
22C:185

page 1

Attribute Grammar Example

This example illustrates the most common use of attribute grammars —
prototyping compilers. It is adapted from B. Courcelle “Attribute grammars: theory
and applications”, Formalization of Programming Concepts, Lect. Notes in Comp.
Sci., V.107.

This example concerns itself with only a small part of a compiler, namely
translating assignment statements. In particular, it focuses on the process of
allocating temporary storage for the evaluation of expressions. For instance, in
the expression a+b*c, the result of b*c must first be computed and stored in
some memory location d, and then the addition a+d performed. In complicated
expressions, numerous intermediate results must be generated and the locations
where they are stored retained for later use as appropriate. This methodology is
described here by means of an attribute grammar.

Some pool of available temporary memory locations must be assumed. In order
to focus on the desired issues, this is taken to be the symbolic locations L0, L1,
L2, … Courcelle expresses the code for an assignment statement in terms of
“three address instructions”. That is, the usual precedence is used to resolve the
order of operations, and suitable temporary locations are determined, but the
code is symbolically indicated to avoid computer architecture details. Also,
temporary locations are reused when their prior use is completed. For example,
the assignment

X := 3.14 * (X+Y)
will be translated into

L0 := 3.14;
L1 := X;
L2 := Y;
L1 := L1+L2;
L0 := L0*L1;
X:= L0.

This attribute grammar uses the attribute ‘free’ to denote the first unused
temporary memory location available, the attribute ‘res’ to denote the memory
location used to hold the result of an expression, term, etc., and ‘code’ to denote
the sequence of instructions for an assignment, expression, etc. The semantic
rules also use the function ‘next’ applied to temporary memory locations with the
obvious result (e.g., next(L0) = L1, etc.).



22C:185

page 2

BNF Semantic Rules
1. <asn> Æ <id> := <exp> asn.code = [exp.code ; id:= exp.res]

asn.free = L0
exp.free = asn.free

2. <exp> Æ <trm> exp.code = trm.code
exp.res = trm.res
trm.free = exp.free

3. <exp>0 Æ <exp>1 + <trm> exp0.code = [exp1.code ; trm.code ;
             exp1.res:= exp1.res+trm.res]
exp0.res = exp1.res
exp1.free = exp0.free
trm.free = next(exp1.res)

4. <trm> Æ <fct> trm.code = fct.code
trm.res = fct.res
fct.free = trm.free

5. <trm>0 Æ <trm>1 * <fct> trm0.code = [trm1.code ; fct.code ;
             trm0.res:= trm1.res*fct.res]
trm0.res = trm1.res
trm1.free = trm0.free
fct.free = next(trm1.res)

6. <fct> Æ ( <exp> ) fct.code = exp.code
fct.res = exp.res
exp.free = fct.free

7. <fct> Æ <id> fct.code = fct.free:= id
fct.res = fct.free

8. <fct> Æ <const> fct.code = fct.free:= const
fct.res = fct.free

The attribute grammar above omits subtraction and division operations for
brevity, but they would be treated entirely similarly to table entries 3 and 5,
respectively.

The attribute dependencies in this example are rather intricate. These are
perhaps best depicted in terms of the associated derivation tree nodes. So for
production #1 there are the following dependencies, where the arrow shows the
direction of information flow.

<asn> code  free

<id>   :=   <exp> code  res  free



22C:185

page 3

This indicates that ‘code’ is a synthesized attribute and is dependent on ‘res’, and
that ‘free’ is an inherited attribute. If we continue this analysis, for production #2
we the dependencies:

<exp>  code  free  res

<trm>  code  free  res

These dependencies are consistent with those of production #1. Continuing with
production #3 we have

<exp>  code  free  res

code  free  res <exp>   +    <trm>  code  free  res

This is also consistent with the prior observations, but reflects more complicated
attribute interrelationships. In fact, using the production numbers to indicate
where the dependencies arise we have the following:

free
7,8

7,8
    3,5

code res
1,3,5

This suggests a potential circularity — ‘free’ depends on ‘res’ and vice-versa. But
in fact, a more careful analysis reveals there is no actual circularity in any of the
possible derivation trees. The dependency of ‘res’ on ‘free’ is in productions 7
and 8 that correspond to leaf nodes that have no further dependencies and the
potential circularity is broken by the nature of the tree structure. However, there
is an interdependency that prevents full attribute evaluation in “one pass” up and
down the derivation tree. In fact, the number of passes will depend on the depth
of nesting in the expression. For instance, in the example tree on the next page,
evaluation must proceed in the following way:

1. evaluate ‘free’ (top down)
2. evaluate ‘res’ (bottom up)
3. continue evaluating ‘free’ (top down)
4. continue evaluating ‘res’ (bottom up)
5. complete evaluating ‘free’ (top down)
6. complete evaluating ‘res’ (bottom up)
7. evaluate ‘code’ (bottom up)



22C:185

page 4

id

asn

:= exp

trm

trm * fct

fct

const

3.14

( exp )

exp + trm

trm

fct

id

X

fct

id

Y

X

f=L0

f=L0

f=L0

f=L0

f=L0

f=L1

f=L1

f=L1

f=L1

f=L1 f=L2

f=L2

r=L0

r=L0

r=L0

r=L0

r=L1

r=L1

r=L1

r=L1

r=L1 r=L2

r=L2
c=[L2:=Y]

c=[L1:=X]

c=[L1:=X]

c=[L1:=X]

c=[L2:=Y]

c=[L1:=X;
     L2:=Y;
     L1:=L1+L2]

c=[L1:=X;
     L2:=Y;
     L1:=L1+L2]

c=[L0:=3.14]

c=[L0:=3.14]

A partially completed attribute evaluation tree.


