22C:034 Discrete Structures

Homework VII : Solutions

By Saurav Pandit

Answer 1.

v.

Suppose, the longest simple path, P, in a free tree T starts at a node u and ends at a node

As a free tree is a special case of undirected graph, without loss of generality, we may assume that v is not a leaf.

Let the above mentioned simple path is (u, ..., v', v). As v is not a leaf, v will have a neighbor other than v'. Let w be the neighbor. But P being a simple path, if w cannot be included in P. Because, a free tree having no cyclic path, inclusion of w in P will make the path visit the edge (w,v) twice, which is unacceptable in a simple path.

So we get another simple path (u, ..., v', v, w) which is longer than P. This contradicts the fact that P is the longest path. So our assumption that "v is not a leaf" is invalid. v must be a leaf.

Similarly we can show that *u* must be a leaf also.

[Hence Proved]

Answer 2.

(A)

 $\mathbf{R} = \{(a,a), (b,b), (c,c), (d,d), (e,e), (a,c), (c,a), (a,d), (d,a), (a,e), (e,a), (b,d), (d,b), (b,e), (e,b), (c,d), (d,c), (c,e), (e,c), (d,e), (e,d)\}$

The above relation is reflexive and symmetric, but NOT transitive — it includes (a,c) and (c,b) but not (a,b). Hence not an Equivalence Relation.

(B)

<u>To show</u>: The above relation R in any free tree is an equivalence relation on vertices.

Reflexive:

(v,v) _ **R**, as the path-length is 0 (even).

Symmetric:

If $u\mathbf{R}v$, then there is a simple path of even length between u and v. Then because of the same path $v\mathbf{R}u$.

Transitive:

Let, $u\mathbf{R}v$ and $v\mathbf{R}w$. As there is an unique path in a tree between any two vertices, the path length of the path between u and w will be the sum or difference of the path-lengths between (u,v) and (v,w). As they are both even, the path between u and w will be of even length. Hence $u\mathbf{R}w$.

Hence **R** is an equivalence relation on vertices of a free tree.

Graph	BFS	DFS		
(a)	1,2,5,7,4,3,6	1,2,3,4,6,5,7		
(b)	1,2,7,8,4,3,6,5,9	1,2,3,7,4,6,9,8,5		
(c)	1,9,5,2,3,8,4,6,7	1,9,3,2,8,4,7,5,6		
(d)	1,4,6,9,11,2,8,12,10,5	1,4,6,2,12,5,10,8,9,11		

Answer 3.

Answer 4.

Trace of the given Graph for Dijkstra's Algorithm:

Iterations	а	b	С	d	е	и	S
0	0	4	1	INF	INF		{a}
1	-	4 3	1	INF 5	INF 2	с	{a,c}
2	-	3	-	5	2	e	{a,c,e}
3	-	3	-	5 4	-	b	{a,c,e,b}
4	-	-	-	4	-	d	$\{a,c,e,b,d\}$

Hence, The minimum distance from a to d is 4.