22C:034 Discrete Structures

Homework VII : Solutions

By Saurav Pandit

Answer 1.

Suppose, the longest simple path, P, in a free tree T starts at a node u and ends at a node v.

As a free tree is a special case of undirected graph, without loss of generality, we may assume that v is not a leaf.

Let the above mentioned simple path is $\left(u, \ldots, v^{\prime}, v\right)$. As v is not a leaf, v will have a neighbor other than v^{\prime}. Let w be the neighbor. But P being a simple path, if w cannot be included in P. Because, a free tree having no cyclic path, inclusion of w in P will make the path visit the edge (w, v) twice, which is unacceptable in a simple path.

So we get another simple path (u, \ldots, v, v, w) which is longer than P. This contradicts the fact that P is the longest path. So our assumption that " v is not a leaf" is invalid. v must be a leaf. Similarly we can show that u must be a leaf also.
[Hence Proved]

Answer 2.

(A)
$\boldsymbol{R}=\{(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{b}),(\mathrm{c}, \mathrm{c}),(\mathrm{d}, \mathrm{d}),(\mathrm{e}, \mathrm{e}),(\mathrm{a}, \mathrm{c}),(\mathrm{c}, \mathrm{a}),(\mathrm{a}, \mathrm{d}),(\mathrm{d}, \mathrm{a}),(\mathrm{a}, \mathrm{e}),(\mathrm{e}, \mathrm{a}),(\mathrm{b}, \mathrm{d}),(\mathrm{d}, \mathrm{b}),(\mathrm{b}, \mathrm{e}),(\mathrm{e}, \mathrm{b}),(\mathrm{c}, \mathrm{d}),(\mathrm{d}, \mathrm{c}),(\mathrm{c}, \mathrm{e}),(\mathrm{e}, \mathrm{c}),(\mathrm{d}, \mathrm{e}),(\mathrm{e}, \mathrm{d})\}$
The above relation is reflexive and symmetric, but NOT transitive - it includes (a, c) and (c,b) but not (a, b). Hence not an Equivalence Relation.
(B)

To show: The above relation \boldsymbol{R} in any free tree is an equivalence relation on vertices.

- Reflexive:
$(v, v)_{-} \boldsymbol{R}$, as the path-length is 0 (even).
- Symmetric:

If $u \boldsymbol{R} v$, then there is a simple path of even length between u and v. Then because of the same path $v \boldsymbol{R} u$.

- Transitive:

Let, $u \boldsymbol{R} v$ and $v \boldsymbol{R} w$. As there is an unique path in a tree between any two vertices, the path length of the path between u and w will be the sum or difference of the path-lengths between (u, v) and (v, w). As they are both even, the path between u and w will be of even length. Hence $u \boldsymbol{R} w$.

Hence \boldsymbol{R} is an equivalence relation on vertices of a free tree.

Answer 3.

Graph	BFS	DFS
(a)	$1,2,5,7,4,3,6$	$1,2,3,4,6,5,7$
(b)	$1,2,7,8,4,3,6,5,9$	$1,2,3,7,4,6,9,8,5$
(c)	$1,9,5,2,3,8,4,6,7$	$1,9,3,2,8,4,7,5,6$
(d)	$1,4,6,9,11,2,8,12,10,5$	$1,4,6,2,12,5,10,8,9,11$

Answer 4.

Trace of the given Graph for Dijkstra's Algorithm:

Iterations	a	b	c	d	e	u	S
0	0	$\begin{gathered} 4 \\ 43 \end{gathered}$	1	$\begin{gathered} \text { INF } \\ \text { INF } 5 \end{gathered}$	$\begin{gathered} \text { INF } \\ \text { INF } 2 \end{gathered}$	\{a\}	
1	-		1			c	\{a,c $\}$
2	-	3	-	5	2	e	\{a,c,e\}
3	-	3	-	54	-	b	\{a,c,e, b \}
4	-	-	-	4	-	d	\{a,c,e,b,d\}

Hence, The minimum distance from a to d is 4 .

