elements of precise logical
thinking provide a basis, and logical assertions themselves
effectively serve as a computer program. Logic
programming is a unique programming paradigm that
accomplishes a shift in emphasis from how to compute an
answer to what constitutes an answer. This raises student
thinking to a substantially higher level of abstraction than
traditional programming languages involve.

Traditional programming languages require our
attention to be on controlling numerous individual steps of
a complicated computing mechanism. They require a
student to first assimilate a plethora of "contraptions",
many of which have no direct connection to a problem of
interest. Then each problem requires the creation of a
representation of the problem domain in terms of these
devices. The dominance of these factors in traditional
programming languages diverts intellectual attention from
the basic problem-solving task.

In traditional programming, a specification and a
corresponding program are two completely separate things.
Creation of a program requires an intellectual leap from a
specification understood in the problem domain to
computation steps that manipulate the elements of a
computing mechanism. Logic programming enjoys the
economy of the unification of the specification and the
program as a collection of logical assertions.

 The importance of abstraction to the programming
process has repeatedly been recognized (e.g., Kramer[6]).
Logic programming tightly integrates programming with
problem solving, rather than treating them as two distinct
activities. Focus on the conceptual aspects of program
construction facilitates student conceptualization of the
multilayered character of abstraction essential to true
understanding of computer systems. This provides strong

support for subsequent development of programming skills,
regardless of what language may later be employed.

It is widely acknowledged that Prolog is not
synonymous with logic programming. However, the
predominance of the language in technical literature and
the widespread availability of high quality implementations
make Prolog a compelling choice. By making careful
selections among the features of Prolog that are introduced,
it is possible to utilize facilities for which logic provides a
meaningful (though sometimes imperfect) explanation. A
few essential constructs not modeled in logic are utilized to
provide a bridge between logic and procedural
programming ideas.

2. BASIC COURSE CONTENT
Of course, some time must be devoted to basic computing
facilities (e.g., editor, browser, operating system) at hand
for students. This is no different for this course than any
other, and is not pursued in this discussion.

In a traditional language, a program constitutes a set of
instructions for manipulating a computer representation of
the elements of a problem, and a computer executes these
instructions to obtain a solution. By contrast, in Prolog a
program is a set of logic formulas asserting known
properties of a problem domain, and a solution is deduced
from these assertions. So in logic programming,
computation is synonymous with deduction.

To pursue logic programming, one must have a basic
appreciation of logic. But to fully develop logic takes more
than a single course itself. Therefore, in this course we start
with logic, but devote a relatively small amount of time to
briefly introduce its basic ideas. We strive for expanded
understanding of logic to be ultimately developed hand-in-
hand with the use of Prolog to “animate” logical assertions.
Each of these viewpoints enhances a student's
understanding of the other.

insight (SIGPLAN Notices), V. 39, N. 4 (Dec 2007)

62

Our development of the course begins with
propositional logic and the basic logical connectives.
Students quickly assimilate the 'and'. 'or', and 'not'
operations, and the syntax rules for well-formed formulas.
Because of the central conceptual role it plays in logic
programming, the 'implies' connective is strongly
emphasized. Basic ideas such as satisfiability and
tautology are presented. The extraordinary flexibility to
phrase other (NP-complete) questions as satisfiability of
suitable formulas is used to illustrate the computational
ramifications of these seemingly abstract logic ideas.

Next the additional ideas of predicate logic are
covered. Of course, the idea of a predicate or relation is
fundamental in logic as well as in Prolog. This is one of
the major departure points of Prolog from traditional
languages, and it's natural to develop the relational view in
this logic setting. The concepts of universal and existential
quantification of predicate logic are central to Prolog and
are first explored in the logic context. The most
challenging aspect of logic to get across to students is the
independence of logic formulas from any specific context,
and to understand that truth or falsity will generally vary
with an interpretation.

