Home work 4 sample solution

22C:034 Spring 2004

Q1:
a) $\quad P^{\sim}$, child
$P^{\sim} \circ P^{\sim}$, grandchild
$P \circ P$, grandparent
b) nephew or niece
c) $\left(P^{\sim}\right)^{+} \circ P^{+}$

Q2:
$f_{1}=(\mathrm{a}, 0),(\mathrm{b}, 0),(\mathrm{c}, 0)$
$f_{2}=(\mathrm{a}, 0),(\mathrm{b}, 0),(\mathrm{c}, 1)$
$f_{3}=(\mathrm{a}, 0),(\mathrm{b}, 0),(\mathrm{c}, 2)$
$f_{4}=(\mathrm{a}, 0),(\mathrm{b}, 1),(\mathrm{c}, 0)$
$f_{5}=(\mathrm{a}, 0),(\mathrm{b}, 1),(\mathrm{c}, 1)$
$f_{6}=(\mathrm{a}, 0),(\mathrm{b}, 1),(\mathrm{c}, 2)$
$f_{7}=(\mathrm{a}, 0),(\mathrm{b}, 2),(\mathrm{c}, 0)$
$f_{8}=(\mathrm{a}, 0),(\mathrm{b}, 2),(\mathrm{c}, 1)$
$f_{9}=(\mathrm{a}, 0),(\mathrm{b}, 2),(\mathrm{c}, 2)$
$f_{10}=(\mathrm{a}, 1),(\mathrm{b}, 0),(\mathrm{c}, 0)$
$f_{11}=(\mathrm{a}, 1),(\mathrm{b}, 0),(\mathrm{c}, 1)$
$f_{12}=(\mathrm{a}, 1),(\mathrm{b}, 0),(\mathrm{c}, 2)$
$f_{13}=(\mathrm{a}, 1),(\mathrm{b}, 1),(\mathrm{c}, 0)$
$f_{14}=(\mathrm{a}, 1),(\mathrm{b}, 1),(\mathrm{c}, 1)$
$f_{15}=(\mathrm{a}, 1),(\mathrm{b}, 1),(\mathrm{c}, 2)$
$f_{16}=(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{c}, 0)$
$f_{17}=(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{c}, 1)$
$f_{18}=(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{c}, 2)$
$f_{19}=(\mathrm{a}, 2),(\mathrm{b}, 0),(\mathrm{c}, 0)$
$f_{20}=(\mathrm{a}, 2),(\mathrm{b}, 0),(\mathrm{c}, 1)$
$f_{21}=(\mathrm{a}, 2),(\mathrm{b}, 0),(\mathrm{c}, 2)$
$f_{22}=(\mathrm{a}, 2),(\mathrm{b}, 1),(\mathrm{c}, 0)$
$f_{23}=(\mathrm{a}, 2),(\mathrm{b}, 1),(\mathrm{c}, 1)$
$f_{24}=(\mathrm{a}, 2),(\mathrm{b}, 1),(\mathrm{c}, 2)$
$f_{25}=(\mathrm{a}, 2),(\mathrm{b}, 2),(\mathrm{c}, 0)$
$f_{26}=(\mathrm{a}, 2),(\mathrm{b}, 2),(\mathrm{c}, 1)$
$f_{27}=(\mathrm{a}, 2),(\mathrm{b}, 2),(\mathrm{c}, 2)$
one-to-one onto
one-to-one onto
one-to-one onto
one-to-one onto
one-to-one onto
one-to-one onto

Q3:
(a) partial function, into
(b) total function, onto, bijective
(c) no function, (a,b) and (a,a)
(d) total function, into, not bijective
(e) partial function, into

Q4:
Hint: Every real number r in interval $[0,1]$ can be expressed as :

$$
\begin{equation*}
r=a_{0} \cdot 2^{-1}+a_{1} \cdot 2^{-2}+\cdots+a_{n-1} \cdot 2^{-n}+\cdots, a_{i} \in\{0,1\} \tag{1}
\end{equation*}
$$

We can construct a function f from $[0,1]$ into $P(N)$.

$$
\begin{equation*}
f(r)=\left\{n \mid a_{n}=1, \text { where } a_{n} \text { is the } a_{n} \text { in (1), } n \in N\right\} \tag{2}
\end{equation*}
$$

Prove that f is bijective.
Q5:

$$
\begin{equation*}
H_{n}=1+n+H_{n-1} \tag{3}
\end{equation*}
$$

We'll use the idea of difference operator Δ to solve the equation. According to (3), one has:

$$
\begin{equation*}
\Delta H(n)=H_{n+1}-H_{n}=n+2 \tag{4}
\end{equation*}
$$

We know $H(n)$ must be a quadratic. Let $H(n)=a n^{2}+b n+c$. Since

$$
\begin{equation*}
\Delta\left(a n^{2}+b n+c\right)=2 a n+a+b \tag{5}
\end{equation*}
$$

One has:

$$
\left\{\begin{array}{l}
2 a=1 \\
a+b=2
\end{array}\right.
$$

So one has $a=\frac{1}{2}, b=\frac{3}{2}$.
When $n=0$, one has $a \cdot 0^{2}+b \cdot 0+c=H_{0}$. So $c=H_{0}$. Consequently, one has $H_{n}=\frac{1}{2} n^{2}+\frac{3}{2} n+H_{0}$.