Finally, axiom and proof rule ideas must also be
covered. Students need to understand that axioms are
chosen to reflect a context of interest, and deduction can
show what else must necessarily be true in that context.
Introduction of the familiar "modus ponens" proof rule has
proven sufficient for the purposes of this course. Students
are shown the impossibility of exhaustive truth analysis for
assertions of predicate logic, and the resulting necessity of
using a proving process instead. The connection between
truth analysis and proof of formulas, and the efficacy of
replacing the former by the latter is emphasized. This
paves the way for describing Prolog's use of mechanical
proof construction to accomplish computation.

Formal logic provides a means for describing
conditions of interest with complete precision. Identifying
the key properties that determine a correct answer to a
problem is the first step. Viewing things from this
perspective is a substantial aid in gaining deeper insights
into a problem that has been posed. Understanding how to
use logic to express the critical properties as a logical
formula is the second step. The basic idea of logic
programming is that a resulting logic formula can be
"executed" by a computer to produce an answer.

Prolog has an especially simple syntax that is readily
explained, especially after the idea of logical formulas has
already been presented. Since the initial semantic ideas of
Prolog are directly drawn from logic, no further discussion
is needed to explain the basis of the language.

Prolog provides logic with a "procedural"
interpretation. The goal-oriented, backtracking model of
execution offers a dual view of the proving process, and
reinforces and expands the formal logic perspective. It is
vital to compare and contrast Prolog's goal satisfaction

approach with logical proof construction. This also
provides a basis for explaining other Prolog facilities for
which logic is inadequate.

A particularly important attribute of virtually every
Prolog implementation is the ability to "trace" the steps of a
query as Prolog carries out its goal reduction process. This
is an especially important aid to student understanding as it
reveals steps in a search for a proof. It also shows how
deduction steps accumulate an incremental effect on logic
variables to provide answers as side-effects.

Repetitious computations are described in three
distinct ways in Prolog. The 'findall' predicate is easily
introduced early since it has an adequate (higher order)
logical explanation, and provides a looping construct that is
natural to the logic viewpoint. So called "success-failure"
loops usually appear as simple assertions (i.e., straight-line
code), but especially with the aid of tracing, students soon
see how this technique effects a repetitious computation
(and possibly an infinite loop) through Prolog's
backtracking. Finally, recursion is very natural in Prolog
and also is conceptually simple from the logical perspective
(see next section).

3. TECHNICAL COURSE DETAILS
A critical concept in logic programming (and Prolog) is the
idea of a logic variable. It's essential to continually
reinforce the role of logic programming variables as
"unknowns" in the sense of mathematics, especially for
those (numerous) college freshmen who have already had
some experience with a traditional programming language
and retain the misleading idea of a variable from that
context. A related matter is ensuring that students realize
that the values taken on by logic variables are normally
treated as unevaluated terms (or trees). An appreciation of
these two points, and their interrelationship, is vital to the
understanding of logic programming.

Prolog has two very important attributes for beginning
students. One is that it is highly interactive. That means
that for the most part, students obtain immediate useful
feedback. Also, students receive prompts and responses
from the system that, especially in early stages, relieve the
burden of programming their own input-output. The
second important attribute of Prolog is the completely
incremental way in which programs can be constructed and
tested. One does not need to attempt a complete problem
solution, or even insert stubs, before trying out code. One
need not supply a large boilerplate – a few isolated lines
treating a single special case is already a usable Prolog
program! If you have written out just one case of one
predicate, you can immediately try it and simply add more
code later. These features lead to early student success,
and thus greatly enhance student confidence and
motivation.

Prolog programs define the behavior of predicates and
ideally enjoy an absence of "orientation requirements".
That is, programs make no distinction between arguments

insight (SIGPLAN Notices), V. 39, N. 4 (Dec 2007)

63

and results. For instance, the single Prolog 'append'
predicate can be used to concatenate two lists producing the
result, to divide a given list into two parts which are
produced, to test membership of an item in a list, etc. –
each of these uses would require a separate program in a
conventional language. For this reason Prolog instills
thinking about the generality and reusability of programs in
a very concrete way.

Discussion of both Prolog arithmetic and negation as
failure are deferred until the goal-oriented model has been
discussed. This model is required to provide a cogent
explanation of these facilities since they reflect logic
imperfectly. Leaving these topics until later in the course
requires some care in the earliest stages, but it has proven
to be quite workable.

The early avoidance of arithmetic is facilitated by
Prolog's natural suitability for non-numeric applications.
Such problems are common in everyday situations, and
allow the immediate pursuit of the use of logic description
as a program. However, even non-numerical problems
sometimes rely on basic counting, so there is motivation to
introduce the goal-solving model without undue delay.

Avoiding general negation in the early stages of the
course is compensated for through reliance on 'not
identical' (\==) and 'not unifiable' (\=) predicates for terms.
While much less expressive than general goal negation,
these primitives do allow numerous aspects of negation to
be expressed, and are readily explained in the logic context.
The introduction of negation as failure is therefore less
pressing than the arithmetic facilities. Explaining when it
can reliably be regarded as logical negation requires a
careful development. This not only requires consideration
of Prolog's goal reduction process, but explanation of the
"Closed World Assumption". However, once its basis has
been presented, negation as failure expands expressive
power and allows inherently simple programs for some
complex problems.

Recursion is often puzzling to beginning students, but
in Prolog it is completely natural. For instance, from the
logic point of view, the implication "if X is an ancestor of
Y, and Y is a parent of Z, then X is an ancestor of Z"
makes obvious sense logically. However, as a program,
this introduces recursion. Of course, recursion still
warrants discussion as it is another means to express
repetitive computation (and possibly an infinite loop). But
the discussion can begin from a clear and unequivocal logic
basis.

In the latter stage of the course, it is useful to present
the unification algorithm. The algorithm is sufficiently
simple that students readily grasp it, and they thereby gain
a better understanding of the procedural process that occurs
in Prolog. It's also then possible to explain the "occur-
check" concession made by Prolog.

When Dijkstra[4] invented the language he used in
developing his predicate transformer methodology for
program construction, he indicated that he "shuttered at the

thought of introducing nondeterminicy" in his
programming language. However, his formalism
convinced him otherwise. The central role of predicates in
Prolog also makes non-determinism completely natural
(one might say logical), and it is one of the few languages
to incorporate it. The uniform adoption of the relational
view in Prolog makes non-determinism quite
unremarkable, and multiple answers and backtracking are
quite natural.

Prolog provides just two data structuring facilities, but
they are two that are of central importance in computing.
One is the list, and the student is bound to gain substantial
experience with lists. The second data structure is the tree,
rarely seen as a first-class data structure in programming
languages. Every value in Prolog is a tree. It's instructive
for students to encounter (and understand) the natural
correspondence between Prolog's term presentation and the
more common diagram presentation of trees. In the latter
part of the course students are quite prepared to understand
tree construction and tree-walking processes.

The author has found that a class segment on logic
puzzles (e.g., the familiar Zebra, or Einstein's, Puzzle) is a
useful conclusion that brings all of the discussed elements
into play. These problems consist of the presentation of a
collection of facts about some situation, followed by a
question whose answer is to be deduced from these facts.
Sounds rather simple in the abstract. However, in practice
these puzzles are carefully designed to make it barely
possible to reach the sought after conclusion, and if it is a
good puzzle, it appears at first glance (and second glance
too) that there is insufficient information to answer the
question posed. A well-constructed logic puzzle presents a
paramount deductive challenge in that we are asked to
make a maximal conclusion from the bare minimum of
premises. Students enjoy such problems and genuinely
appreciate having a computer program generate the
solution.

In the spirit of logic programming, several features of
Prolog are not covered. Most notable would be the Prolog
'cut' operation. While this can be explained using the goal
reduction model of Prolog, it does not have a meaningful
description at the logic level, and for our purposes is better
omitted. Also omitted are term inspection predicates (e.g.,
var(X)), DCG grammars, and character-level input-output.
Finally, the emphasis on a higher level of abstraction offers
limited circumstances that raise the issue of efficiency
considerations.

As an entirely unconventional beginning programming
course, there are few texts currently available. The author
found that the standard Prolog book by Clocksin and
Mellish[3] required only a modest amount of
supplementary material. There are numerous
implementations of Prolog available covering all platforms,
including good quality implementations that students can
obtain for their personal computers without charge. The
author found SWI-Prolog[4] quite suitable. It's important

insight (SIGPLAN Notices), V. 39, N. 4 (Dec 2007)

64

that whatever implementation is selected should provide a
good execution tracing facility. This is an invaluable aid to
students, and promotes better understanding of the goal-
oriented, backtracking reduction process of Prolog.

4. CONCLUSIONS
Early developments in knowledge representation (see e.g.,
Brachman & Levesque[2]) and deductive database (see
e.g., Ramamohanarao & Harlan[7]) were based on formal
logic. Formal specification and proof of programs utilized
formal logic at its outset (Hoare[5]). Dijkstra[4] initiated
"predicate transformer" development methodology of
programs, and provided an early caution on the detrimental
effect of conventional programming languages on clear
thinking. Using logic as a language of programming is not
as unconventional as it may seem at first glance.

The intention of this approach in a first programming
course is not to establish exceptional proficiency in Prolog
programming (though this is not discouraged). Rather, the
goal is to reveal the intrinsic link between analytical
thinking and computer-generated solutions to problems,
and to impart critical skills of logical analysis. This will
provide the student with a solid conceptual foundation on
which to build a deep understanding of computer
programming. And the goal-oriented emphasis on
achieving the solution to a problem by a combination of the
solutions to simpler problems instills the top-down, divide
and conquer strategy as a cornerstone in student thinking.

Just as in conventional programming, before a program
can be written, students must learn to express
characteristics of a problem domain with abstract computer
representations. However, in contrast to conventional
programming, the representations do not involve bytes or
pointers, or other language specific "contraptions". Instead
they consist of formulas utilizing predicates (i.e., relations)
that interrelate significant aspects of the problem domain
and this more directly connects the programming
representation to the problem domain.

While it is contrary to traditional programming
education to teach a first programming course using logic
programming, experience has led me to the conclusion that
this is a superior approach. Logic programming uses a
level of abstraction that focuses on stating precisely what
the problem is, rather than requiring contemplation of a
variety of computing contraptions and their manipulation in
solving a problem. This establishes a pattern of thinking
that promotes sound analytical habits.

I have had the rare opportunity to employ the logic
programming approach in a first programming course for
college freshmen over a period of six years, and was
delighted by how effective this approach proved to be.
Early concerns of how well beginning students would fair
with this material were quickly and consistently dispelled.
The material was well received by students, and overall
performance consistently exceeded that of students in a
traditional beginning programming class.

The Computer Science Teacher's Association (CSTA)
has recently formulated a K-12 model CS curriculum[1],
and my experience with entering college freshmen
indicates that Prolog would be nicely suited to a role at this
earlier level as well. Since the K-12 model guides the
preparation of our entering students, this is an important
issue for college educators to address. In fact, the first
programming course will soon be routinely taken before
students enter college.

In a first programming course, logic programming has
significant advantages. For students who continue study of
programming using conventional languages, it promotes a
systematic logical analysis of problems and thereby
provides an invaluable foundation for all further
programming. For those who continue no further in
programming, it provides a widely available tool that is
readily applicable to a broad range of computing tasks.
The experience with careful logical thinking provides
benefits in innumerable other ways.

5. REFERENCES
1. ACM K-12 CS Model Curriculum (2nd ed.).

http://csta.acm.org/Curriculum/sub/ACMK12CSModel.h
tml

2. Brachman, R. & Levesque H. Knowledge
Representation and Reasoning. Morgan Kaufmann,
2004, 381 pp.

3. Clocksin, W. & Mellish C. Programming in Prolog (5th

ed.). Springer, 2003, 299 pp.
4. Dijkstra E. A Discipline of Programming. Prentice-Hall,

1976, 217 pp.
5. Hoare C. An axiomatic basis for computer programming.

Commun. ACM 12, 10 (1969), 376-380, 383.
6. Kramer. J. Is Abstraction the Key to Computing?

Commun. ACM, V. 50, 4 (April 2007), 36-42.
7. Ramamohanarao K. & Harlan J. An Introduction to

Deductive Database Languages and Systems. VLDB
Jour. 3 (1994), 107-122.

8. SWI-Prolog Foundation, http://www.swi-prolog.org/

